
An Operative Formulation of the Diagnosability
of Discrete Event Systems Using a Single

Logical Framework

Florent Peres
Univ. Lille Nord de France, F-59000 Lille,

IFSTTAR, COSYS/ESTAS
F-59650 Villeneuve d’Ascq

florent.peres@ifsttar.fr

Mohamed Ghazel
Univ. Lille Nord de France, F-59000 Lille,

IFSTTAR, COSYS/ESTAS
F-59650 Villeneuve d’Ascq
mohamed.ghazel@ifsttar.fr

Diagnosability is a procedure whose goal is to determine whether any failure – or a class of failures – can
be determined in finite time after its occurrence. Earlier works on diagnosability of discrete event systems
(DES) establish some intermediary models from the analyzed model and then call some procedures to check
diagnosablity based on these models, while recent works try to give a diagnosability formulation as a model-
checking problem. However, there still lacks a single framework able to handle both of the diagnosability
issues: how to model the problem? and how to decide it? In this paper, we build on some existing works
which have formally established necessary and sufficient conditions for diagnosability of DES and we
propose a generic operative formulation of diagnosability using the µ-calculus logic, which allows resolving
the diagnosability issue within a single formalism.

Diagnosis, Diagnosability, Monitoring, Discrete event system, µ-calculus

1. INTRODUCTION

Fault detection and isolation (FDI) is a crucial task,
both for safety and productivity reasons. Moreover,
systems become more and more complex, thus
making monitoring/diagnosis a challenging task
especially in automated systems. A typical issue to
deal with when performing the diagnosis process is
that of partial observability. Actually, it is often difficult
and costly to detect all the changes that may occur
within a complex system. Indeed, for technical and/or
economic reasons, setting enough devices/sensors
to catch all the information needed for control and
supervision is generally unfeasible when dealing with
large complex systems. Consequently, it becomes
essential to develop efficient techniques to carry
out FDI tasks. At a high level, discrete event
models Cassandras (2008) are more convenient
for diagnosis studies than continuous models,
which are more appropriate for detailed levels
Lin (1994). Basically, two main issues are tackled
when dealing with diagnosis of discrete event
models: examinating diagnosability and developing
diagnosers. Diagnosability investigation is performed
offline, and consists to determine whether every fault
-or category of faults- can be detected and identified
in finite time, consecutively to its occurrence.

The diagnoser implementation issue comes next.
The Diagnoser ensures online monitoring and
determines whether the system behavior is faulty
and which type is the fault.

Diagnosability of DES has been defined first in
the seminal work of Sampath (1995). Some slight
variations can also be found like for instance
I-diagnosability which makes fault determination
conditioned by the occurrence of some indicator
events. Such definitions state when a system is
said diagnosable and some procedures based on
intermediate automata models are then needed
to actually investigate diagnosability. Later, model-
checking techniques were used in Cimatti (2003),
Huang (2004) and Grastien (2009), coming closer
and closer to an operative definition. Nevertheless,
these works all have a common point: they must
first build an intermediary model of the behavior,
called twin plant, before being able to apply model-
checking. Thus, none of those works actually gives
a unified operative definition. Such a definition must
use a language whose semantics describes how to
achieve all the required steps (which is true for the
latter cited works) while being able to express the
problem as a whole.

45

In this paper, an operative definition of diagnosability
is developed, while using a slight variant of µ-
calculus1, as it was initially proposed in Park (1976).
This logic is basically a predicate calculus extended
with traditional fix-point operators µ and ν. The
benefits of such a logic is that it is extremely powerful
from a theoretical point of view (even modal µ-
calculus can be expressed using µ-calculus), but
especially that it is decidable for finite DES. Last
but not least, there exists a tool, MEC 5 Griffault
(2004), Vincent (2003), (now incorporated within
ARC), for checking µ-calculus formulas on Altarica
Arnold (1999) systems. By operative definition, we
mean a definition that can be used directly to perform
the diagnosability analysis.

Using a single logical framework to give a formulation
of diagnosability does not necessarily mean that the
problem has been simplified. Indeed, we will see
that some of the steps of our formulation are quite
close to the cited works, especially those using a twin
plant/verifier. Nevertheless, the benefits of using a
single framework is twofold: from a theoretical point
of view, this shows the existence of such a logical
operative framework able to express the problem as
a whole. Then from the practical point of view, this
provides a way to quickly implement and experiment
diagnosability only by looking at the semantics, and
hopefully will it be useful to extend the diagnosability
facilities, as will be shown in the sequel.
The paper is organized as follows: In section 2, we
introduce diagnosability of DES as well as some
related notations. Section 3 is devoted to give an
overview on the related works. In section 4, we
discuss our µ-calculus formulation for diagnosability
of DES. Section 5 gives a brief discussion about
complexity and finally section 6 concludes the paper
while driving some perspectives for this work.

2. DIAGNOSABILITY

2.1. Definition

To properly give the definition of diagnosability that
we consider, we need to introduce some concepts
and notations relative to language theory.

An alphabet is a set of characters or symbols,
usually denoted Σ. A word is a sequence –or string–
of characters. The set of all finite length words,
composed of characters in Σ is denoted Σ∗. A
language over Σ is a subset of Σ∗. A word is empty
if it contains no letter, and is denoted ε. If w is a
word then |w| denotes its length, i.e. the length of
the character sequence constituting w (|ε| = 0).
Two words a and b can be concatenated to form
a new word denoted a.b (or ab for short). The
1Please note the absence of ”modal”

concatenation operation complies with the property
|ab| = |a| + |b|. Using concatenation, it can be
helpful to confuse the 1-length words (|w| = 1) with
characters, and to consider the empty word ε as a
“hidden” word/character. For w = ab, a and b are
called prefix and suffix of w, respectively. A language
L is called prefix-closed iff each prefix of each word
in L is in L, i.e. (∀w ∈ L)({a | ∃b, w = ab} ⊆ L).

For w ∈ L, wi denotes the ith character of w. For
i ∈ N \ {0} ∀ i > |w|, wi = ε and w1 is the first
character. By abuse of notation, if α ∈ Σ and w ∈ Σ∗,
then α ∈ w iff (∃i)(wi = α).

Now, we will define diagnosability as given in the
seminal work of Sampath (1995). Let L be a prefix-
closed language on the set of events Σ. Σ is
partitioned into Σo, the set of observable events, and
Σu the set of all unobservable events, which is in
turn partitioned into Σf , the set of all faulty events
and Σh = Σu \ Σf denoting the set of unobservable
events which are not faulty (harmless).

We consider the following assumption: once a
fault has occurred, the system remains irreparably
faulty, that is to say faults are permanent. More
precisely, given a sequence of alternating states
and transitions, once a fault has occurred, every
subsequent state eventually reached is considered
faulty. From the monitoring point of view, this means
we do not consider any maintenance operation that
may be performed on the system.

Definition 1 Πf is a partition of the set of faults Σf .
Each subset i is denoted Σfi , that is Πf =

⊎
i Σfi .

Definition 2 Ψ(Σfi) is the set of sequences ending
with a fault in Σfi : (∀s ∈ L)(∀fi ∈ Σfi)(s

|s| = fi ⇔
s ∈ Ψ(Σfi))

Definition 3 L/s = {t ∈ Σ∗|s.t ∈ L} is the set of all
suffixes of s in L.

Definition 4 (∀i)((si ∈ Σo ⇒ P (s)i = si) ∧ (si ∈
Σu ⇒ P (s)i = ε)), defines the projection P (s) of
sequence s on the set of observable events Σo: if si is
observable, then P (s)i = si, but if si is unobservable
then P (s)i = ε.

Definition 5 P−1
L (y) = {s ∈ L|P (s) = y} gives all

the sequences s in L for which the projection on Σo

gives y.

Definition 6 (Diagnosability Sampath (1995))

(∀i ∈ Πf)(∃ni ∈ N)(∀s ∈ Ψ(Σfi))(∀t ∈ L/s)

(|t| ≥ ni ∧ w ∈ P−1
L (P (s.t)) ⇒ ∃(f ∈ Σfi)(f ∈ w))

46

Informally speaking, this definition states that a
given language is diagnosable iff for any sequence
w with the same observable projection than a
faulty sequence s.t with s|s| ∈ Σfi , and t is
sufficiently long, then w necessarily contains a fault
from Σfi . Reasoning directly on languages is not
always possible, because they are often infinite. An
alternative is to use labeled transition systems (LTS).

Definition 7 A labeled transition system (LTS) is a
tuple (Q, q0,Σ,−→), in which:

• Q is a set of states

• q0 is the initial state

• Σ is a set of events

• −→: Q× Σ×Q is the transition relation

We say that an LTS recognizes a word w = x1 . . . xn

iff q0
x1−→ . . .

xn−−→, or in other words if the sequence
of events given by w can occur from q0. The set of
recognizable words forms the language recognized
by the LTS. By extension, we say that an LTS is
diagnosable (resp. not diagnosable), iff the language
it recognizes is diagnosable (resp. non-diagnosable).

2.2. Example

For the LTS in Figure 1, the set of observable events
is {a, b}, while f is a fault (thus unobservable). The
LTS is not diagnosable and the explanation is quite
simple: any word of the language (ab)∗, coming
from an observable projection, can originate either
from a recognized sequence containing a fault (any
word in f(ab)∗ satisfies this), or from a non-faulty
sequence (any word in (ab)∗ also verifies this). Thus,
there is no length n, such that after this length, one
can always distinguish faulty sequences from normal
ones, based on observed events.

On the other hand, the language recognized by the
automaton of Figure 2 is diagnosable.

0

2 3

1

a

a

b

b

f

Figure 1: A is not diagnos-
able

a

b

f

0 4

32

b

a

Figure 2: B is diagnosable

The difference between automata A and B is the
appearance order of the observable events after the
fault f . In B, a fault may appear either from the initial
state, followed by an occurrence of b, or between

two consecutive occurences of b. Therefore, when a
fault f occurs, the projection on the set of observable
events results in a sequence starting with b or it
will include at least two consecutive b’s. Both cases
cannot be obtained without the occurrence of f .

3. RELATED WORKS

Several reference works in diagnosis of DES can
be found in the literature, these works can be
distinguished mainly according to the notations
used, to the framework considered (centralized
vs. distributed, untimed vs. timed), to the type
of faults (permanent vs. transient) or also to the
procedures adopted to investigate diagnosability.
Sampath (1995) is a pioneer work in the DES
diagnosis field, that has been improved in terms
of computational complexity in Yoo (2002). Jiang
(2001) proposes an efficient way to investigate
diagnosability of DES modeled with state finite
automata. In Basile (2010), Cabasino (2010), Genc
(2007), Liu (2014), Ushio (1998) the authors analyze
diagnosis on systems modeled by Petri nets. On
the other hand, Tripakis (2002), Jiroveanu (2006),
Ghazel (2009) and Basile (2013) deal with diagnosis
within a timed framework, namely based on timed
automata and petri net models. For a complete
overview on the literature pertaining to the diagnosis
of DES, the reader can refer to Zaytoon (2013) which
offers a wide survey on the state of the art.

In this section, we will briefly discuss existing
techniques on diagnosability of DES using a
logical framework for which there is a well defined
operational semantics. One may distinguish two sub-
issues: the first is about developing a diagnosability
decision procedure transformed into a model-
checking problem; and the second is related to the
specification of the faulty behavior.

3.1. Twin Plant

Although diagnosability is not defined using an
“operative” logical framework, the originality of this
work comes from its efficient decision procedure,
which has been widely reused in several subsequent
works. The authors of Jiang (2001) use the same
definition of diagnosability as in Sampath (1995) and
propose a polynomial algorithm, thus optimizing the
diagnosability decision in comparison with that of
Sampath (1995). The main idea is to drop the use
of a diagnoser when checking whether a model is
diagnosable.

The decision procedure is composed of three steps.
From the original LTS G = (X, q0,Σ,−→), one
proceeds as follows:

47

• Construction of Go = (Xo, q0,Σo,−→o), the
“observable” version of G:

a) Xo = {(x, f) | x ∈ Q1 ∪ {q0} ∧ f ⊆ F}, where
Q1 = {x ∈ Q | (∃x′ ∈ Q)(∃e ∈ Σo)(x

′ e−→ x)}, i.e.
Xo is the set of states which are the destination of
an observable transition (Q1), plus the initial state q0.
Each state is labeled with a set of faults f , indicating
which ones may have occurred before reaching this
state.

b) −→o: Xo × Σo × Xo is such that (x, f)
e∈Σo−−−→o

(x′, f ′) iff (∃σ ∈ Σ∗
u, x

′′ ∈ X)
(
x

σ−→ x′′ e−→ x′ ∧
f ′ = {fi | σj ∈ Σfi} ∪ f

)
. This is the observable

reachability: if a state x′ is reachable from a state
x by an unobservable sequence, or the empty
sequence, directly followed by an observable event
e, then (x, e, x′) is in −→o.

• Construction of Gd = (Go||Go) = (Xo×Xo, (qo, qo),
Σo,=⇒), where || is the usual parallel composition,
for which only the following rule applies, because
the two composed LTS are the same (clones):
q

a∈Σo−−−→o q′ r
a∈Σo−−−→o r′

q||r a
=⇒ q′||r′

• And finally, a cycle-checking pass is needed within
Gd: for every cycle q1

σ
=⇒ qn

a
=⇒ q1, where σ ∈ Σ∗

o and
a ∈ Σo, if (∀i, j ∈ [1, n])(qi = (s, f1) ∧ qj = (s′, f2) ⇒
f1 = f2) then G is diagnosable.

3.2. Verifier techniqueYoo (2002)

3.3. Twin plant + “LTL”

Several approaches use logical formulas to partially
state diagnosability. All these works have in common
the fact that they first build an intermediary LTS, in
such a way to make the diagnosability decision a bit
easier.

To the best of our knowledge, the authors of
Cimatti (2003) are the first who have used model-
checking in order to decide diagnosability: first, the
model describing the system behavior is composed
with itself (by the means of the usual parallel
composition), giving a new structure called twin-
plant. Two sets of states give the diagnosis
conditions: the states in the first set have not to be
confused with those in the second set. Then from
the twin-plant, one may check whether there exists a
path reaching a critical state q, such that q = (x1, x2)
and x1 (from the first component in the parallel
product) satisfies a diagnosis condition, whereas x2

(from the second component in the parallel product)
satisfies another diagnosis condition. If such a
critical state q is reached, then the original model is
not diagnosable.

In Huang (2004), the diagnosability problem has
been dealt with using a CTL∗ formula for the
first time. Once again, it is still necessary to first
build a twin plant Gd. Unlike the approach of
Cimatti (2003), the authors use the same definition
as in Sampath (1995). The model expressing the
system dynamics is extended with a new variable
denoting fault occurrence (Boolean). The twin plant
is thus analyzed to find states corresponding to the
composition of a “faulty” state with a “normal” state
(information given by the added boolean variable) by
model-checking techniques. In Grastien (2009), the
authors use a substantially similar method.

3.4. Fault specification

Diagnosability can be extended using a more
general fault specification: instead of pointing only
faulty states or events, one may also express that
a given behavior is faulty (resp. normal) if it satisfies
(resp. does not satisfy) a certain formula specifying
the faulty (resp. safe) behavior.

In Jiang (2004), the authors use an LTL formula f to
specify the boundary of the normal (safe) behavior:
each state outside this boundary is considered as
to be faulty. In particular, usual faults are specified
using safety properties: if e is a faulty event, then
�¬e gives the normal behavior. However, what is
particularly interesting in this approach lies in the
fact that faults may be much more subtle, as for
instance: a deadlock (a blocking preventing any
further action of the system); a livelock (the blocking
of certain functionalities in the system: technically
speaking, the system executes some tasks, but does
not meet its functional requirements); the repeated
occurrence of a given event: taken individually, each
occurrence is not a fault; but the recurrence of the
event denotes a faulty behavior; etc. For example,
a nominal behavior could be the following: after a
request, the system must answer by a response (i.e
the system is reactive). To specify this requirement
one can use the following formula: �(request →
response). Any run which does not satisfy this
property is considered as to be faulty.

In Jéron (2006), Jeron et al. reuse, while generalizing
them, the ideas discussed previously. The main idea
is to use the LTS model to specify both the behavior
to be diagnosed (i.e the “faulty” behavior), and the
model of the system to be monitored. The idea is
likely to be inspired from the well-known technique
called as ”verification with observers”: when it is not
possible to express a given property using a logic (or
when using a logical formula leads to unsatisfying
performances), it remains possible to instrument the
behavioral model in order to facilitate the expression
of the property. This is exactly what is suggested
here: instead of giving a different logical formula

48

for each type of faults to be diagnosed, the system
model is composed with the fault model, then a
method, which is besides generic, is applied to check
diagnosability. In Jéron (2006), several fault patterns
are given.
Concretely, given Gf the fault model and GM the
model to be diagnosed, GΩ = Gf × GM is first
computed, then a determinization is operated on
this LTS. Thereafter, on this determinized LTS, the
unobservable events are abstracted thus obtaining
Gobs
Ω . Finally this obtained LTS is composed with

itself: Gdiag = Gobs
Ω × Gobs

Ω . The decision process is
thereby reduced to checking whether there is not a
sequence indefinitely “undetermined”, i.e for which
one component in Gdiag is faulty whereas the other
is not. The system is then diagnosable iff such a
sequence does not exist.

4. µ-CALCUL FORMULATION OF
DIAGNOSABILITY

The goal of our formulation is twofold: to establish
a homogeneous formal logical framework to specify
the diagnosability problem, and to give a “decision
algorithm”, directly deduced from the µ-calculus
semantics.

The logic that we use here is typically a predicate
calculation extended with two fix-point operators
which have been proposed first in Park (1976).

µ-calcul syntax
E ::=

> | ⊥ | ¬E |E ∧ E |E ∨ E | (∃X)(E) |E = E |R′(x1, . . . , xn)

R′ ::= V | λXn.E | µV.R′ | νV.R′

R ::= λXn.E | µV.R′ | νV.R′

where V is the set of relational variables and X is a
set of variables. Writing V or X is a shortcut to mean:
”any element of these sets”. Moreover, n ∈ N, n ≥ 1
and finally V ∩X = ∅.

There are two entry points for this grammar: E and
R. Each of these entry points defines a particular
type of formula: E denotes boolean formulas, while
R defines relations. A relation is defined by the set
of elements respecting a given boolean formula,
therefore, E-expressions are necessary to define a
relation. Note, however, that in the sequel E will not
be used as an entry point in our formulation.

Semantics
Throughout the rest of the paper, we write φ[y/x] to
say that every occurrence of x in φ is substituted
by y. The semantics of µ-calculus expressions is
defined on the complete lattice 〈O,⊆〉, as follows:

• J>K = true

• J⊥K = false

• J¬φK = not JφK
• Jφ = γK = φ equals γ

• Jφ ∧ γK = JφK and JγK
• Jφ ∨ γK = JφK or JγK
• J(∃x)(φ)K =ORi∈OJφ[i/x]K
• JR(y1, . . . , yn)K = (y1, . . . , yn) ∈ R

• Jλ(x1, . . . , xn).φK = {(y1, . . . , yn) ∈
On | Jφ[y1/x1,...,yn/xn]K = true}

• Jµx.φK =
⋃∞

i=0 S
i, with S0 = ∅ and Si+1 =Jφ[Si/x]K

• Jνx.φK =
⋂∞

i=0 S
i, with S0 = O and Si+1 =Jφ[Si/x]K

The terms true and false are the basis B of the
boolean algebra whose operators are the usual
boolean operators and, or and not; equals: O×O →
B allows the comparison of two elements in O; OR is
the disjunction on a set of boolean terms and finally
∈ is the usual membership operator.

In Jµx.φK and Jνx.φK, φ must be monotone, i.e. each
occurence of x must be “covered” by an even number
of negations.

The fix-point operator is an infinite union. However
and according to the Knaster-Tarski theorem Tarski
(1955), since O is a complete lattice, we know that
this fix-point will be reached upon a finite number of
iterations.

4.1. Diagnosability

Let 〈Q, q0,Σ,−→〉, with −→: Q × Σ × Q, the LTS
modeling the system for which we want to check
diagnosability. We do not want to handle any item
other than states and events, thus O = Q ∪ Σ. We
also assume the existence of sets Σf of faulty events
and Σo of observable events.

Firstly, we will introduce diagnosability in the same
way as defined in Sampath (1995). Thus, several
relations will be defined. In these relations faulty
states are those which are reached after a fault
event has occurred (starting from the initial state).
Secondly, we show how this definition can be easily
extended.

Informally speaking, a triplet (a, b, f) is element of
the UOReach relation, means that there exists an
unobservable path between a and b. This path is
labeled with a boolean f which is true when at least

49

UOReach = µX.λ(s, t, f).(∃s′)(∃f ′)(∃e)(∃r)(∃e′)
(
s

e−→ t ∧ s = q0 ∧ ¬Σo(e) ∧ f = Σf (e)
)
∨(

s
e−→ t ∧ r

e′−→ s ∧ Σo(e
′) ∧ ¬Σo(e) ∧ f = Σf (e)

)
∨(

X(s, s′, f ′) ∧ s′
e−→ t ∧

f = (f ′ ∨ Σf (e)) ∧ ¬Σo(e)

)


Figure 3: Unobservable reachability + identification of
faulty/normal paths

one of the events of this path is a fault; conversely
f is false if there exists an unobservable normal
(without fault) path between a and b. In order to
reduce the size of this relation, only the states
destination of an observable event, or the initial state,
are considered as an origin of the unobservable
paths. A graphical representation of this relation
applied to the model of Figure 4 is given in Figure
5.
In Figures 5, 7, 10, 11, 12, 13, 15, 16, 17 and 19, T
tag stands for TRUE (faulty path) and F for FALSE
(no fault).

0 3

2

41

f

a

a u

u

u

u

a
a

Figure 4: The considered example

0 3

2

41

T

F

F

F

F
F

F

F

Figure 5: Graphical representation of UOReach relation

In the UOReach formula, the µX fix-point operator
indicates that the definition is recursive and that X
denotes the set of elements in the relation at the
previous step of the recursion. Since the samllest
fix-point operator (µ) is used here, X is initially an
empty set (∅). The next operator, λ(s, t, f), expresses
that the relation UOReach is a ternary relation. The
relation is defined by giving the valuation space
that the three parameters, here (s, t, f) can have.
UOReach is defined by three cases:

• Initially, s corresponds to the states issued from
an observable transition from which an unobservable
transition is possible, f indicates whether the
event labelling the unobservable transition is faulty
or not. Formally, this case can be written as:

(∃r)(∃e′)(∃e)(r e′−→ s ∧Σo(e
′) ∧ s

e−→ t ∧ ¬Σo(e) ∧ f =
Σf (e))

• By default, the initial state is considered as to be
issued from an observable transition: (s e−→ t ∧ s =
q0 ∧ ¬Σo(e) ∧ f = Σf (e))

• The third case is the recursion operation: there
exists a path between s and t if there is a triplet
(s, s′, f ′) in UOReach such that an unobservable
transition links s′ to t. The parameter f of the new
triplet (s, t, f) is true if f ′ is true (a fault has already
occurred between s and s′), or when the transition
s′

e−→ t is faulty (i.e. Σf (e)): therefore we propagate
the information that a fault is possible between s and
s′ to the new triplet. Formally, this case is expressed
as follows: (∃s′)(∃f ′)(∃e)(UOReach(s, s′, f ′) ∧ s′

e−→
t ∧ ¬Σo(e) ∧ f = f ′ ∨ Σf (e))

Nextobs = µX.λ(s, e, t, f).(∃s”)(∃e′)(∃f ′)(∃s′)
(
Σo(e) ∧ s = q0 ∧ s

e−→ t ∧ ¬f
)

∨(
Σo(e) ∧X(s”, e′, s, f ′) ∧ ¬f ∧ s

e−→ t
)

∨(
Σo(e) ∧ UOReach(s, s′, f) ∧ s′

e−→ t
)


Figure 6: Observable reachability + detection of
faulty/normal paths

0

2

a , F

4

a ,Fa , F3

a , F

a , F

a , T
a , F

a , T

a , F

Figure 7: Graphical representation of Nextobs relation

The second step consists in determining the
observable reachability of the LTS for which we
examine dianosability. The observable reachability is
an LTS which keeps only the observable events, and
in which a transition links a state s to a state t iff it is
possible to reach t from s through an unobservable
sequence (may be ε) followed by an observable
event. Here, the origin state s has to be either the
initial state q0, or a state destination of an observable
event.

50

To each triplet (s, e, t) involved in an element of
the observable reachability relation, we assign a
boolean f denoting the existence of a faulty path
(a path containing a fault) when f is true, and a
normal path (without any fault) when f is false. The
graphical representation of Nextobs relation is given
in Figure 7. As for UOReach, Nextobs relation is
defined according to two cases:

• Either s e−→ t (with e observable) already exists, then
we add (s, e, t, f) as is to Nextobs while putting f
marker to false (since this is a faultless path from s
to t). Formally, this can be written: s e−→ t∧Σo(e)∧¬f .
As for UOReach, the origin state must be either the
initial state (s = q0), or a state destination of an
observable event (X(s”, e′, s, f ′)), which has been
already captured in the Nextobs relation, here.

• Or there exists an intermediary state s′ such that
s′

e−→ t where e is observable and s′ is reachable
from s through a sequence of unobservable events
((s, s′, f ′) ∈ UOReach). In this case, the fault
marker f is a copy of f ′: indeed only unobservable
sequences containing a fault can turn f into true.
Formally, this case can be expressed as follows:
UOReach(s, s′, f) ∧ s′

e−→ t ∧ Σo(e).

Normal = µX.λ(t).(∃s)(∃e)(
t = q0 ∨
(X(s) ∧Nextobs(s, e, t,⊥))

)
Figure 8: Normal States

Normal is a unary relation (λ(t)) containing the initial
state q0 as well as all the states, destination of an
observable transition and reachable from q0 by at
least one normal path (cf. Nextobs). This relation
will be useful in the sequel as if a given state t is
reachable only through faulty paths, then the faults
will propagate and all the subsequent reached states
will be consequently faulty (no anymore ambiguity).

One may easily note that from the implementation
point of view, sets Nextobs and Normal can be
computed simultaneously using the same procedure,
just by looking at the fault tagin Nextobs.

Sameobs = µX.λ(t, t′).(∃s)(∃s′)(∃e)
(

Normal(s) ∧ Nextobs(s, e, t,⊥) ∧
Nextobs(s, e, t′,⊥) ∧ ¬(t = t′)

)
∨(

X(s, s′) ∧Nextobs(s, e, t,⊥) ∧
Nextobs(s′, e, t′,⊥) ∧ ¬(t = t′)

)


Figure 9: Trace equivalence - Same observability

This relation catches all the couples (t, t′) such
that states t and t′ are different states that could
be reached respectively by two normal (faultless)
paths P1 and P2 having the same projection on Σo.
Sameobs allows us to keep all the states equivalent

in terms of observation; the goal being to examine
ambiguity in the system behavior starting from such
pairs of states, as will be shown in the Amb relation.
Two cases are considered:

• the first case holds when from the same “normal”
state s, one can reach two different states t
and t′ respectively by two unobservable normal
sequences, both followed by the same observable
event e (cf. Figure 10). This case can be written as:
Normal(s)∧Nextobs(s, e, t,⊥)∧Nextobs(s, e, t′,⊥)∧
¬(t = t′).

• the second case corresponds to the recursion
and consists in propagating the trace equivalence.
Concretely from two indistinguishable states s and
s′ already in Sameobs (X(s, s′)), one can reach
two different states t and t′ while generating the
same observable event e and without generating
any fault for both paths (cf. Figure 11). This case
can be expressed as: X(s, s′) ∧Nextobs(s, e, t,⊥) ∧
Nextobs(s′, e, t′,⊥) ∧ ¬(t = t′).

e, F
s

t

t'

e, F

t = t'

Sameobs(t,t')
Normal(s)

Figure 10: First case

s t

t'

e, F Sameobs(t,t')

s'

Sameobs(s,s')

e, F
t = t'

Figure 11: Second case: propagation

Proposition. Sameobs(t, t′) =⇒ ∃σ1, σ2 ∈
(Σ \Σf)

∗.Σo such that σ1 6= σ2 ∧ PΣo(σ1) = PΣo(σ2)

∧ q0
σ1−→ t ∧ q0

σ2−→ t′

Proof. From the definition of Sameobs given in Figure
9, (s, s′) is in Sameobs iff:

• either t and t′ come from the same Normal
state s, by Sameobs through a same observ-
able event e, and without generating any fault
(cf. Figure 12),

Sameobs(t,t')

t = t'
t

t'

s
q0

NormalNormal
Normal

e, F

e, F

Figure 12: Building (t, t′) in the first case

• or t and t′ come respectively from s and s′

by Sameobs through a same observable event

51

e and without generating any fault such that
(s, s′) is also in Sameobs (cf. Figure 13).

s=sn t

t'

 e,F
Sameobs(t,t')

s'=sn'

Sameobs

 e,F
t = t'

sn-1

en-1,F

sn-1'

en-1,F

s1

s1'
sq0

NormalNormal Normal

Sameobs Sameobs

Figure 13: Building (t, t′) in the second case

In the first case and given the definition of Nextobs,
∃s ∈ Normal, ∃σ′

1, σ
′
2 ∈ (Σu \ Σf)

∗.Σo such that

σ′
1 6= σ′

2, PΣo(σ
′
1) = PΣo(σ

′
2) = e ∧ s

σ′
1−→ t ∧ s

σ′
2−→ t′.

Besides, given the definition of Normal, it is easy to
show (by induction) that ∃σ′ ∈ (Σ\Σf)

∗.Σo such that

q0
σ′

−→ s. Then we have q0
σ′

−→ s, s
σ′
1−→ t, σ′

1 6= σ′
2

s
σ′
2−→ t′. Hence, with σ1 = σ′.σ′

1 and σ2 = σ′.σ′
2, we

have σ1, σ2 ∈ (Σ \ Σf)
∗.Σo ∧ σ1 6= σ2 ∧ PΣo(σ1) =

PΣo(σ2) ∧ q0
σ1−→ t ∧ q0

σ2−→ t′.

In the second case, let us take back the computation
of Sameobs as given in definition 9. Assume there
are n couples (si, s

′
i) in Sameobs, i ∈ [1, n] preceding

(t, t′) after having bifurcated from the same normal
state s, as shown in Figure 13. Then, according to
Nextobs definition, ∃σn, σ

′
n ∈ (Σu \ Σf)

∗.Σo such
that PΣo(σn) = PΣo(σ

′
n) = e ∧ (sn = s)

σn−−→ t ∧
(s′n = s′)

σ′
n−−→ t′. This is also true for each pair of

couples (si, s
′
i), (si+1, s

′
i+1) for i ∈ [1, n − 1]. That

is ∀i ∈ [1,n-1], ∃σi, σ
′
i ∈ (Σ \ Σf)

∗.Σo such that

PΣo(σi) = PΣo(σ
′
i) ∧ si

σi−→ si+1 ∧ s′i
σ′
i−→ s′i+1.

Then by concatenating respectively σi sequences
and σ′

i sequences, one can state that: ∃ρ1, ρ2 ∈
(Σ \ Σf)

∗.Σo, ρ1 = σ1 . . . σn, ρ2 = σ′
1 . . . σ

′
n such that

PΣo(ρ1) = PΣo(ρ2) ∧ s1
ρ1−→ t ∧ s′1

ρ2−→ t′.
Moreover (s1, s′1) falls in the first case, then ∃τ1, τ2 ∈
(Σ \ Σf)

∗, τ1 6= τ2 such that q0
τ1−→ s1 ∧ q0

τ2−→
s′1 ∧ PΣo(τ1) = PΣo(τ2) ∧ q0

τ1−→ s1 ∧ q0
τ2−→ s′1.

Finally, by taking σ1 = τ1.ρ1 and σ2 = τ2.ρ2, we
obtain: σ1, σ2 ∈ (Σ \ Σf)

∗.Σo, σ1 6= σ2, PΣo(σ1) =

PΣo(σ2) ∧ q0
σ1−→ t ∧ q0

σ2−→ t′. �

Amb = µX.λ(t, t′).(∃s)(∃s′)(∃e)(∃f)

(
Normal(s) ∧ Nextobs(s, e, t,>) ∧
Nextobs(s, e, t′,⊥)

)
∨(

Sameobs(s, s′) ∧ Nextobs(s, e, t,>) ∧
Nextobs(s′, e, t′,⊥)

)
∨(

X(s, s′) ∧ Nextobs(s, e, t, f) ∧
Nextobs(s′, e, t′,⊥)

)


Figure 14: Local Ambiguity

Amb relation is quite simple and consists in
identifying pairs of states t and t′ locally ambiguous,
i.e t and t′ can be reached from q0 by two sequences
generating the same observation, but the first is

faulty and not is the second. This can happen
according to three cases:

• pairs (t, t′) such that t and t′ can be reached from
the same normal state s, respectively through an
unobservable faulty path followed by an observable
event e in one hand, and on the other hand through
a normal unobservable path (may be ε) followed
by the same observable event e. This case can be
expressed as:
Normal(s) ∧Nextobs(s, e, t,>) ∧Nextobs(s, e, t′,⊥)
(cf. Figure 15).

• when from two states s and s′ such that
Sameobs(s, s′), one can reach t and t′ respectively
through two unobservable sequences, σ1 faulty and
σ2 normal, both followed by the same observable
event e (Sameobs(s, s′) ∧ Nextobs(s, e, t,>) ∧
Nextobs(s′, e, t′,⊥)) as shown in Figure 16. This can
be written:
Sameobs(s, s′) ∧ Nextobs(s, e, t,>) ∧
Nextobs(s′, e, t′,⊥).

• the third case is when the ambiguity is obtained
by “inheritence” from two ambiguous states s and
s′ repectively by a faulty unobservable sequence
(which may be either normal or faulty, and possibly
empty) followed by an observable event e; and on
the other hand by a normal unobservable sequence
followed by the same observable event e (X(s, s′) ∧
Nextobs(s, e, t, f)∧Nextobs(s′, e, t′,⊥)). This case is
depicted in Figure 17.

e, T
s

t

t'

e, F
Amb(t,t')Normal(s)

Figure 15: Primitive ambiguity
s t

t'

e, F Amb(t,t')

s'

Sameobs(s,s')

e, T

Figure 16: Ambiguity from Sameobs states

e, T or Fs t

t'

e, F Amb(t,t')

s'

Amb(s,s')

Figure 17: Ambiguity by inheritance

In order to examine diagnosability, one has to check
whether there exists a cycle of ambiguous states.
Searching such a cycle is not simple if we use the
smallest fix-point operator µ. One possible way is to
add, one by one, the elements that we are sure they
do not make part of a cycle: if the obtained relation

52

(that we call Noteveramb) is equal to Amb, then
there is no such a cycle. Conversely, the elements
of Amb which are not in Noteveramb form at least
one ambiguous cycle.

However, the µ-calculus offers another operator
which will be very useful here: the greatest fix-point
operator ν. Thanks to this operator, we will start
from the maximal relation Q × Q, then at each step
we keep only the elements satisfying the equation
until a fix-point is reached. Hence, defining Everamb
becomes simpler because only one case is possible
(cf. Figure 18): a couple (s, s′) is in Everamb iff s and
s′ are ambiguous (Amb(s, s′)) and iff there is at least
one successor couple (t, t′) by Nextobs which fulfills
both of the following conditions:

• is also ambiguous: (Nextobs(s, e, t,>) ∧
Nextobs(s′, e, t′,⊥)), and

• is in Everamb as well (recursivity): (X(t, t′))

Such a recursive definition implies that either of the
following two cases holds:

1. the number of ambiguous couples in Everamb
is infinite, or

2. the ambiguous couples in Everamb form a
cycle.

Hence, since we deal with a finite state system,
only the second case is possible. Thereby, each
ambiguous couple (s, s′) in Everamb belongs to at
least one cycle of ambiguous couples.

Everamb = νX.λ(s, s′).(∃t)(∃t′)(∃e)(∃f)(
Amb(s, s′) ∧Nextobs(s, e, t,>) ∧
Nextobs(s′, e, t′,⊥) ∧ X(t, t′)

)
Figure 18: Cyclic ambiguity

Figure 19 gives the Everamb relation for the
considered model. Everamb is equal to Amb here,
but for which we have shown in dotted line, some
cycles in Nextobs that satisfy Amb.

Definition 8 An LTS is diagnosable according to a
partition of faults Πf iff for each part Σf in Πf ,
Everamb is empty.

Theorem 1 The previous definition of diagnosability
and those of Sampath (1995) and Huang (2004) are
equivalent.

Proof.
It is proved in Huang (2004) that an LTS is
diagnosable in the sense of Sampath (1995) iff
the twin plant Gd = (Go||Go) does not have any
ambiguous cycle.

0

2

4

a, T

a, F
a, T

a, F

a, F

a, F

a, F

Figure 19: Cyclic ambiguity

On one hand, Go of Huang (2004) is quite similar
to Nextobs. The major difference being that Nextobs
holds fault information on transitions, while Go holds
them in states. This mostly impacts the number of
states which would be more important in Go, while
Nextobs may have more transitions.
On the other hand, the computation of Sameobs
together with Amb is equivalent to the composition
procedure Gd = (Go||Go). Actually, Sameobs
performs the composition between the normal paths
which have an observational equivalence (both
generate the same observation), whereas Amb
performs the composition between a faulty path on
one hand and a normal path on the other hand, when
both paths have an observational equivalence.

Also, the definition of Everamb does not allow
multiple faults directly, but this does not break its
generality: if there is more than one type of faults,
i.e. if the partition Πf contains more than one set, it
is sufficient to check the emptiness of Everamb for
each of the sets individually, as stated in definition 8.

In Gd, a couple (x, y) is ambiguous iff, for a given
fault f , x = (q, F) and f ∈ F , while y = (q′, F ′)
and f 6∈ F ′. As (x, y) is in Gd, this means that q and
q′ are reachable by the same observable sequence.
This corresponds to our definition of ambiguity. The
couple of states (t, t′) is ambiguous if either of the
following conditions holds:

• there exists a state s belonging to Normal, i.e
there exists a normal sequence σ ∈ ((Σuo \Σf)

∗Σo)
∗

such that q0
σ−→ s, and there exists an observable

event e and two unobservable sequences σ′ faulty

and σ′′ normal, such that s
σ′.e−−→ t and s

σ′′.e−−−→ t′.
This means we cannot decide, by only observing
PΣo(σ).e, whether a fault has occurred or not, hence
the ambiguity.

• there exists a couple (s, s′) of states in Sameobs, i.e
there exist two normal sequences having the same

53

projection on Σo, σ1, σ2 ∈ ((Σuo \Σf)
∗Σo)

∗ such that
q0

σ1−→ s and q0
σ2−→ s′, and (s, s′) fulfills the following:

from s there can be an observable step (in NextObs)
s

e−→ t generating a fault and from s′ there can be an
observable step (in NextObs) s′

e−→ t′ with no fault.
Like previously, this means one cannot decide by
only observing PΣo(σ).e whether a fault has occurred
or not, thus the ambiguity.

• there exists a couple of states (s, s′) in Amb, which
means there exists a faulty sequence σ1 ∈ (Σuo ∗
Σo)

∗ such that q0
σ1−→ s and a normal sequence

σ2 ∈ ((Σuo \ Σf)
∗Σo)

∗ such that q0
σ1−→ s′ while σ1

and σ2 have the same observable projection, and
(s, s′) fulfills the following: there exist an observable
event e, two unobservable sequences σ either faulty
or not (∈ Σ∗

uo), and σ′ normal (∈ (Σuo \ Σf)
∗) such

that s
σ.e−−→ t and s′

σ′.e−−→ t′. Thereby, t can be
reached from q0 through a faulty path σ1σe, and
t′ can be reached from q0 through a normal path
σ2σ

′e and both paths generate the same observation
(PΣo(σ1σe) = PΣo(σ2σ

′e)). Like previously, this
means we cannot decide based on the observed
events if a fault has actually occurred, hence the
ambiguity.

For every sequence of events, once a state is faulty,
every successor is faulty as well. If a cycle is found in
Gd such that it contains at least one composite state
of a “faulty” and a “normal” states (i.e. ambiguity),
then every state in that cycle is ambiguous too.
This is why instead of finding cycles containing at
least one ambiguous state as in Huang (2004), it
is equivalent to say that each element of a cycle
in Everamb must be ambiguous. As shown when
relation Everamb has been introduced earlier, each
element in this set belongs to at least in one cycle of
ambiguous pairs. �

5. COMPLEXITY

We want to insist on the fact that the purpose
of this article is not to propose a new algorithm.
Indeed, even if the semantics is operational and
allows computation, a direct implementation of that
semantics would be far from being optimized.
Nevertheless, we want to argue here that our
formulation may be a good source for some new
efficient algorithms. Indeed, where the other works
systematically operate a product of the system to be
diagnosed with itself (or a non-faulty version of itself),
such a product is performed here according to some
finer conditions. But before exploring what such an
algorithm would look like, we wanted to explore the
complexity of our approach, to see whether it is of the
same complexity order, i.e. whether our formulation

yields a polynomial complexity (if it is not, finding an
efficient algorithm would have no sense!).

To estimate the complexity of the whole diagnosabil-
ity decision process, we will seek for an upper bound
on the complexity of each of the various formulas
given in definitions 8 to 13.

Let us recall that these formulas are all based on
fixed point operators. Because of their recursive
nature and because the computation stops as soon
as a new iteration does not change the result (the
fixed point is reached), it is difficult to determine the
worst case in a general way. Indeed, it is possible
to find a worst case for a given (part of) formula,
but it may very well be that this very worst case is
at the same time the best case of another one (or
at least, not its worst case), and the worst case of
both formulas, when combined, generally cannot be
the combination of the worst cases of each of the
formulas.

Here we will take the worst case for each of the
formulas for one single iteration and then, we will
consider the maximum number of iterations leading
to the fix point. This way, we are sure to get an
upper bound of the complexity. Note that the result
we will get is necessarily an overestimate of the
real complexity. To picture that, let us consider the
calculation of UOReach (Definition 3). With the µ
operator one starts with an empty set, and at the
first iteration the triples (s, t, f) verifying the following
conditions are added:

• s is either the initial state, or the target
state of an observable transition; to check
both conditions we must go through the
whole transition relation (which has a -highly
improbable- maximum of |Q|.|Σ|.|Q| elements)
and check for each triple (s, e, t) whether
e is observable (|Σo| ≤ |Σ|). At the end,
these operations have the following complexity:
|Q|2.|Σ|2.

• for all the states s found in the previous item
(at most |Q| states), (s, t, f) is in UOReach
at the first iteration if there exists (s, e, t)
in the transition relation, such that e is not
observable (e ∈ Σu). Like previously, we will
consider Σ instead of Σu (|Σu| ≤ |Σ|), to
ease factorization. We obtain the following
complexity: |Q|3.|Σ|2.

• f can be either true or false: the complexity of
the previous item is then multiplied by 2.

This results in the following upper bound of the
overall complexity: |Q|2.|Σ|2 + 2|Q|3|Σ|2 for the first
iteration.

54

For the subsequent iterations, we start with the
existing set of triples (s, s′, f) (at most 2|Q|2 triples),
and for all the (target) states s′ of these triples,
we determine the states t directly accessible by an
unobservable transition e (complexity 2|Q|2|Σ|2). So
this gives the following upper bound of complexity:
2|Q|4|Σ|2.

Regarding the number of iterations before reaching
the fixed point, the worst case corresponds to the
situation in which at each iteration, a single new
triplet is added to UOReach: this means there are
at most |Q|2|Σ| iterations.

We then obtain that an upper bound on the
complexity of the UOReach computation is |Q|6.|Σ|3.
It is obvious that this bound is far from being optimal,
but it allows us to determine the complexity class of
our formulation. In the same way, we find that each of
the formulas, has a polynomial complexity. Thus, we
can say that analyzing the diagnosability on the basis
of our formulation is of a polynomial computational
complexity.

6. CONCLUSION

This work offers a new way to formulate
diagnosability of DES using µ-calculus logic
that we advocate to be a good formalism for a
single formal framework to deal with diagnosability.
While it theoretically defines the logical perimeter
of the problem, it also allows the use of model
checking techniques. This means taking advantage
of already efficient tools and of mature techniques
to circumvent, the best it can, the problem of
combinatorial explosion, which is a well-known
problem in model-checking, also called the state
space explosion problem. The developed formulation
is quite flexible and some extensions are being
developed in order to tackle diagnosability issues
under different contexts. Moreover, based on our
logical formulation, we intend to develop diagnosers
for online monitoring.

From a technical point of view, developing an
on-the-fly algorithm to implement our formulation
shall improve the efficiency of the computational
complexity of the diagnosability analysis procedure
Liu (2014). This issue will be investigated in our
future works.
In addition, we believe that the flexibility of µ-
calculus can be efficiently used for some other
problems gravitating around diagnosability, as for
fault specification of Jiang (2004), except that
µ-calculus would be used instead of LTL. Its
expressiveness, and the facilities it introduces are

being studied.

The approach was tested with the MEC/ARC tools,
but a prototype was also implemented to tackle the
issue from the point of view of explicit exploration
of the behavior (which is not allowed by MEC),
but also to have a better understanding of the
formulation complexity, and to explore optimization
possibilities. As a side note, the prototype was
relatively easily implemented (using Standard ML),
and we think that this is in large part because of
the simplicity of the µ-calculus semantics. Besides
this direct implementation, we have also developed a
second prototype based on a database management
framework Ghazel (2012).

REFERENCES

A. Arnold, G. Point, A. Griffault and A. Rauzy (1999),
The altarica formalism for describing concurrent
systems, Fundam. Inf., 40(2-3):109-124.

F. Basile, P. Chiacchio and G. De Tommasi (2010),
Petri nets via integer linear programming, Discrete
Event Dynamic Systems, 10(1):71-77.

M.P. Cabasino, A. Giua and C. Seatzu (2010), Fault
detection for discrete event systems using petri
nets with unobservable transitions. Automatica,
46(9):1531-1539.

C.G. Cassandras and S. Lafortune (2008), Introduc-
tion to discrete event systems. Elsevier.

A. Cimatti, C. Pecheur and R. Cavada (2003), Formal
verification of diagnosability via symbolic model
checking, In IJCAI’03, pages 363369.

M. Cabasino F. Basile and C. Seatzu (2013), Marking
estimation of time petri nets with unobservable
transitions, In 18th IEEE Int. Conf. on Emerging
Technologies and Factory Automation.

S. Genc and S. Lafortune (2007), Distributed diag-
nosis of place-bordered petri nets, IEEE Trans-
actions on Automation Science and Engineering,
4(2):206-219.

M. Ghazel, A. Toguyéni and P. Yim (2009), State
observer for des under partial observation with
time petri nets, Discrete Event Dynamic Systems,
19(2):137-165.

M. Ghazel, F. Peres, A. Belhaj Alaya and A. Jemai
(2012), A DBMS Framework for Diagnosability
Analysis of Discrete Event Systems, The 42nd
An- nual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’2012),
Boston, USA.

55

A. Grastien (2009), Symbolic testing of diagnos-
ability, International Workshop on Principles of
Diagnosis, pages 131-138.

A. Griffault and A. Vincent (2004), The Mec 5 model-
checker, in Rajeev Alur and Doron A. Peled,
editors, Computer Aided Verification, volume 3114
of LNCS, pages 248-251.

Z Huang, S Bhattacharyya, V Chandra, S Jiang
and R. Kumar (2004), Diagno- sis of discrete
event systems in rules-based model using first-
order linear temporal logic, in Proceedings of the
American Control Conference.

T. Jéron, H. Marchand, S. Pinchinat and M-O.
Cordier (2006), Supervision patterns in discrete
event systems diagnosis, in 8th Workshop on
Discrete Event Systems, WODES’06.

S. Jiang, Z. Huang, V. Chandra and R. Kumar (2001),
A polynomial algorithm for testing diagnosability of
discrete event systems, IEEE TAC, 46(8): 1318-
1321.

S. Jiang and R. Kumar (2004), Failure diagnosis of
discrete event systems with linear-time temporal
logic fault specifications. IEEE TAC, 49:6:934-945.

G. Jiroveanu and R. Boel (2006), A distributed
approach for fault detection and diagnosis based
on time petri nets, Mathematics and Computers in
Simulation, 70(5-6):287-313.

F. Lin (1994), Diagnosability of disrete event systems
and its applications. JDEDS, 4:197-212.

B. Liu, M. Ghazel and A. Toguyéni (2014), Toward
an efficient approach for diagnosability analysis
of des modeled by labeled petri nets, in The
13th European Control Conference (ECC14),
Strasbourg, France.

D. Park (1976), Finiteness is mu-ineffable. TCS,
3(2):173-181.

F. Peres, B. Berthomieu and F. Vernadat (2011), On
the composition of time petri nets, Discrete Event
Dynamic Systems, 21(3):395-424.

M. Sampath, R. Sengupta, S. Lafortune, K. Sin-
namohideen and D. Teneketzis (1995), Diagnos-
ability of discrete-event systems. 40:1555-1575.

A. Tarski (1955), A lattice-theoretical fixpoint
theorem and its applications, pa- cific journal
of mathematics, Pacific Journal of Mathematics,
5(2):285- 309.

S. Tripakis (2002), Fault diagnosis for timed
automata, in FTRTFT’02: Proceedings of the 7th
International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems, Springer-
Verlag, pages 205-224, London, UK.

T. Ushio, I. Onishi and K. Okuda (1998), Fault
detection based on petri net models with
faulty behaviors, in Proceedings of the IEEE
International Conference on Systems, Man and
Cybernetics, pages 113-118.

A. Vincent (2003), Conception et réalisation d’un
vérificateur de modles AltaRica - PhD thesis,
Université des Sciences et Technologies -
Bordeaux I.

T.S. Yoo and S. Lafortune (2002), Polynomial-time
verification of diagnosability of partially observed
discrete-event systems. IEEE Transactions on
Automatic Control, 47(9):1491-1495.

J. Zaytoon and S. Lafortune (2013), Overview of fault
diagnosis methods for discrete event systems.
Annual Reviews in Control, 37(2):308-320.

56

