
Towards the Automatic Resolution of Architectural
Variability in Software Product Line Architectures

through Model Transformations

Jesús Benedé

ISSI Research Group, Universitat Politècnica de València
Camino de Vera, s/n, 46022, Valencia, Spain

jesbegar@inf.upv.es

Abstract. Modelling variability in software product lines (SPL) development is
receiving a lot of attention in current years, building on the idea that product der-
ivation could be automatically derived from a product line through model trans-
formations. Software Product Line development involves the explicit manage-
ment of variability that has to be encompassed by the software artifacts, in par-
ticular by the software architecture. This variability has to be supported and rep-
resented by the architecture. The Common Variability Language (CVL) allows
to represent such variability independently of the Architecture Description Lan-
guage (ADL). In this research work we define a set of model transformations to
support the resolution of the product architecture variability in an automated way
by using the Atlas Transformation Language (ATL). The transformation takes as
input a multimodel which allows us to represent the relationships between the
external variability, represented by a feature model, the architectural variability,
represented by the CVL model, and the non-functional requirements, represented
in a quality model and generates as output the CVL resolution model that repre-
sents the product architecture’s variability resolution.

Keywords: Variability Resolution; Architecture Derivation; Software Product
Lines; Model Transformations; Atlas Transformation Language.

1 Research Problem and Motivation

A Software Product Line (SPL) is a set of software systems which share a group of

specific features and they are developed from a collected and pre-established software
assets. One of the key aspects in SPL is the variability management [1].

Variability in the SPL development has to be defined, represented, exploited and
implemented [2]. Variability is the ability of a software system or software artifact to
be extended, customized or configured for (re-)use in a specific context. This variability
should be resolved in derivation time to obtain a specific product from a set of SPL
assets. Feature models represent the external variability, which is the "variability of
domain artifacts that is visible to customers", and internal variability which is the "var-

iability of domain artifacts that is hidden from customers" [2]. Both external and inter-
nal variability are important to the success of developing software artifacts. However,
external variability deserves special attention as it is visible to users and relates to re-
quirements defined at early development stages where errors or inaccuracies are rela-
tively inexpensive and easy to detect and correct.

In SPL software architectures play a dual role: on the one hand, the product line
architecture (PLA) should provide variation mechanisms which will help us to achieve
a set of allowed variations, and on the other hand, the derived product architecture (PA)
from the PLA by exercising its built-in architectural points [1].

For enabling the automatic resolution of the PLA variability is required not only that
the architectural description languages provide variation mechanisms, but also to ex-
plicitly represent how the different variants realize the external variability usually rep-
resented in feature models.

The Common Variability Language (CVL) [3] is a language that allows the specifi-
cation of variability over any EMF-based model, and supports the automatic resolution
of the variability and the derivation of resolved models. In CVL approach, we can dis-
tinguish three models: i) The base model, which is a model described in a Domain
Specific Language; ii) The variability model, which is the model that defines variability
on the base model; iii) The resolution model, that describes how the variability has been
resolved with the aim to create a new model in the base DSL.

For a given base model, we can derive several resolution models, that, through a
generic CVL model-to-model transformation can generate the product specific models,
which conforms to the base DSL.

CVL incorporates its own variability mechanisms, and concepts like type, composite
variability, constraint and iterator, will help us to mimic feature diagrams. Moreover,
there are lower level concepts (e.g., fragment substitution, object existence) that can be
used to extend those provided by the Architectural description languages (ADLs).

The main goal of this research work is the development of ATL model transfor-
mations which will allow us to automate the resolution of variability on PLAs, obtain-
ing the CVL resolution models of the architecture of the product under development.
These transformations take as input a product configuration which comprises not only
functional but also non-functional requirements (NFRs).

Such transformations are developed by using ATL [4], an imperative-declarative
language, based in OCL and developed by ATLAS group in response to the QVT stand-
ard from the OMG. Once obtained the CVL resolution models will be used to obtain
the PA through a CVL model transformation.

2 Background and Related Work

In a Software Product Line (SPL) scenario it is difficult to manage the derivation of
the architectural specification of a product (PA), especially when the SPL allows a wide
range of variability. CVL has been used in several approaches to support the resolution
of the architectural variability and the derivation of product architectures in SPL devel-
opment (e.g., [5], [6], [7])

Nascimento et al. [5] present an approach for defining product line architectures us-
ing CVL. They apply the Feature-Architecture Mapping Method (FArM) to filter the
feature models in order to consider only the architectural-related features. These fea-
tures will form the CVL specification that will allow obtaining the COSMOS* archi-
tectural models. They do not define relationships between the external variability model
(features model) and the architectural variability expressed in CVL and thus the deri-
vation of the product architecture taking as input the configuration is not supported.
They explicitly omit the non-functional requirements when applying the FArM method.

Svendsen et al.[6] present the applicability of CVL for obtaining the product models
for a Train Control SPL that are defined using a DSL. They only consider the explicit
definition of the internal variability and consequently, the configuration should be made
directly over the CVL specification of the internal variability.

Combemale et al. [7] present an approach to specify and resolve variability on Re-
usable Aspect Models (RAM), a set of interrelated design models. They use CVL to
resolve the variability on each model and then compose the corresponding reusable
aspects by using the RAM weaver. They also consider just the internal variability, and
the configuration should be made over the CVL specification.

Summarizing, the approaches described above do not establish relations among the
SPL external variability and the architectural variability nor consider non-functional
requirements in the process. The establishment of connections between the SPL exter-
nal variability, the non-functional requirements, represented in a quality model, and the
architectural variability, represented by using CVL allows us to automatically solve the
architectural variability by using ATL model transformations.

3 Contribution

Our approach for the automatic resolution of the PLA in architectural models
through ATL transformation is supported by the use of a multimodel [8, 9] that allows
the explicit representation of relationships among entities in different viewpoints. The
problem of representing and automatically resolving the architectural variability taking
into account functional and non-functional requirements requires (at least) three view-
points:

 The variability viewpoint represents the SPL external variability expressing the
commonalities and variability within the product line. It has a main element, feature,
expressed by means of a variant [10] of the cardinality found in the feature model.

 The architectural viewpoint represents the architectural variability of the Product
Line architecture that realizes the external variability of the SPL expressed in the
variability viewpoint. It is expressed by means of the Common Variability Language
(CVL) and its main element is the Variability Specification (VSpec) [3].

 The quality viewpoint represents the hierarchical decomposition of quality into
sub-characteristics, quality attributes, metrics and the impacts and constraints among
quality attributes. It is expressed by means of a quality model for software product
lines [11], that allows the representation of NFRs as constraints.

In the multimodel we can also specify how a given feature is_realized_by [12] a set
of VSpecs or how a given NFR is_realized_by [12] a set of VSpecs or how a given
VSpec impacts [8] positively or negatively on a quality attribute.

By using the multimodel and the product configuration, which comprises features
and NFRs that the product must fulfill together with the quality attributes priorities, in
this research work we focus on the definition of a set of ATL model transformation to
support the resolution of the architectural variability and the automatic generation of
CVL resolution models.

The quality attribute priorities together with the impacts that VSpecs have on the
quality attributes are used to choose from a set of architectural variants that having the
same functionality differ in their quality attribute levels. Fig. 1 shows the structure of
the ATL transformation rules. Although the transformations have been defined using
ATL, Fig. 1 shows the structure using QVT [13] graphical syntax due to clarity and
simplicity reasons. Fig. 1(a) shows how we use the is_realized_by relationship between
features and VSpec to positively resolve the VSpecb when we select Fa in the configu-
ration. Fig. 1(b) shows how we use the is_realized_by relationship between NFRs and
VSpec to positively resolve the VSpecb when we select NFRis in the configuration. Sim-
ilarly, we positively resolve a given VSpec when it is the alternative that best fits the
quality attributes priorities combined with the the impact relationships between VSpecs
and quality attributes by implementing the AHP [14] method.

Fig. 1. Transformation Rules Graphical Syntax

These transformations are tested in an automotive case study for obtaining the prod-
uct architecture of vehicle control systems1. Fig. 2 shows an excerpt of an example of
the CVL resolution model generation of this case study. The configuration consists on
the following features: ABS, Traction control, Stability Control and Cruise Control and
a prioritized quality attribute: Latency Time. This Cruise Control feature can be realized
by two different architectural variants Simple (which impacts positively on Latency
Time) and Adaptive (which impacts negatively on Latency Time). The transformation
process positively resolves SimpleCruisseControl System VSpec since has a positive
impact on the prioritized quality attributes.

1 The whole specification of the case study is available for download at: http://us-

ers.dsic.upv.es/~jagonzalez/CarCarSPL/links.html

VSpecb

VSpeca

SelectedFeatureToSelectedVSpec

EVSpecb

EVSpeca

isRealizedBy
Fa

Fa

VSpecResolution

child

child

when VSpeca.resolution=true;

VSpecb

VSpeca

SelectedNFRToSelectedVSpec

MMdomain

Cd
om
ai
n

CVLdomain

EVSpecb

EVSpeca

isRealizedBy
NFRi

NFRi

when VSpeca.resolution=true;

(a) (b)

MMdomain

Cd
om
ai
n

CVLdomain

Fig. 2. CVL Resolution Generation Excerpt

These ATL transformations will be also employed in a cloud system service context,
with the purpose of performing cloud applications derivation from other existing cloud
services that incorporate variability. This variability could respond to the existence of
multiple services with the same functionality and different non-functional properties,
or because the very same services still include the variability through configuration
interfaces. The transformation generates as out choreography and orchestration models
of our new service.

At the moment, we are not providing a full coverage of CVL language. We are now
focusing on the Fragment Substitution and Object Substitution variability types [15] to
express the architectural variability.

4 Conclusions

We have presented our approach to automatically derive the CVL resolution models
for a given product configuration by using an ATL transformation.

We also show how quality assurance techniques can be introduced in SPL product
architecture derivation, and how the Model Driven Software Development principles
are going to help us to resolve the automatic resolution of variability in product line
architectures. A model transformation chain (ATL+CVL transformations) allow us to
obtain the first version of the architecture of the product under development.

We are now working on the test of the ATL transformations in real scenarios and on
the integration with the CVL supporting tool so as to enable the CVL transformation
that generates the models that represent the architecture of the product under develop-
ment. We also plan to incorporate other CVL variation mechanisms that will enrich the
expressiveness of the architectural variability.

VehicleControlSystem
Attributes

ABS
Attributes

TractionControl
Attributes

EstabilityControl
Attributes

CruiseControl
Attributes

[1..1]

[0..1]

[0..1]

[0..1]

GPS
Attributes

Optional

Mandatory Implies

Feature Group

Feature

Legend

VSpec4VSpec3VSpec2VSpec1

ABS Control System

VSpec4VSpec3

VSpec4VSpec3

VSpec2VSpec31

SimpleCruisseControl System
VSpec4VSpec3VSpec2VSpec21

EstabilityControl System

isRealizedBy

isRealizedBy

VSpec4VSpec3VSpec2VSpec11

TractionControl System

isRealizedBy

VSpec41

AdaptativeCruisseControl System

impact
Qa

Latency
Time

Qa
Quality

Attribute

-70

+20

impact

+50

CVL resolution model
generation

5 References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley Professional (2001).

2. Van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer Berlin Heidelberg
(2007).

3. Object Management Group: Common Variability Language (CVL) OMG Revised
Submission. (2012).

4. Jouault, F., Allilaire, F., Bézivin, J.: ATL: a QVT-like transformation language.
Companion to 21st ACM SIGPLAN Symp. Object-oriented Program. Syst. Lang.
Appl. 719–720 (2006).

5. Nascimento, A.S., Rubira, C.M.F., Burrows, R., Castor, F.: A Model-Driven
Infrastructure for Developing Product Line Architectures Using CVL. 7th Brazilian
Symposium on Software Components, Architectures and Reuse. pp. 119–128. ,
Brasilia, Brazil (2013).

6. Svendsen, A., Zhang, X.: Developing a software product line for train control: a case
study of CVL. 14th Software Product Line Conference. pp. 106–120. , Jeju Island,
South Korea (2010).

7. Combemale, B., Barais, O., Alam, O., Kienzle, J.: Using CVL to operationalize
product line development with reusable aspect models. Workshop on Variability
Modeling Made Useful for Everyone. pp. 9–14. , Innsbruck, Austria (2012).

8. González-Huerta, J., Insfran, E., Abrahão, S.: A Multimodel for Integrating Quality
Assessment in Model-Driven Engineering. 8th International Conference on the Quality
of Information and Communications Technology. pp. 251–254. , Lisbon, Portugal
(2012).

9. González-Huerta, J., Insfrán, E., Abrahão, S.: Defining and Validating a Multimodel
Approach for Product Architecture Derivation and Improvement. 16th International
Conference on Model-Driven Engineering Languajes and Systems. pp. 388–404. ,
Miami, USA (2013).

10. Gómez, A., Ramos, I.: Cardinality-Based Feature Modeling and Model-Driven
Engineering : Fitting them Together. International Workshop on Variability Modelling
of Software-Intensive Systems. pp. 61–68. , Linz, Austria (2010).

11. González-Huerta, J., Insfran, E., Abrahão, S., McGregor, J.D.: Non-functional
requirements in model-driven software product line engineering. Proceedings of the
Fourth International Workshop on Nonfunctional System Properties in Domain
Specific Modeling Languages. pp. 1–6. , Innsbruck, Austria (2012).

12. Janota, M., Botterweck, G.: Formal approach to integrating feature and architecture
models. 11th Conference on Fundamenteal Approaches to Software Engineering. pp.
31–45. , Budapest, Hungary (2008).

13. Object Management Group: Meta Object Facility (MOF) 2.0 Query / View /
Transformation Specification. (2008).

14. Saaty, T.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 83–
98 (2008).

15. Haugen, Ø., Moller-Pedersen, B., Olsen, G.K., Svendsen, A., Fleurey, F., Zhang, X.:
Consolidated CVL language and tool. , MoSiS Project, D.2.1.4., SINTEF, Univeristy
of Oslo (2010).

