
Reducing the Main Memory Consumptions of FPmax* and FPclose

Gösta Grahne and Jianfei Zhu
Concordia University

Montreal, Canada
{grahne, jzhu}@cs.concordia.ca

Abstract

In [4], we gave FPgrowth*, FPmax* and FPclose for
mining all, maximal and closed frequent itemsets, respec-
tively. In this short paper, we describe two approaches
for improving the main memory consumptions of FPmax*
and FPclose. Experimental results show that the two ap-
proaches successfully reduce the main memory require-
ments of the two algorithms, and that in particular one of
the approaches does not incur any practically significant
extra running time.

1. Introduction

In FIMI’03 [2], many implementations of algorithms for
mining all, maximal and closed frequent itemsets were sub-
mitted and tested independently by the organizers. The ex-
perimental results in [3] showed that our algorithms FP-
growth*, FPmax* and FPclose [4] have great performance
on most datasets, and that FPmax* and FPclose were among
the fastest implementations. Our experimental results in [7]
also showed that the three algorithms are among the algo-
rithms that consume the least amount of main memory when
running them on dense datasets.

However, we also found in [7] that FPmax* and FPclose
require much more main memory than other algorithms in
[2] especially when the datasets are sparse. This is because
the FP-trees constructed from the sparse datasets sometimes
are fairly big, and they are stored in main memory for the
entire execution of the algorithms FPmax* and FPclose.
The sizes of some auxiliary data structures for storing max-
imal and closed frequent itemsets, the MFI-trees and the
CFI-trees also always increase even though many nodes in
the trees become useless.

In this short paper, we describe two approaches for re-
ducing the main memory usages of FPmax* and FPclose.
We also give the experimental results which show that FP-
max* with either of the approaches needs less main memory
for running on both synthetic dataset and real dataset.

2. Improving the Main Memory Requirements

We first give a detailed introduction to the main memory
requirements of the two algorithm implementations in [4].
Then two approaches for improving the main memory con-
sumption are introduced. Since FPmax* and FPclose have
similar main memory requirements, here we only consider
main memory improvements in the implementation of FP-
max*.

The Basic Case

In [4], when implementing FPgrowth*, FPmax* and FP-
close, each nodeP of an FP-tree, an MFI-tree or a CFI-tree
has 4 pointers that point to its parent node, left-child node,
right-sibling node and the next node that corresponds to the
same itemname asP . The left-child node and right-sibling
node pointers are set for the tree construction. The parent
node pointer and next node pointer in an FP-tree are used
for finding the conditional pattern base of an item. In MFI-
trees and CFI-trees, they are used for maximality checking
and closedness testing.

In all algorithms, the FP-treeT∅ constructed from the
original databaseD is always stored in main memory dur-
ing the execution of the algorithms. For FPmax*, during
the recursive calls, many small FP-trees and MFI-trees will
be constructed. The biggest MFI-tree isM∅ whose size in-
creases slowly. At the end of the call of FPmax*(T∅,M∅),
M∅ stores all maximal frequent itemsets mined fromD.

We can see that the main memory requirement of FP-
max* in the basic case is at least the size ofT∅ plus the size
of M∅ which contains all maximal frequent itemsets inD.

Approach 1: Trimming the FP-trees and MFI-trees
Continuously

To see if we can reduce the main memory requirement
of FPmax*, let’s analyze FPmax* first.

Suppose during the execution of FPmax*, an FP-treeT
and its corresponding MFI-treeM are constructed. The



items inT andM arei1, i2, . . . , in in decreasing order of
their frequency. Note that the header tables ofT andM
have the same items and item order. Starting from the least
frequent itemin, FPmax* mines maximal frequent item-
sets fromT . A candidate frequent itemsetX is compared
with the maximal frequent itemsets inM . If X is max-
imal, X is inserted intoM . When processing the item
ik, FPmax* needs the frequency information that contains
only itemsi1, i2, . . . , ik−1, and the frequency information
of ik+1, . . . , in will not be used any more. In other words,
in T , only the nodes that correspond toi1, i2, . . . , ik are
useful, and the nodes corresponding toik+1, . . . , in can be
deleted fromT . If a candidate maximal frequent itemset
X is found, X must be a subset ofi1, i2, . . . , ik. Thus
in M , only the nodes corresponding toi1, i2, . . . , ik are
used for maximality checking, and the nodes correspond-
ing to ik+1, . . . , in will never be used, and therefore can be
deleted.

Based on the above analysis, we can reduce the main
memory requirement of FPmax* by continuously trimming
the FP-trees and MFI-trees. After processing an itemik, all
ik-nodes inT andM are deleted. This can be done by fol-
lowing the head of the link list fromik in the header tables
T.header andM.header. Remember that the children of a
node are organized by a right-sibling linked list. To speed
up the deletions we make this list doubly linked, i.e. each
node has pointers both to its right and left siblings.

Before calling FPmax*,T∅ has to be stored in the main
memory. By deleting all nodes that will not be used any
more, the sizes of FP-trees, especially the size ofT∅, be-
come smaller and smaller. The sizes of the MFI-trees still
increase because new nodes for new maximal frequent item-
sets are inserted, however, since obsolete nodes are also
deleted, the MFI-trees will grow more slowly. At the end
of the call of FPmax*, the sizes ofT∅ andM∅ are all zero.
We assume that the sizes of the recursively constructed FP-
trees and MFI-trees are always far smaller than the size of
the top-level treesT∅ andM∅, and that the main memory
consumption of these trees can be neglected. BesidesT∅,
the main memory also storesM∅. At the initial call of FP-
max*, the size ofM∅ is zero. ThenM∅ never reaches its
full size because of the trimming. We estimate that the av-
erage main memory requirement of FPmax* with approach
1 is the size ofT∅ plus half of the size ofM∅.

In [4], we mentioned that we can allocate a chunk of
main memory for an FP-tree, and delete all nodes in the
FP-tree at a time by deleting the chunk. Time is saved by
avoiding deleting the nodes in the FP-tree one by one. Obvi-
ously, this technique can not be used parallel with approach
1. Therefore, FPmax* with approach 1 will be slower than
the basic FPmax*, but its peak main memory requirement
will be smaller than that of the basic FPmax*.

Approach 2: Trimming the FP-trees and MFI-trees
Once

In approach 2, we use the main memory management
technique by trimming the FP-trees and MFI-trees only
once. We still assume that main memory consumption of
the recursively constructed FP-trees and MFI-trees can be
neglected, and only the FP-treeT∅ and the MFI-treeM∅ are
trimmed.

Suppose the items inT∅ andM∅ arei1, i2, . . . , in. In our
implementation, we allocate a chunk of main memory for
those nodes inT∅ andM∅ that correspond toibn/2c, . . . , in.
The size of the chunk is changeable. During the execution
of FPmax*,T∅ andM∅ are not trimmed until itemibn/2c in
T∅.header is processed. The main memory of the chunk is
freed and all notes in the chunk are deleted at that time.

In this approach, before processingibn/2c and freeing the
chunk,T∅ and a partialM∅ are stored in the main memory.
On the average, the size ofM∅ is half of the size of the full
M∅. After freeing the chunk, new nodes for new maximal
frequent itemsets are inserted and they are never trimmed.
However, considering the fact that MFI-tree structure is a
compact data structure, the new nodes are for thebn/2c
most frequent items, andM∅ already has many branches for
those nodes before trimming, we can expect that the size of
M∅ will be a little bit more than half of the size of the com-
pleteM∅. Therefore the peak main memory consumption is
a little bit more than the size ofT∅ plus half of the size of
M∅. Compared with approach 1, the FPmax* with approach
2 is faster but consumes somewhat more main memory.

3. Experimental Evaluation

We now present a comparison of the runtime and main
memory consumptions of the basic case and the two ap-
proaches. We ran the three implementations of FPmax* on
many synthetic and real datasets. The synthetic datasets are
sparse datasets, and the real datasets are all dense. Due to
the lack of space, only the results for one synthetic dataset
and one real dataset are shown here.

The synthetic datasetT20I10D200Kwas generated from
the application on the website [1]. It contains 200,000 trans-
actions and 1000 items. The real datasetpumsb*was down-
loaded from the FIMI’03 website [2]. It was produced from
census data of Public Use Microdata Sample (PUMS).

All experiments were performed on a 1GHz Pentium III
with 512 MB of memory running RedHat Linux 7.3.

Figure 1 shows the runtime and the main memory usage
of running FPmax* with the implementations of the basic
case and the two approaches on the datasetT20I10D200K.
As expected, in the runtime graph, FPmax* with approach
1 took the longest time. Its runtime is almost twice the run-
time of the basic case and approach 2. However, approach 1



T20I10D200K

1

10

100

00.250.50.751

Minimum Support (%)

R
u

n
ti

m
e 

(s
)

1

10

100

Basic

Approach 1

Approach 2

Runtime

T20I10D200K

60

65

70

75

80

85

90

95

100

00.250.50.751

Minimum Support (%)

M
ai

n
 M

em
o

ry
 (

M
)

60

65

70

75

80

85

90

95

100

Basic

Approach 1

Approach 2

Main Memory Consumption

Figure 1. T20I10

consumes the least amount of main memory. The peak main
memory of approach 1 is always less than the basic case for
about 10 megabytes, or about 15%. The speed of approach
2 is similar to that of the basic case, since approach 2 only
trims the FP-treeT∅ and the MFI-treeM∅ once. The main
memory consumption of approach 2 is similar to that of ap-
proach 1, which means the approach 2 successfully saves
main memory.

Pumsb*

1

10

100

0102030405060

Minimum Support (%)

R
u

n
ti

m
e 

(s
)

1

10

100

Basic

Approach 1

Approach 2

Runtime

Pumsb*

0

5

10

15

20

25

0102030405060

Minimum Support (%)

M
ai

n
 M

em
o

ry
 (

M
)

0

5

10

15

20

25

Basic

Approach 1

Approach 2

Main Memory Consumption

Figure 2. pumsb*

The runtime and main memory usage of running FP-
max* on real datasetpumsb*are shown in Figure 2. The
results are similar to those results on synthetic dataset.
Datasetpumsb* is a very dense dataset, its FP-trees and
MFI-trees have very good compactness, and there are not
many nodes in the trees. Therefore, in the two graphs in
Figure 2, the differences of the runtime and main memory
consumptions for the basic case and the two approaches are
not very big.

4. Conclusions

We have analyzed the main memory requirements of
the FPmax* and FPclose implementation in [4]. Two ap-
proaches for reducing the main memory requirements of
FPmax* and FPclose are introduced. Experimental results
show that both approach 1 and approach 2 successfully de-
crease the main memory requirement of FPmax*. While the
continuous trimming of the trees in approach 1 slows down
the algorithm, the “one-time-trimming” used in approach 2
shows speed similar to the original method.

We also noticed that the PatriciaMine in [6] using Pa-
tricia trie structure to implement the FP-growth method [5]

shows great speed and less main memory requirement. We
are currently considering implementing FPmax* and FP-
close using a Patrica trie.

References

[1] http://www.almaden.ibm.com/software
/quest/Resources/index.shtml .

[2] http://fimi.cs.helsinki.fi .

[3] B. Goethals and M. J. Zaki (Eds.).Proceed-
ings of the First IEEE ICDM Workshop on
Frequent Itemset Mining Implementations (FIMI
’03). CEUR Workshop Proceedings, Vol 80

http://CEUR-WS.org/Vol-90 .

[4] G. Grahne and J. Zhu. Efficiently using prefix-
trees in mining frequent itemsets. InProceed-
ings of the 1st IEEE ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI’03), Mel-
bourne, FL, Nov. 2003.

[5] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. InProceeding of
Special Interest Group on Management of Data,
pages 1-12, Dallas, TX, May 2000.

[6] A. Pietracaprina and D. Zandolin. Mining fre-
quent itemsets using Patricia tries. InProceedings
of the 1st Workshop on Frequent Itemset Mining
Implementations (FIMI’03), Melbourne, FL, Nov.
2003.

[7] J. Zhu. Efficiently mining frequent itemsets from
very large databases. Ph.D. thesis, Sept. 2004.


