
GIMT: A tool for ontology and goal modeling in
BDI Multi-Agent Design

Massimo Cossentino∗, Daniele Dalle Nogare ‡, Raffaele Giancarlo‡, Carmelo Lodato∗,
Salvatore Lopes∗ Patrizia Ribino∗, Luca Sabatucci∗ and Valeria Seidita†∗
∗Istituto di Calcolo e Reti ad Alte Prestazioni - Consiglio Nazionale delle Ricerche

Email: {cossentino, c.lodato, lopes, ribino, sabatucci}@pa.icar.cnr.it
†Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica

Email: valeria.seidita@unipa.it
‡Dipartimento di Matematica e Informatica

Email: raffaele.giancarlo@unipa.it, daniele.dallen@gmail.com

Abstract—Designing and developing BDI multi-agent systems
would be facilitated by rising up the level of abstraction to use
and by a methodological approach for managing it. To this aim
it is common the integration of goal oriented analysis techniques
with the design and implementation phases.

In this fashion, our experience is that the use of an ontology
in the early stages of the process is a great support for subsequent
phases: goal modeling, agent design and implementation. How-
ever, we are aware that building and maintaining an ontology
has to be supported by appropriate tools.

This paper proposes GIMT (Goal Identification and Modeling
Tool) as a further step towards the creation of a complete
methodological approach for developing multi-agent systems to
be implemented in the JACAMO framework. GIMT is a CASE
tool for supporting ontology building and goal modeling.

Besides the advantages offered by an automatic tool, the other
novelty of this research is in the mapping between metamodeling
based on Model Driven Engineering (MDE) and Domain Specific
Modeling Languages (DSMLs) with the Eclipse plug-in develop-
ment environment.

I. INTRODUCTION

The integration of a high-level programming paradigm,
such as the BDI multi-agent systems, into a systematic ap-
proach, requires a revision of traditional instruments and
tools for conducting the requirement analysis, in order to
better fit with the well-known concept of goal. Much research
exists in the literature to deal with the goal oriented require-
ment engineering. We aim at developing a complete software
methodology that includes a goal-oriented analysis, the design
of agent organizations, and the support to the implementation
phase.

The fundamental common theme in all these activities is
the presence of an ontology. It is necessary for the definition
of the problem and of the solution domain, but also for the
structure of messages and for organizing agent knowledge in
beliefs.

Ontologies are essential for our approach. However, we
have faced the problem that building and maintaining them is
not trivial. A totally manual approach would add a significant
burden to developer that may impact the personal productivity
in the project.

The objective of our work is to provide a CASE tool for
supporting designers in the goal identification activity. We
exploit the results presented in [17] where two activities of
the preliminary phase of a complete methodological approach
were developed.

Model Driven Engineering (MDE) is an approach promot-
ing the use of models as first-class citizens of a software
development process [19]. These models are, in many usual
cases, defined using general-purpose modeling languages like
the UML: the standard modeling language in the field of
object oriented software engineering. Conversely, for restricted
domains, it is widely spread the use of so-called Domain Spe-
cific Modeling Languages (DSMLs) [14]. They are specifically
designed to meet the needs of the target application domain by
using specific concepts of the domain. A common practice of
MDE is that DSMLs are defined using a metamodel expressed
with a general-purpose metamodeling language like MOF [15],
to name the most widely used one. These metamodels describe
elements of the language the designer can instantiate at the
immediate meta-level below in order to build its own DSML.

The results presented in this paper are founded on the use
of MDE as a key element for the development of the proposed
tool. The main contribution is the development of a CASE tool
based on a DSML we have defined in order to support the
activities of the requirement analyses proposed in our previous
work [17].

It is well known that the joint use of DSMLs and CASE
tools allows to guide and automate the model construction and
transformation, resulting in an increase of both software de-
velopment productivity and quality. The tool imposes domain-
specific constraints and performs model checking for detecting
and preventing many errors in the early phases of the process
life cycle.

The tool we propose has been developed by using Graphiti
[5], an Eclipse-based graphics framework that enables rapid
development of state-of-the-art diagram editors for domain
models. Graphiti can use EMF [3] based domain models very
easily but can deal with any Java-based objects on the domain
side as well.

The rest of the paper is organized as follows, in the next
section we present the motivation of our work, in section III

we illustrate the methodological approach for which the tool
has been developed, in section IV we present the tool, its
functionality and some technological issues on its construction
and finally in Section V we draw some conclusions.

II. MOTIVATION AND OBJECTIVES

Much research has highlighted advantages and strengths of
MDE and DSMLs [8][19][7][14] in managing the complexity
of domain concepts and domain abstractions while designing
complex systems. These are fundamentals in our research. We
have been working for a couple of years on the construction
of a complete design process for modeling complex MAS
systems, including organizations, hierarchical structures and
norms [18][13][11][12].

In order to develop such kinds of systems, we need to
manage abstractions such as organizations, goals, communica-
tions, messages, beliefs and so on. Thus we need a domain-
specific modeling language that includes these specific terms
as keywords. In addition, the methodological approach we are
developing may be facilitated by the creation of CASE tools
for supporting designers in each part of their work. However,
customization of existing tools for different application do-
mains is not always easy or even possible.

Nowadays, several environments exist for DSMLs, some
of them are commercial such as Metaedit+ [21] and Ac-
tifsource [1], some are open source and some others are
developed as plug-ins for popular IDEs such as Eclipse Mod-
eling Project [2] and Microsoft’s DSL Tools [6]. In particular,
Eclipse is an open and flexible framework, providing the API
for adding functionalities perfectly integrated in the whole
working environment. Indeed, the Eclipse framework does not
support any specific task but the composition of a set of plug-
ins gives Eclipse a particular “configuration” for specific needs.
The Eclipse community is committed at providing plug-ins for
generating graphical modeling tool. Recently, the Graphical
Modeling Project reached good results by using two interesting
technologies: Graphiti [5] and Graphical Modeling Framework
(GMF) [4]. The distinctive feature in the Graphiti technology
is the employment of the Ecore metamodel for representing
all the elements and relationships at the base of the graphical
view1.

Ecore metamodel is the modeling language used for cre-
ating models in the diagram editor. In other words, the use
of a metamodel corresponds to the definition of a DSML.
Since in our work [20] we use metamodels for representing
the abstractions to be managed during design processes and
to be reported in the models, we have a grounded theory
for representing the domain abstractions for each kind of
application and upon which to construct a DSML.

One of the objectives of our research is (i) to support
designers in the early phase of goal oriented requirements
analysis for BDI MASs and (ii) to provide a CASE tool in
order to aid the design of the goal model.

This line of research exploits the results of [17]. This is
part of a broader activity towards the creation of a complete
methodological approach for developing multi-agent systems

1We discuss our point of view on developing CASE tool with Graphiti and
Ecore in section IV, for more details see [5].

<<SMME>>
Position

<<SMMR>>
Association

<<SMME>>
Object

<<SMME>>
Predicate

<<SMME>>
Ontology
Element

<<SMME>>
Action

<<SMME>>
Intentional

Action

<<SMME>>
Unintentional

Action

<<SMME>>
Concept

<<SMMR>>
isPart_of

<<SMMR>>
is_a

2
1

<<SMMR>>
Describes0..*

1..*

<<SMMR>>
isInput

<<SMMR>>
hasTarget

1..*

0..*

0..*

1..*

<<SMMR>>
executes

1..*

0..*

<<SMMR>>
executes

1..*

0..*

<<SMMR>>
isPostcondition

<<SMMR>>
isPrecondition

0..*

1..*

0..*

1..*

2 {same
subtype}

12 {same
subtype}

1

Fig. 1. The Problem Domain Description Metamodel.

<<SMME>>
Position

<<SMME>>
Goal

<<SMMR>>
generalize

2 1

<<SMMR>>
aggregate

0..1

0..*

<<SMMR>>
depend

<<SMMR>>
extDep

<<SMMR>>
intDep

<<SMME>>
HardGoal

<<SMME>>
SoftGoal

<<SMMR>>
contribute 0..*0..*

<<SMMR>>
OR_Dep

<<SMMR>>
AND_Dep

<<SMMR>>
decompose

2

2

1

1

1..n

Fig. 2. The Goal Description Metamodel.

to be implemented in the JACAMO framework [9]. The result
of [17] is a couple of design activities for identifying goals
from the ontological representation of the problem domain.

In this paper, we complement this portion of the method-
ology with a CASE tool. It has been developed as an Eclipse
plug-in, for supporting designers in these two activities (Prob-
lem Domain Description and Goal Description). The Goal
Identification and Modeling Tool (GIMT) has been conceived
for being a MDE tool that automatically aids designers in some
of their activities.

III. GOAL IDENTIFICATION APPROACH

In the proposed methodology [17] ontologies are used
very early in the process. Goal Description is the preliminary
activity in which the analysts observe (and model) the strategic
objectives of the software system and of its environment.
This is done with a close iteration with another activity: the
Problem Domain Description. This activity is responsible of
creating a significant and transferable understanding of the
portion of the world where to introduce the software. The
collaboration of the two activities produces the elements of
the environment (together with their significant states) that
are collected and therefore used for formalizing user goals,
thus avoiding ambiguities, discovering tacit knowledge and
simplifying the comprehension among stakeholders.

Highlight
Keywords

System Analyst

Problem Statement

a

Generate
Ontology

Elements List

Initialize Problem
Ontology

Domain Expert

Problem Statement
[highlighted]

a

Problem Ontology
Description diagram

[initial]
<<mandatory,

input>>

<<mandatory,
input>>

<<mandatory,
output>>

Refine Problem
Ontology Description

Problem Ontology
Description diagram

[final]

<<mandatory,
output>>

<<mandatory,
input>>

Compose Goal
List

Describe Goals Design Goal
Diagram

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory,
output>>

Goal Patterns

Goal Information

Goal Diagram

c

<<mandatory,
input>>

<<mandatory,
output>>

Element List
<<mandatory,

input>>
<<mandatory,

output>>

Initialize Goal
diagram

Goal diagram
[initial]

<<mandatory,
input>>

<<mandatory,
output>><<mandatory,

output>>

Goal List

<<mandatory,
output>>

<<mandatory,
input>>

Fig. 3. The flow of work from Problem Statement to Goal Model.

In particular, the aim of Problem Domain Description
(PDD) activity is to identify and to describe the problem
domain elements and their relationships. This activity adopts
the metamodel depicted in Fig. 1. Main elements are: concept
(anything about which something is said), action (the cause
of an event by an acting concept) and predicate (a property, a
state or more generally a clarification to specify a concept). In
particular we use to distinguish intentional actions (implying
a kind of consciousness to act) from unintentional actions
(purely reactive), and objects (concepts that can perform only
unintentional actions) from positions (concepts with inten-
tions).

This activity enables the Goal Description (GD) activity
that grounds on the ontology and exploits some recurrent
structures (Goal Patterns) that lead to identify goals (in terms
of actor, and state transitions) and dependencies among them.
The work product resulting from this activity is the Goal
diagram whose system metamodel is shown in Fig. 2. This
metamodel grounds on two main concepts: Hard Goal and
Soft Goal. A HardGoal [10][16] represents a strategic interest
of an actor. It is satisfied absolutely when its subgoals are
satisfied, and that satisfaction can be automatically established.
A SoftGoal [10][16] is a goal having no clear criteria for
deciding whether it is satisfied or not.

Fig. 3 goes into details of the flow of work for identi-
fying goals, starting from the problem statement and passing
through the use of ontology. System Analysts and Domain
Experts collaborate in Problem Domain Description and in
Goal Description Activity.

In the Problem Domain Description Activity, tasks are:

• Highlight Keywords - starting from an informal tex-
tual document describing the problem domain, an
underlined text document where nouns have been
highlighted, according to their grammatical function
in the sentence, is produced;

• Generate Ontology Elements List - previously high-
lighted nouns are listed with respect to their types (Po-
sition, Object, Predicate, Intentional or Unintentional
Action);

• Initialize Problem Ontology - a first draft of the
problem ontology description diagram is prepared by
using the previous list and a specific notation for
representing each element of the diagram (the SMME
and SMMR in the metamodel);

• Refine Problem Ontology Description - it is a refine-
ment of the POD, by analyzing the the underlined
Problem Statement. The final version includes rela-
tionships among ontology elements;

In the Goal Description Activity, tasks are:

• Compose Goal List - this is the first activity for identi-
fying goals, starting from the POD diagram. The Goal
Patterns document is used for searching patterns in the
POD diagram by following the guidelines illustrated
in [17];

• Describe Goals - here the description on each goal is
completed by describing the elements a goal is com-
posed of: goal type, name, state, who is responsible
for the goal and dependencies;

• Initialize Goal Diagram - a first draft of the goal
diagram is prepared by using the previous goal list
and a specific notation for representing each element
of the diagram;

• Design Goal Diagram - it provides a structured de-
scription of the goals, their dependencies and the
positions responsible for goal achievement, by using
a specific notation.

The advantage of this methodological approach is cor-
relating goals with the corresponding portion of textual re-
quirements, thus supporting an iterative approach and a future
evolution of the system. In order to support the designer’s work
during the goal identification phase, we developed a MDE tool,
as an Eclipse plug-in, for which a specific modeling language
has been created. This tool is introduced in the next section.

IV. GOAL IDENTIFICATION AND MODELING TOOL

The Goal Identification and Modeling Tool (GIMT) is a
CASE tool for supporting designers in performing all the tasks
of the Problem Domain Description and Goal Description ac-
tivity (see Fig. 3) for the representation of system requirements
and the domain formalization, as proposed in [17].

GIMT has been realized as an Eclipse plug-in by using
the Eclipse Modeling Framework (EMF) and Graphiti. It im-
plements the Domain Specific Modeling Language we defined
in order to create the models for representing the problem
ontology and the goal identification.

The key element for the implementation of GIMT is the
Model definition. The EMF provides a modeling and code
generation framework for Eclipse applications based on a
layered structure for data models. The information type of the
sets of model instances is defined in a so-called core model,
corresponding to metamodel in the Essential MOF (EMOF).
Ecore is the metamodel adopted for core models. It contains
the following elements: EPackage, EClass, EDataType, EAt-
tribute and EReference.

Usually, in our work we use a system metamodel for
formalizing the definition of all the elements and relation-
ships, and for representing constraints on the enactment of
design processes or part of them. Examples of metamodels
are reported in Figures 1 and 2. They respectively describe the
Problem Domain Description and Goal Description activities.
The metamodelling techniques [20] are based on a metamod-
elling layered architecture, that follows the principles of MOF
and OMG [15]. As anticipated before, constructing plug-in
in Eclipse implies the definition of models that are based on
Ecore. Therefore we map our metamodel elements (SMME
and SMMR) on EClasses and the relations on ERelations, as
specified in the Ecore notation. Moreover, starting from an
EMF model, a set of Java classes have been generated for the
model.

Summarizing, GIMT is based on two metamodels, one for
each supported diagram, (see Fig. 1 and Fig. 2) and on a graph-
ical notation to represent the specific design elements. GIMT
has been conceived to give the user the possibility to create
two different diagrams for representing the problem domain
ontology and the goal model according to the guidelines we
previously introduced.

In the following subsections we present the adopted nota-
tion and its usage into the specific GIMT diagrams.

A. Diagrams and Notation

GIMT supports the Problem Ontology Description and the
Goal diagrams. The graphical notation defined for our DSML
and implemented in these diagrams is shown in Fig. 4 and it
refers to the abstractions we use in our metamodels (see Fig.
1 and Fig. 2).

As regard the Problem Ontology Description diagram, it
adopts the notation (see the left side of Fig. 4) defined for

Fig. 4. The notation adopted in GIMT for Problem Ontology Description
and Goal diagram.

representing the concrete elements and the relationships of the
Problem Ontology Description Metamodel (see Fig. 1).

POD diagram elements - Each element of a POD diagram
is represented by means of a graphical notation and a specific
stereotype. In GIMT, each element is also colored differently
to easily distinguish it, especially in large diagrams. Elements
in a POD diagram may be:

- Intentional and Unintentional Action that are repre-
sented as a cut corners rectangle with an Action Name.
They are differentiated by means of the stereotype.
They may be also connected to other elements such
as Object, Position and Predicate.

- Object is represented as a round corner rectangle with
an Object Name. Object may be input or target of an
action. It may be connected with predicates or other
objects.

- Position is represented by a simple rectangle with a
Position Name. A position may be connected only to
actions and other positions.

- Predicate is depicted as a little sheet with a Predicate
Name. It may be connected with Position, Action and
Object.

POD diagram relationships - The elements in a POD
diagram can be related to each other by different kinds of
relationship, whose semantic is quite intuitive2. Relationships
in a POD diagram may be:

- Association that is represented as usual by an arrow.
Elements in the diagram can be logically related with
each other by using Associations.

- Is A is represented by the traditional symbol for
generalization. Is-a is the relationship between an
ontological element and one of its refinements.

- Part Of is represented by the traditional symbol for
composition. This relationship represents the whole-
part relationship among ontological elements.

The Goal diagram adopts the notation (see the right side
of Fig. 4) defined for representing the concrete elements and
the relationships of the Goal Description Metamodel (see Fig.
2).

Goal diagram elements - The graphical notation of the
Goal diagram is derived from a well-known graphical notation
[10]. Elements in a Goal diagram may be:

- A Hard Goal is represented by an ellipse with a Name.
It is always connected with at least one Position. It can
be also related with other Hard Goals and Soft Goals.

- A SoftGoal is depicted as a cloud with a Name. It can
be related to Hard Goals.

- A Position is referred to the same element described
in the POD diagram, but in this diagram it is depicted
as a sticky man.

2Detailed definitions can be found in [17].

Goal diagram relationships - The elements of a Goal Di-
agram can be logically related to each other by using the
following kinds of relationships:

- Aggregate is the only relationship that can exist be-
tween Positions and Goals. Its notation looks like the
UML “part-of” relationship: a line starting with an
empty diamond.

- Contribute that is the relationship that can relate
HardGoal with SoftGoal and vice-versa. There are
four different types of contribution: positive, strongly
positive, negative and strongly negative [10]. Each one
is depicted with its own dedicated notation, as shown
in Fig. 4.

- Depend relates two different goals. It may be an Inter-
nal Dependency or an External Dependency. Notations
are respectively a simple arrow and an arrow with
dashed line.

- Generalize, very similar to the UML inheritance, it
specifies a relationship between Positions, in which
specialized positions inherit features from the general
position.

- Decompose relates two Goals. There are two kinds
of decomposition: AND and OR. Both of them are
depicted as an arrow and a specific symbol (see Fig.
4).

B. Ecore Metamodel Mapping

Adopting a design process for developing a system gen-
erally means managing a set of abstractions (concepts of
the domain) that may be instantiated in one ore more work
products. In this work we use system metamodelling as one
of the fundamental elements for the construction of CASE
tools. In particular, our technique [20] prescribes that a system
metamodel is composed of:

- Element (SMME) is a construct of the metamodel that
can be instantiated into elements of the system model;

- Relationship (SMMR) is a construct used for repre-
senting the existence of a relationship between two
(or more) instances of elements. For instance, the
aggregation relationship between two instances of
the element class is an instance of the “association”
SMMR.

- Attribute (SMMA) is a construct used for adding
properties to SMMEs.

- Operation (SMMO) is a construct used for describing
additional proprieties of an SMMEs.

Eclipse EMF makes the domain concepts explicit. It
distinguishes between model and metamodel and uses the
metamodel for ruling the structure of a model. The Ecore
metamodel is the part of the EMF metamodel dedicated to
define the following elements:

- EClass represents a class, with zero or more attributes
and zero or more references.

Fig. 5. Problem Statement Editor

- EAttribute represents an attribute which has a name
and a type.

- EReference represents one end of an association be-
tween two classes. It has a flag to specify if it
represents a containment and the cardinality.

- EDataType represents the type of an attribute, e.g. int,
float or java.util.Date.

For space reasons we do not provide further details about
how to create an EMF editor plug-in but it is worth to note that
the mapping is one to one in most of the cases: any element of
the system metamodel has a direct counterpart with an element
of the Ecore metamodel. Therefore, it is pretty straight to
obtain an Ecore metamodel starting from a system metamodel
(like those in Fig. 1 or Fig. 2).

C. Using GIMT

GIMT provides three kinds of editor: a textual editor for
manipulating the problem statement and two diagram editors
for modeling respectively the Problem Ontology Description
(POD) diagram and the Goal diagram. Moreover, GIMT has
been endowed with some functionalities that allow to automat-
ically perform transitions between the tasks of our process.

This section aims at describing how to employ GIMT as a
CASE tool for the portions of design process described in Fig.
3. The Conference Management System (CMS) case study3

has been used for exemplifying the description.

At this stage it should be clear that the flow of work
described in Fig. 3 is logically divided into two main portion of
work: the Problem Domain Description activity and the Goal
Description activity. The first devoted to deliver POD diagram
in its final version and the second resulting in the creation
of the Goal diagram. The GIMT tool aims at supporting the
designer in the creation of these two work products.

As it can be seen in Fig. 3, the first three tasks of the
Problem Domain Description Activity: Highlight Keywords,
Generate Ontology Element List and Initialize Problem On-
tology. These have to be performed following the guidelines
briefly introduced in Section III. GIMT provides a text editor
for loading or creating textual documents (such as a Problem
Statement), in order to make easy the use of our guidelines.
It also comes with particular editing functionalities that allow
the identification of ontology elements.

3A complete description of the CMS case study may be found in [22].

Fig. 6. Transition from Problem Statement Highlighted to Problem Ontology Description Diagram Initial.

The Document is the key element of the Problem Statement
Editor (PSE), shown in Fig. 5. In a Document the designer can
highlight words thus identifying specific ontological elements
(such as Intentional Action, Position and so on) according
to our guidelines [17]. For instance in the CMS problem
statement (see upper side of Fig.6) the words authors and
manuscript have been identified respectively as a Position
and an Object. Then, these ontological elements can be au-
tomatically exported into a POD diagram where they will be
represented according to their notation (see lower side of Fig.
6).

Fig. 6 represents the portion of the work devoted to produce
the POD diagram in its initial version (see Fig. 3). In fact, in
the upper part of Fig.6, the words highlighted with appropriate
labels correspond to ontological elements that are added to a
list (the Element List4 work product). Then, elements may be
exported from the list to be added to the Problem Ontology
Description diagram [initial] for its refinement.

Moreover, the GIMT Problem Statement Editor provides
also functionality for grouping words to be identified as a
unique ontological element by means of a Connection. A
Connection is a link that allows to relate also two non-
consecutive text portions. For instance, in the CMS case study
(see upper side of Fig. 6) we want to identify the words
accepting and rejecting as the same Intentional Action. To do
this, we firstly select the two words and then we relate them by
means of a Connection (represented as a dashed arrow). As a
consequence, GIMT will automatically refers them as a unique

4The Element List is not clearly visible to the designer. It maintains
information about ontological elements and it may be exported by the tool.

ontological element named AcceptingRejecting (see lower side
of Fig. 6). Hence, it is worth to point out that the Initialize
Problem Ontology task can be performed automatically with
GIMT by means of an exporting functionality implemented in
the Problem Statement Editor.

In order to complete the Problem Domain Description
Activity, the last task is the Refine POD (see Fig. 3). GIMT is
also endowed with an appropriate diagram editor that allows to
handle the structural aspect of problem ontology elements by
organizing them and by adding relationships or other elements.
The upper side of Fig. 7 shows the POD diagram for the CMS
case study. This diagram has been obtained by refining its
initial version (see the lower side of Fig. 6) derived from the
previous task. The POD editor allows to edit a POD diagram,
by managing elements imported from the previous phases, but
also adding new ontological elements and relationships. For
instance, the Position author, the Intentional Action submit
and the Object manuscript previously identified (lower side of
Fig. 6) have been opportunely related (top/right side of Fig.
7).

The Refine POD task completes the Problem Domain De-
scription activity and the POD diagram [final] is the resulting
artifact. So far, the second activity of our process can start
(Fig. 3): the Goal Description. As our guidelines prescribe, the
first task is Compose Goal List that identifies specific patterns
from the POD diagram. Fig. 8 shows an example of a common
pattern5 that can be discovered in a POD diagram. It is worth
to note that a pattern is characterized by compartments: i)
a generic schema of the ontological elements and ii) the

5Further detail of patterns can be found in [17].

Fig. 7. Transition from Problem Ontology Description Diagram to Goal Model.

description of goal information that can be extracted if the
pattern matches (goal type, goal name and so on). For instance,
the ontological elements triple, author, submit and manuscript
in the upper side of Fig. 7 corresponds to the pattern shown in
Fig. 8. The POD editor supports this task, by allowing multiple
selection of elements, thus generating the goal related to the
specific pattern and adding it to the goal list. A thicker red
border is used to highlight the elements already selected by
the designer.

Position1 Act Object1Position1 Act
executes targetexecutes

Position2Position1 Act
executes target

Pattern N°1

Name: To+ <Act_name> + <Object1_name>
State: <Act_name> + 'ed' (<Object1_name>)
Who: Position1 is responsible for achieving the goal
Dependency: None

Goal Information
Goal type: Achieve

Name: To+ <Act_name>
State: <Act_name> + '-ing' (<Position_name>)
Who: Position1 is responsible for achieving the goal
Dependency: None

Goal Information
Goal type: Maintain

Name: To+ <Act_name> + <Position2_name>
State: <Act_name> + 'ed' (<Position2_name>)
Who: Position1 is responsible for achieving the goal
Dependency: None

Goal Information
Goal type: Achieve

Pattern N°2 Pattern N°3

PreCondition: None PreCondition: None PreCondition: None
Note: it may also be Position1=Position2

Fig. 8. Pattern extracted from [17].

The POD editor also provides a functionality in order to
automatically perform the second task of the Goal Description
activity, that is Describe Goals. This task consists in setting
the goal information according to the identified pattern. A
specific form (see Fig.9) allows to add all the information that
is not automatically settable, such as the information about
the Dependency. For instance, the triplet previously identified
corresponds to a goal with the following, automatically set,

information(see Fig. 9): Goal Type=Achieve, Name= To submit
manuscript, State= submitted manuscript, Who= author.

Finally, GIMT supports the Design Goal Diagram task by
providing a Goal Diagram Editor. Previously created goals
may also be automatically exported in a goal diagram. The
functionality implemented in the Goal Diagram Editor allows
the designer to describe more in detail the dependencies
between the imported goals and the Positions that perform
them. For instance, by applying the pattern of Fig. 8, another
goal can be extracted from the POD diagram of the CMS case
study: To make review (Fig. 7). The goal To make review and
the goal To submit manuscript in the initial version of the Goal
Diagram were not related. By reasoning on the diagram with
the support of our guidelines, the designer is able to discover a
Dependency among these two goals and to refine the diagram.

It is worth noting that our process is iterative. Thus, at

Fig. 9. The Goal Information frame.

each iteration it is important to trace (forward and backward)
the ontology model with the goal model. GIMT maintains
a traceability of the elements during model transformation.
Each diagram of GIMT, in fact, uses a single persistence
file model. A typical scenario that can occur is, for example,
the deletion of a goal from the goal diagram. In this case,
the linked ontological elements will be affected. The tool
automatically removes the ticker border in the POD diagram.
This functionality allows also to create a direct link between a
goal and portion of problem statement from which it derives.
This is important when conflicting or inconsistent goals are
discovered. Thus, the possibility to go back to the textual
description that originated the problem may help to solve the
inconsistency.

V. CONCLUSIONS

GIMT has been designed and developed in order to over-
come the limitations of the manual approach proposed in [17]
especially when it has to be applied to large size problems.
Such an approach grounds on two main models (an ontology
and a goal model) and on a set of guidelines allowing model to
model transformations. Hence, GIMT has been conceived as a
CASE tool based on a DSML opportunely defined to support
the goal oriented requirement analysis proposed in [17]. It has
also been endowed with some functionalities that support the
designer in applying the guidelines to perform the activities
of the approach (i.e: the Problem Domain Description and the
Goal Description activity). Moreover, in some cases GIMT
automatically executes some tasks of the process.

The work illustrated in [17] is a part of a broader work
towards the creation of a complete methodological approach
for developing multi-agent systems to be implemented in the
JACAMO framework. Thus, new models will be included in
order to face other design issues. Hence, we decided to develop
GIMT as an Eclipse plug-in by using the Graphity framework,
thus ensuring us a rapid development and integration of new
diagram editors and a great flexibility to extend our DMSL.

We found in Ecore a very easy and fast way to produce
DSML due to its almost one to one mapping with our meta-
modeling techniques.

REFERENCES

[1] Actifsource, available at http://www.actifsource.com.
[2] Eclipse Modeling Project,

available at http://www.eclipse.org/modeling/.
[3] EMF - Eclipse Modeling Framework,

available at http://www.eclipse.org/modeling/emf/.
[4] GMF - Eclipse Graphical Modeling Framework,

available at http://www.eclipse.org/modeling/gmp/.
[5] Graphiti - Graphical Tooling Infrastructure,

available at http://www.eclipse.org/graphiti/.
[6] Microsoft visual studio sdk including domain-specific language tools,

available at http://msdn.microsoft.com/en-us/library/bb126259.aspx.
[7] U. Aßmann, S. Zschaler, and G. Wagner. Ontologies, meta-models, and

the model-driven paradigm. Ontologies for Software Engineering and
Software Technology, pages 249–273, 2006.

[8] C. Atkinson and T. Kuhne. Model-driven development: A metamodeling
foundation. IEEE Software, 20(5):36–41, September/October 2003.

[9] O. Boissier, R.H. Bordini, J.F. Hübner, A. Ricci, and A. Santi. Multi-
agent oriented programming with jacamo. Science of Computer Pro-
gramming, 2011.

[10] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopou-
los. Tropos: An agent-oriented software development methodology.
Autonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[11] M. Cossentino, A. Chella, C. Lodato, S. Lopes, P. Ribino, and V. Seidita.
A notation for modeling jason-like bdi agents. In Complex, Intelligent
and Software Intensive Systems (CISIS), 2012 Sixth International Con-
ference on, pages 12–19. IEEE, 2012.

[12] M. Cossentino, C. Lodato, S. Lopes, P. Ribino, V. Seidita, and A. Chella.
A uml-based notation for representing mas organizations. In WOA,
pages 133–139, 2011.

[13] M. Cossentino, C. Lodato, S. Lopes, P. Ribino, V. Seidita, and A. Chella.
Towards a design process for modeling MAS organizations. In Massimo
Cossentino, Michael Kaisers, Karl Tuyls, and Gerhard Weiss, editors,
Multi-Agent Systems, volume 7541 of Lecture Notes in Computer
Science, pages 63–79. Springer Berlin Heidelberg, 2012.

[14] S. Kelly and J.P. Tolvanen. Domain-specific modeling: enabling full
code generation. John Wiley & Sons, 2008.

[15] OMG meta object facility, version 2.4.2, april 2014.
doument formal/2014-04-03, available at http://www.omg.org.
http://www.omg.org/technology/documents/formal/mof.htm.

[16] J. Mylopoulos, L. Chung, and E. Yu. From object-oriented to goal-
oriented requirements analysis. Communications of the ACM, 42(1):31–
37, 1999.

[17] P. Ribino, M. Cossentino, C. Lodato, S. Lopes, L. Sabatucci, and V. Sei-
dita. Ontology and goal model in designing bdi multi-agent systems.
In WOA@AI*IA, Proceedings of the 14th Workshop ”From Objects to
Agents” co-located with the 13th Conference of the Italian Association
for Artificial Intelligence (AI*IA 2013), Torino, Italy, volume 1099,
pages 66–72, December 2-3 2013.

[18] P. Ribino, C. Lodato, S. Lopes, V. Seidita, V. Hilaire, and M. Cossentino.
A norm-governed holonic multi-agent system metamodel. In Agent
Oriented Software Engeneering (AOSE), 2013.

[19] D.C. Schmidt. Model-driven engineering. Computer, 39(2):25–31, Feb.
2006.

[20] V. Seidita and M. Cossentino. Metamodeling: Representing and
modeling system knowledge in design processes. In In Proceedings of
the 10th European Workshop on Multi-Agent Systems, EUMAS 2012,
pages 103–117, 2012.

[21] J.P. Tolvanen and M. Rossi. Metaedit+: defining and using domain-
specific modeling languages and code generators. In OOPSLA ’03:
Companion of the 18th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 92–
93, New York, NY, USA, 2003. ACM Press.

[22] F. Zambonelli, N. Jennings, and M. Wooldridge. Organizational rules
as an abstraction for the analysis and design of multi-agent systems.
Journal of Knowledge and Software Engineering, 2001.

