
Framework for Dynamic Architecture Reconfiguration

of Cloud Services

Miguel Zuñiga-Prieto, Javier Gonzalez-Huerta, Silvia Abrahao, Emilio Insfran

ISSI Research Group, Department of Information Systems and Computation

Universitàt Politècnica de Valencia

Camino de Vera, s/n, 46022, Valencia, Spain

{mzuniga, jagonzalez, sabrahao, einsfran}@dsic.upv.es

1 Motivation and Goals

Cloud computing is a paradigm that is transforming the way in which organization ac-

quire computational resources and is receiving more attention from the research com-

munity. The incremental deployment of cloud services is particularly important in agile

development of cloud services, where successive cloud service increments must be in-

tegrated into existing cloud service architectures. This requires dynamic reconfigura-

tion of software architectures, especially in cloud environments where services cannot

be stopped in order to apply reconfiguration changes. A model-driven architecture re-

configuration process uses models to represent architectural and technological concepts

at a high level of abstraction. Then transformations are applied on models to add the

necessary detail in order to generate specific reconfiguration operations. This demands

development efforts that could be alleviated not only by defining the models and trans-

formation sequences, but also by providing tools that facilitate tasks.

The aim of this research work is to propose a framework to facilitate the dynamic

architectures reconfiguration of cloud services, triggered by the incremental deploy-

ment of cloud services. The aforementioned aim will be satisfied by dealing with the

following sub-goals, which are:

 Provide a set of tools to support the process of dynamic software architecture

reconfiguration triggered by the deployment of new cloud services.

 Define transformation chains that allow to obtain platform specific reconfigura-

tion plans, starting from a high level description of how the architecture of a soft-

ware increment affect the current cloud service architecture.

In the next section, we introduce important adaptation concepts applied in this work.

2 Background information

In this section, due to space limitations, we just include the description of important

Software Adaptation Techniques applied in this framework.

Software adaptation patterns represent generic and repeatable solutions to manage

change in recurring architectural adaptation problems, and prescribe the steps needed

to dynamically adapt a software system at runtime from one configuration to another

[1]. The use of adaptation patterns is a trend to support reuse in evolution for dynamic

adaptive software architecture [2]. Adaptation of software architectures is not only sup-

ported by change management proposals, but also by proposals for solving the prob-

lems that arise when the interacting entities do not match properly. Software adaptation

promotes the generation of software adaptors to bridge incompatibilities among ser-

vices (e.g., different names of methods and services, different message ordering, etc.)

in an nonintrusive way [3,4, 5]. Generation techniques for software adaptors are begin-

ning to be used in cloud environments [6].

Cloud applications integrate and compose different cloud services. The cloud ser-

vices to be integrated may come from the delivering of a software increment in an in-

cremental development approach, or just may be product of maintenance/evolution

phases. When we refer to a software increment, we mean one or more cloud services

than are included in a software increment that need to be effectively deployed.

3 Proposed Approach and Contributions

This poster presents a model-driven framework that provides models and tools that fa-

cilitate the dynamic architecture reconfiguration activities followed during the integra-

tion of cloud services. Models allow representing high-level description of how the

Architecture of a Software Increment (ASI) affects the current cloud service architec-

ture. Transformation chains, establish how to apply consecutive transformations in or-

der to generate platform specific reconfiguration plans, obtained starting from models..

Finally, tools not only alleviate tasks of specification of models and design of transfor-

mations, but also provide dedicated services to be used during reconfiguration.

3.1 Reconfiguration Process

The process to which the proposed framework will give support aims to help software

developers during the deployment phase, on activities related to integration of software

increments into existing services in the cloud. This process supports the integration

from an architectural point of view. Its activities support the management of dynamic

reconfiguration of existing cloud services architectures, produced due to the integration

of architectural elements corresponding to the ASI. The main activities of the process

are (see Fig. 1): i) Specify Increments; ii) Check Increment Compatibility; and iii) Re-

configure Architecture. Below we present a process overview.

In the first activity, Software Architects specify the ASI as well as the impact of the

integration on the current cloud service architecture. The ASI includes: i) information

about structure and behavior of cloud services included in the software increment; ii)

information about how elements of the ASI collaborate to reconfigure the current ar-

chitecture; and iii) information about related aspects of architectures of cloud services

[7]. Next, in the following activity, Software Architects participate in verifying if the

ASI is compatible with the current cloud service architecture. If discrepancies exist be-

tween interfaces of these architectures and it is possible to solve them, Software Archi-

tects apply model-to-text (M2T) transformations to generate skeletons of Software

Adaptors specific for a cloud platform technology. Software Developers complete Soft-

ware Adaptors skeletons implementing code to solve discrepancies. Finally, in the last

activity, Software Architects participate in selecting the adaptation patterns best suited

to integrate ASI elements into the current cloud service architecture. Once the adapta-

tion patterns have been selected, Software Architects apply model transformations to

generate Reconfiguration Plan Specific of Cloud Providerthat operationalize those ad-

aptation patterns according to the ASI. In the last step of this activity Cloud Specialist,

expert in deployment, integrates the ASI into the current architecture by i) deploying

the Software Adaptors, and ii) using dedicated services to apply the Reconfiguration

Plan Specific of Cloud Provider in corresponding cloud platform. The integration, dy-

namically reconfigures instances of the running Actual System Architecture.

Fig. 1. Overview of the reconfiguration process

3.2 Increment Description Language

To support the first activity of the dynamic architecture reconfiguration process (see

Section 3.1), this framework provides to Software Architects a specialized language to

specify the architecture of the software increment. We call it Increment Description

Language (IDL). Service Oriented Architecture Modeling Language (SoaML)[8] lev-

erages Model Driven Architecture (MDA) and provides a UML profile and meta-model

for the specification of services. However, SoaML does not allow to represent how the

architecture of a software increment affects the existing cloud architecture nor to spec-

ify information related to cloud software architectures. IDL is a Domain-Specific Lan-

guage (DSL) that extends SoaML, so IDL meta-model extends the SoaML meta-model

using stereotypes to point out the way in which each element of ASI impacts on current

cloud service architecture. Furthermore, we use tagged values to specify information

related to cloud software architectures.

Yes

No

Is Compatible?

Increment
Architecture Model

in

Increment
Description
Gudelines

guide

Cloud
Adaptors

out

out

Actual System
Architecture

Current
Architecture

Model

in

Specify
Increments

1

Reconfigure
Architecture

3

Adaptation
Pattern

Repository

Cloud-Platform
Specific Adaptation

Operations

in
In-out

In-out

2
Check Increment

Compatibility

2

in

Design
Artifacts

in

Reconfiguration Plan
Specific of Cloud

Provider

out

in

SLA

3.3 Transformation Chains

To support the second and third activity of the dynamic architecture reconfiguration

process (see Section 3.1), this framework identify a set of models and transformation

chains (consecutive transformations) that must be applied to those models. This, in or-

der to generate platform specific reconfiguration plans, obtained starting from a high-

level description of how the architecture of a software increment affects the current

cloud service architecture.

4 Contributions

A framework for dynamic architecture reconfiguration that properly combines Model-

Driven and Software Adaptation Techniques represents an important step towards the

incremental and dynamic deployment of cloud services into existing cloud service ar-

chitectures.

The first contribution is an Increment Description Language that allows Software

Architects to specify the architecture of the software increment. They will be able to

specify architecture reconfiguration operations (e.g., add service, add connector, etc.)

using a high-level abstraction language. To put it another way, when a Software Archi-

tect specifies the impact of ASI on current architecture, what he/she is really doing is

specifying architecture reconfiguration operations at a high-level of abstraction.

The second contribution is the definition of Transformation Chains, used to: i) pro-

mote compatibility between the architecture of the increment with the existing cloud

architecture; ii) generate a Reconfiguration Plan Specific of Cloud Provider that applies

adaptation patterns to reconfigure existing cloud architecture.

Finally, in order to achieve reconfiguration we provide dedicated services. These

services use the information of reconfiguration plans to dynamically reconfigure in-

stances of the running Actual System Architecture.

5 Related work

Software evolution based on reconfiguration of software architectures is an active area

of research; however, there are gaps that still need to be covered. Jamshidi et al. [2],

identified a relative lack of contributions for runtime evolution as well as frameworks

to support the reconfiguration process. They found lack of support during the integra-

tion and provisioning stage as well as during deployment stage. In our work, we give

support to the dynamic reconfiguration of software architectures in the deployment

stage of the software life cycle.

In this section, due to space limitations, we detail the gaps we found in most relevant

related works [9, 10, 11]. Baresi et al.[9], MOdel-based SElf-adaptation of SOA sys-

tems (MOSES) [10], and Self-architecting Software Systems (SASSY) [11]. These

works i) take into account structural and behavioral aspects for reconfiguration; ii) use

SLA or QoS negotiation to discover and select the more suitable service implementa-

tion (instance); and iii) apply dynamic binding for reconfiguration. This means that

reconfiguration improves non-functional properties through perfective changes. How-

ever, adaptive changes (e.g., software increments due to new functionalities) that may

require architecture reconfiguration are not taken into account. They also abstract mod-

els of business requirements or derive high level architectures; however, they do not

take into account the importance of architectural aspects in incremental development

processes [12]. Despite the fact that the cited approaches propose consistency or com-

patibility checking tasks, they do not provide solutions to support deployment on

changing cloud platforms. In addition, those who propose frameworks or support ar-

chitecture specification do not consider the architecture of the increment as an inde-

pendent entity.

Acknowledgments. This research was supported by the Value@Cloud project

(MICINN TIN2013-46300-R); the Scholarship Program Senescyt, Ecuador; the Fac-

ulty of Engineering, University of Cuenca, Ecuador; and the ValI+D program

(ACIF/2011/235), Generalitat Valenciana.

6 References

1. Gomaa, H., Hashimoto, K., Kim, M., Malek, S., Menascé, D.: Software Adaptation Patterns

for Service-Oriented Architectures. ACM Symposium on Applied Computing. pp. 462–469.

ACM, New York (2010).

2. Jamshidi, P., Ghafari, M., Ahmad, A., Pahl, C.: A Framework for Classifying and

Comparing Architecture-Centric Software Evolution Research. 17th European Conference

on Software Maintenance and Reengineering. pp. 305–314. IEEE, Genova (2013).

3. Canal, C., Poizat, P., Salaun, G.: Model-Based Adaptation of Behavioral Mismatching

Components. Softw. Eng. IEEE Trans. 34, 546–563 (2008).

4. Yellin, D.M., Strom, R.E.: Protocol Specifications and Component Adaptors. ACM Trans.

Program. Lang. Syst. 19, 292–333 (1997).

5. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: Towards an

Engineering Approach to Component Adaptation. Springer Berlin Heidelberg (2006).

6. Miranda, J., Guillen, J., Murillo, J.M., Canal, C.: Assisting Cloud Service Migration Using

Software Adaptation Techniques. 6th Int. Conf. on Cloud Computing. pp. 573–580 (2013).

7. Hamdaqa, M., Livogiannis, T., Tahvildari, L.: A Reference Model for Developing Cloud

Applications. CLOSER. pp. 98–103. Citeseer (2011).

8. Object Management Group: Service Oriented Architecture Modeling Language (SoaML),

http://www.omg.org/spec/SoaML/.

9. Baresi, L., Heckel, R., Thöne, S., Varr´o, D´.: Style-Based Modeling and Refinement of

Service-Oriented Architectures. Softw. Syst. Model. 5, 187–207 (2006).

10. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: QoS-Driven Runtime

Adaptation of Service Oriented Architectures. Proc. 7th Jt. Meet. Eur. Softw. Eng. Conf.

ACM SIGSOFT Symp. Found. Softw. Eng. 131–140 (2009).

11. Menascé, D.A., Gomaa, H., Malek, S., Sousa, J.P.: SASSY: A Framework for Self-

Architecting Service-Oriented Systems. Software, IEEE. 28, 78–85 (2011).

12. Babar, M.A., Brown, A.W., Mistrik, I.: Making Software Architecture and Agile

Approaches Work Together: Foundations and Approaches. Agile Software Architecture:

ligning Agile Processes and Software Architectures. pp. 1–22. Morgan Kaufmann (2013).

