
Model-Driven Design of Ensemble-Based
Component Systems

Ilias Gerostathopoulos

Faculty of Mathematics and Physics
Charles University in Prague

Malostranske Namesti 25, 11800, Prague, Czech Republic
iliasg@d3s.mff.cuni.cz

Abstract. In this research abstract we describe our approach towards
the design of ensemble-based component systems. Our motivation lies
in the fact that, in these systems, tracing the behavior of individual
constituents to system-level goals and requirements is challenging. Our
approach is based on a novel invariant-based model that achieves the
desired traceability. Along with using the model in a method that allows
for systematic contractual design, we employ the model at runtime to
achieve dynamic adaptation on the basis of requirements reflection.

Keywords: ensembles, invariants, system design, traceability

1 Introduction

In the beginning, things were not going well. The heavy storm had damaged the
network infrastructure so heavily that temperature and moisture sensors on the
tarmac could not communicate with their base stations any longer. This meant
that continuous analysis of tarmac condition had to stop until the network cables
were back in place and sensors started providing fresh measurements to the base
stations. In face of the danger of failing in their task to disseminate the sensed
data, the sensors switched to ad-hoc communication mode: they propagated their
data to software modules inside the vehicles heading towards the base stations;
the vehicles acted as network relays for the ad-hoc network and “augmented”
sensors for the base stations. Even with considerable delays compared to the
default mode, the system managed to keep a sufficient level of operation stability.

Although developing a software-intensive cyber-physical system (siCPS) [12]
such as the above road sensing system is already technically feasible, there are
challenges related to streamlining the design and development of such systems.

DEECo component model [1,4] has been proposed within the ASCENS FP7
project [11] as a modeling approach suitable for the development of siCPS. A
DEECo application consists of a number of components and interaction tem-
plates, based on which dynamic component groups – ensembles [11] – are estab-
lished at runtime. A DEECo component comprises state (referred to as knowl-
edge) and processes which periodically read and/or update its knowledge, similar

1 ensemble PropagateTemperatureToVehicles:
2 coordinator: TemperatureSensor
3 member: Vehicle
4 membership:
5 distance(coordinator.position, member.position) < THRESHOLD
6 exchange:
7 member.temperatureMap ←(coordinator.id, coordinator.temperature)
8 scheduling: periodic(15 secs)

Fig. 1. Example of a DEECo ensemble definition in the road sensing system.

to processes in a real-time system. Interaction is allowed only between compo-
nents within an ensemble and takes the form of knowledge exchange. An en-
semble definition (Fig. 1) specifies (i) a membership condition, i.e., under which
condition (evaluated on components’ knowledge) one coordinator and potentially
many member components should interact, and (ii) an exchange function, i.e.,
which knowledge exchange should be performed within the established group.
We view DEECo as an instantiation of the new class of ensemble-based compo-
nent systems (EBCS), and use it to demonstrate our EBCS design approach.

The problem in EBCS is that it is difficult to associate the low-level con-
cepts of periodic computation and conditional knowledge exchange to system-
level goals and requirements applicable in different operational contexts. This
problem manifests itself both at design time and at runtime. At design time the
challenge is: “How to design an ensemble-based system so that its situation-
specific system-level goals are consistently mapped to implementation-level arti-
facts?”; at runtime the challenge becomes: “How to trace the runtime behavior
to situation-specific system-level goals to achieve runtime compliance checking?”.

The objective of this research is thus to investigate the design dimension of
ECBS and propose a model that provides dependability (in the form of traceabil-
ity to system-level goals) and adaptability (in the form of adjusting to different
operational contexts/situations). We aim for using the model both to guide the
design of EBCS (Sect. 2.1), and to achieve runtime compliance checking and
model-based adaptation (Sect. 2.2).

2 Approach: Invariant-Based Model

Our approach is based on the observation that component processes and knowl-
edge exchange activities in EBCS are feedback loops that constantly maintain
the property of being within the bounds of normal operation – operational nor-
malcy. We have thus proposed the invariant concept to model the operational
normalcy at every time instant [13]. Syntactically, an invariant is an expression
that relates the input and output knowledge of an (abstract) activity, e.g. “Vehi-
cle’s V belief over sensor S::temperature – V::temperatureMap – is updated every
30 secs.”. A key assumption here is that system-level goals in EBCS can also
be described declaratively and thus modeled with the invariant construct. For
instance, one such high-level invariant in our running example is “Temperature
readings must reach the base stations within 120 secs”.

Solver

Running System

M2M
transf.

Generated at startup, kept
in sync with EMF listeners

Generated
at startup

Generated at runtime by
knowledge valuation of

active components

Used in system
development

Processes to run

Predicate logic
formula

DEECo runtime
metamodel

IRM-SA runtime
metamodel

Traceability
metamodel

IRM-SA design
metamodel

DEECo design
metamodel

M1 level

conforms toconforms toconforms toconforms to conforms to

Design time Runtime

M2T
transf.

M2 level

Traceability
model

IRM-SA runtime
model

DEECo runtime
model

IRM-SA design
model

DEECo design
model

Skeletons of DEECo
components and
ensembles

Fig. 2. Overview of the IRM-SA approach.

Armed with the invariant concept, we have proposed the Invariant-Refinement
Method for Self-Adaptation – IRM-SA [5,13], whose goal is to link high-level in-
variants (corresponding to system-level goals) to low-level ones (corresponding
to concrete activities of the software system). The output of the method is the
IRM-SA design model ; this model can be used (i) to generate DEECo code skele-
tons via the series of model transformations depicted on the left part of Fig. 2
and (ii) to enable online checking of invariant satisfaction and system adaptation
via a models@runtime approach (illustrated on the right part of Fig. 2).

2.1 Design with IRM-SA

In this section we present the design process of IRM-SA. It is a mixed top-
down/bottom-up iterative process where invariants are refined into sub-invariants
by means of decomposition (e.g. structural elaboration). The process comprises:

1. Identification of the top-level goals and specification of top level invariants
of the system-to-be, e.g. invariant [i1] in Fig. 3.

2. Identification of the design components by asking “which knowledge does
each invariant involve and where is this knowledge obtained from?”. At the
design stage, a component is a participant/actor of the system-to-be, com-
prising internal state. In our example, the identified components are the
TemperatureSensor, BaseStation, and Vehicle.

3. Decomposition of each non-leaf invariant by asking “how can this invariant
be satisfied?”. Leaf invariants are either process invariants (e.g. invariant
[p1]) or exchange invariants (e.g. invariant [e2]) that can be mapped 1-to-1 to
component processes or ensemble definitions, respectively. For instance, the
exchange invariant [e2] can be mapped to the PropagateTemperatureToVe-

hicles ensemble of Fig. 1.
4. Identification of any other activities that have to be performed in the system

and specification of invariants out of them (not demonstrated here).

Fig. 3. Example of an IRM-SA design model.

5. Composition of dangling invariants together by asking “why do we need to
satisfy these invariants?”. This step is also not demonstrated in our example.

6. Capturing of the situation that conditions every situation-specific invariant
using assumptions (e.g. invariant [a1]). An assumption is a special type of
invariant that is expected to be maintained by the environment.

7. Identification of alternative (OR) decompositions according to the different
situations identified at step 6. In our example, the right-most part of the
top-level decomposition is OR-decomposed to capture the fact that different
invariants should hold when a BaseStation is out of direct reach.

The IRM-SA design process is backed up by a prototype design tool (used
to produce the IRM-SA model of Fig. 3) and a Java code generation tool, based
on Eclipse’s EMF and Epsilon toolchains; both are accessible via http://d3s.

mff.cuni.cz/projects/components_and_services/irm-sa/.

2.2 Runtime compliance checking and adaptation

To check which invariants hold at runtime and adapt the system accordingly,
we follow a models@runtime approach [17]. As a first step, the running system
is reflected into an architectural model (DEECo runtime model in Fig. 2) that
captures the running component processes and established ensembles. Along
with a traceability model, which contains the mapping between design and run-
time artifacts, DEECo runtime model is used to generate another model that
captures the runtime state at the requirements level (IRM-SA runtime model).
This is basically an instantiation of the IRM-SA design model in which design
components are mapped to concrete component instances and invariants are as-
sociated with boolean values. This is done by associating the invariants and the

http://d3s.mff.cuni.cz/projects/components_and_services/irm-sa/.
http://d3s.mff.cuni.cz/projects/components_and_services/irm-sa/.

computable assumptions to monitors (implemented as Boolean methods in Java)
that evaluate the condition under which each invariant is considered to hold.

The second step involves reasoning on the generated IRM-SA runtime model.
As an illustration of one possible way to do this, we are translating the model
into a predicate logic formula which can be automatically evaluated by a solver
(we use Sat4j [16]). The result of the solver is then used to enact changes on the
DEECo runtime model (currently by starting/stopping processes corresponding
to invariants chosen in the OR-decompositions), which are eventually propagated
to the running system, as illustrated on the right-most part of Fig. 2.

A proof-of-concept implementation of IRM-SA-based adaptation is accessible
via http://d3s.mff.cuni.cz/projects/components_and_services/irm-sa/.

On-going work. We are currently investigating (i) the fuzzification of invariant
evaluation to achieve more fine-grained control, and (ii) more elaborate adapta-
tion actions (e.g. changing a component’s period at runtime). To evaluate our
approach we are conducting experiments to measure the applicability of our
adaptation loop in practical settings (e.g. in face of frequent component discon-
nections). We have also designed and conducted a pilot of a controlled experiment
(empirical study) to evaluate the effectiveness of the IRM-SA process.

3 Related Work

Systematic elaboration of requirements has been advocated by goal-oriented
requirements engineering approaches, such as KAOS [7,15] and Tropos [3,9].
Although we draw inspiration from them we differentiate in the following [8]:
(i) neither KAOS nor Tropos are tailored for ensemble-based systems, whereas
IRM-SA provides a direct translation to the implementation-level concepts of
autonomous components and ensembles; (ii) compared to KAOS, the objective
of the IRM-SA method is not to create requirements documents (e.g., SRS),
but software architectures; (iii) compared to Tropos, which also supports design
of dynamic systems, IRM-SA concepts (i.e., invariants) do not focus on future
states (like goals in Tropos), but on knowledge evaluation at every time instant,
fitting better the design of feedback loop-based systems.

Our approach towards adaptation fits into the conceptual model proposed by
Kramer and Magee [14], where the IRM-SA model stands as a domain-specific
goal management layer. Our adaptation mechanism also follows the proposals
for explicit representation of requirements as runtime entities [2,6].

Compositional definition of architecture configurations based on individual
variation points and runtime reconfiguration is also employed in Dynamic Soft-
ware Product Lines [10]. Our main difference is that, in IRM-SA, decomposition
carries the formal semantics of refinement, i.e., in an AND (resp. OR) decom-
position the conjunction (resp. disjunction) of the children entails the parent.

Acknowledgments. The research leading to these results has received funding
from the European Union Seventh Framework Programme FP7-PEOPLE-2010-
ITN under grant agreement no264840.

http://d3s.mff.cuni.cz/projects/components_and_services/irm-sa/

References

1. Al Ali, R., Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M.,
Plasil, F.: DEECo: An Ecosystem for Cyber-Physical Systems. In: Companion
Proc. of ICSE’14, Hyderabad, India. pp. 610–611. ACM (Jun 2014)

2. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements
Reflection: Requirements as Runtime Entities. In: Proc. of ICSE ’10, Cape Town,
South Africa. pp. 199–202. ACM (2010)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems 8(3), 203–236 (May 2004)

4. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECo – an Ensemble-Based Component System. In: Proc. of CBSE’13, Vancou-
ver, Canada. pp. 81–90. ACM (Jun 2013)

5. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.,
Plouzeau, N.: Adaptation in Cyber-Physical Systems: from System Goals to Ar-
chitecture Configurations. Tech. rep., D3S-TR-2014-01, Charles University (Jan
2014), http://d3s.mff.cuni.cz/publications/download/D3S-TR-2014-01.pdf

6. Cheng, B., et al.: Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In: Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems, LNCS, vol. 5525, pp. 1–
26. Springer Berlin Heidelberg (2009)

7. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Science of Computer Programming 20(April), 3–50 (1993)

8. Gerostathopoulos, I., Bures, T., Hnetynka, P.: Position Paper: Towards a
Requirements-Driven Design of Ensemble-Based Component Systems. In: Proc.
of HotTopiCS workshop of ICPE’13. pp. 79–86. ACM (Apr 2013)

9. Giorgini, P., Kolp, M., Mylopoulos, J., Pistore, M.: The Tropos Methodology: An
Overview. In: Methodologies and Software Engineering for Agent Systems, pp.
89–106. Kluwer Academic Publishers (2004)

10. Hinchey, M., Park, S., Schmid, K.: Building Dynamic Software Product Lines.
Computer 45(10), 22–26 (Oct 2012)

11. Hölzl, M., et al.: Engineering Ensembles: A White Paper of the ASCENS
Project. ASCENS Deliverable JD1.1 (2011), Online: http://www.ascens-ist.eu/
whitepapers

12. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of Software-Intensive Sys-
tems: State of the Art and Research Challenges. In: Wirsing, M., Banâtre, J.P.,
Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Computing
Paradigms, LNCS, vol. 5380, pp. 1–44. Springer Berlin Heidelberg (2008)

13. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.:
Design of Ensemble-Based Component Systems by Invariant Refinement. In: Proc.
of CBSE’13, Vancouver, Canada. pp. 91–100. ACM (Jun 2013)

14. Kramer, J., Magee, J.: A Rigorous Architectural Approach to Adaptive Software
Engineering. Journal of Computer Science and Technology 24(2), 183–188 (2009)

15. Lamsweerde, A.V., Darimont, R., Letier, E.: Managing Conflicts in Goal-Driven
Requirements Engineering. IEEE Trans. on Soft. Engin. 24(11), 908–926 (1998)

16. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Boolean Modeling and
Computation 7, 59–64 (2010)

17. Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models at Runtime
to Support Dynamic Adaptation. Computer 42(10), 44–51 (2009)

http://d3s.mff.cuni.cz/publications/download/D3S-TR-2014-01.pdf
http://www.ascens-ist.eu/whitepapers
http://www.ascens-ist.eu/whitepapers

	Model-Driven Design of Ensemble-Based Component Systems
	Introduction
	Approach: Invariant-Based Model
	Design with IRM-SA
	Runtime compliance checking and adaptation

	Related Work

