
Social Relationships for Designing Agent Interaction
in JADE

Matteo Baldoni, Cristina Baroglio and Federico Capuzzimati
Dipartimento di Informatica

Università degli Studi di Torino
c.so Svizzera 185, I-10149 Torino (Italy)

Email: {matteo.baldoni,cristina.baroglio,federico.capuzzimati}@unito.it

Abstract—Current agent platforms do not provide agents
the means for reasoning about expected behaviours during
interactions. This lack is due to the absence of design primitives to
explicitly shape interaction patterns as first-class resources. This
work presents 2COMM4JADE, a framework based on JADE and
CArtAgO platforms that allows definition of social relationships
among parties, represented by social commitments, decoupled
from the agent design itself.

I. INTRODUCTION AND MOTIVATION

Multi-Agent Systems (MAS) represent a preferred choice
for building complex systems, where the autonomy of each
component represent a major requirement. Agent-oriented soft-
ware engineers can choose from a substantial number of agent
platforms [19], [8], [14], [5]. Platforms and frameworks like
JADE [6], TuCSoN [22], DESIRE [9], JIAC [27], all provide
coordination mechanisms and communication infrastructures
[8]. We claim, however, that none of the current infrastructures
for MAS is adequate to really preserving autonomy, and do
not fit the high degree of decoupling often required by such
systems. This can be obtained only via a clear separation of
the agent specification from the coordination specification, that
avoids any “hard-coding” of the regulations of the system
inside the activities of the participants. To this aim, we propose
to explicitly represent interaction patterns among agents in
terms of normatively defined social relationships; the nor-
mative characterization is grounded on commitments, which
feature a social and observational semantics [25]; in order to
represent the coordination requirements we propose to rely on
commitment-based protocols [29].

The framework we propose, 2COMM4JADE, uses JADE
as basic agent platform, which provides a FIPA compliant
communication framework and an agent-developing middle-
ware. JADE does not offer an agent programming language,
but it is a sound, well-established and industry-adopted agent
framework. Although the first release was presented in 2007, a
dynamic community helps developers in updating and evolving
the platform, providing new functionalities and capabilities.
Thus, it supplies a valuable starting ground.

In order to reify the social relationships we rely on the
Agents & Artifacts meta-model (A&A) [28], [21], which
provides abstractions for environments and artifacts, that can
be acted upon, observed, perceived, notified, and so on. When
embodied inside artifacts, social relationships can be examined
by the agents (to take decisions about their behavior), as
advised in [11], used (which entails that agents accept the

corresponding regulations), constructed, e.g., by negotiation,
specialized, composed, and so forth. Last but not least, the use
of artifacts enables the implementation of monitoring function-
alities for verifying that the on-going interactions respect the
commitments and for detecting violations and violators.

Summarizing, this work proposes to introduce in MAS an
explicit notion of social relationships, captured as commit-
ments (Section II). Social relationships are actual resources,
implemented through artifacts, that are made available to the
agents, and are first-class entities of the model, as well as
agents. The framework 2COMM4JADE (Section III) realizes
the proposal based on an extension of JADE and of CArtAgO.
We show the impact of the proposal on programming by means
of an example (Section IV).

II. MODELING SOCIAL RELATIONSHIPS

We propose to explicitly represent social relationships
among the agents. By social relationships we mean nor-
matively defined relationships, and the expected patterns of
interaction, between two or more agents, resulting from the
enactment of roles, and subject to social control. We envisage
both agents and social relationships as first-class entities that
interact in a bi-directional manner. Social relationships are
created by the execution of interaction protocols and pro-
vide expectations on the agents’ behaviour. It is, therefore,
necessary to provide the agents the means to create and to
manipulate, and to observe, to monitor, to reason and to
deliberate on social relationships so to take proper decisions
about their behaviour. We do so by exploiting properly defined
artifacts, that reify both interaction protocols, defined in terms
of social relationships, and the sets of social relationships,
created during protocol execution. Such artifacts are made
available to agents as resources.

The aim of our proposal is to clearly decouple the inter-
action design from the agent design, using artifacts to encode
the coordination logic. Commitment-based protocols provide
a means of coordination, based on the notification of social
events, e.g. the creation of a commitment. Interacting agents
use artifacts to coordinate and interact, depending on the
roles they play and on their objectives. Such a decoupling
avoids interaction logics hard–coded in agent programs, that
can lead to an increasing developing effort and a difficult
maintenance of the system, especially when it constitutes a
society of autonomous entities belonging to different organiza-
tions. Instead, relying on commitment-based protocols allows
a modular definition of components of the system and of how



they interact, using the notion of commitment to define the
shape and the evolution of interaction patterns.

A commitment [24] is represented with the notation
C(x, y, r, p), capturing that the agent x commits to the agent y
to bring about the consequent condition p when the antecedent
condition r holds. Antecedent and consequent conditions gen-
erally are conjunctions or disjunctions of events and commit-
ments. When r equals >, we use the short notation C(x, y, p)
and the commitment is said to be active. Commitments have
a regulative nature, in that debtors are expected to behave so
as to satisfy the engagements they have taken. This practically
means that an agent is expected to behave so as to achieve the
consequent conditions of the active commitments of which it
is the debtor.

Agents share a social state that contains commitments, and
update it as a result of performing their activities. Specifically,
the manipulation of commitments is done by means of the
standard operations create, cancel, release, discharge, assign,
delegate. As in [24], we postulate that discharge is performed
concurrently with the actions that lead to the given condi-
tion being satisfied and causes the commitment to not hold.
Delegate and assign transfer commitments respectively to a
different debtor and to a different creditor. For details see [24],
[29], [10].

The next question to answer is how to integrate, inside
the outlined agent and artifact setting, the rules that regulate
the process by which social relationships are created and
manipulated. In our proposal, this is done by relying on the
notion of commitment-based interaction protocol. This kind of
protocol consists of a set of actions (process activities), whose
semantics is shared, and agreed upon, by all of the participants
to the interaction [29], [10]. The semantics of the social actions
is given in terms of the operations which allow the modification
of the social state and that have already been described.

From an organizational perspective, a protocol is structured
into a set of roles. Roles and agents are different entities,
and we assume that roles cannot live autonomously: they exist
in the system in view of the interaction, because agents, for
interacting, use artifacts and execute actions on them. We
follow the ontological model for roles proposed in [7], and
brought inside the object-oriented paradigm in [4], which is
characterized by three aspects: (1) Foundation: a role must
always be associated with the institution it belongs to and with
its player; (2) Definitional dependence: the definition of the
role must be given inside the definition of the institution it
belongs to; (3) Institutional empowerment: the actions defined
for the role in the definition of the institution have access to
the state of the institution and of the other roles, thus, they
are called powers; instead, the actions that a player must offer
for playing a role are called requirements. The agents that will
be the role players become able to perform protocol actions,
that are powers offered by a specific role and whose execution
affect the social state. On the other hand, they need to satisfy
the related requirements: specifically, in order to play a role
an agent needs to have the capabilities of satisfying the related
commitments – capabilities which can be internal of the agent
or supplied as powers as well.

Following [12], we need social relationships to be recog-
nized as having a normative force (so that they will provide

social expectations on the stakeholders’ behaviour), to be
accepted explicitly by the participants to the interaction, to
be inspected so as to allow stakeholders to decide whether
conforming to them. To this aim, we propose to explicitly
model social relationships as resources, that are made available
to the interacting peers, in the very same way as other kinds of
resources; a resource that has to be inspectable, and therefore
can not be modeled as an agent. To solve this issue, we adopt
the Agents and Artifacts (A&A) meta-model [28], [21], that
extends the agent paradigm with another primitive abstraction,
the artifact. An artifact is a computational, programmable sys-
tem resource, that can be manipulated by agents, residing at the
same abstraction level of the agent abstraction class. For their
very nature, artifacts can encode a mediated, programmable
and observable means of communication and coordination
between agents.

We interpret the fact that an agent uses an artifact as the
explicit acceptance, by the agent, of the regulation encoded
by that artifact, and modeled by the interaction protocol that
the artifact reifies. This is an important aspect because it
allows the interacting parties to perform practical reasoning,
based on expectations: participants expect that the debtors
of commitments behave so as to satisfy the corresponding
consequent conditions; when this does not happen, a violation
is raised. Relying on artifacts allows also other kinds of
manipulation, including (but not limited to) an agent playing a
role in the interaction, and an agent observing the interaction
that is being carried on.

Summarizing, we claim that an agent-based framework
should satisfy the following requirements: 1) Explicit rep-
resentation of the social relationships, created and evolving
along the interaction. 2) Social relationships should be first-
class objects, which can be used for programming the agent
behavior. 2COMM4JADE fulfills both.

III. 2COMM4JADE: A COMMITMENT-BASED
INFRASTRUCTURE FOR SOCIAL RELATIONSHIPS

After providing the background, we describe the developed
implementation framework, that we named 2COMM4JADE.
The focus is to provide adequate support for programming
social relationships by exploiting a declarative, interaction-
centric approach and by relying on existing technologies as
far as possible. Specifically, the implementation framework
combines two well-known platforms: JADE [6] and CArtAgO
[23]. JADE agents represent stakeholders, commitment-based
interaction protocols are realized as CArtAgO artifacts.

JADE is a popular and industry-adopted agent frame-
work. It offers to developers a Java middleware that is
FIPA-compliant [17]. Its robustness and well-proven reliability
makes JADE a preferred choice in developing MAS. A JADE-
based system is composed of one or more containers, each
grouping a set of agents in a logical node and representing
a single JADE runtime. The overall set of containers is
called a platform, and can spread across various physical
hosts. The resulting architecture hides the underlying layer,
allowing support for different low-level frameworks (JEE, JSE,
JME, etc.). JADE provides communication and infrastructure
services, allowing agents, that have been deployed in different
containers, to discover and interact with each other.



CArtAgO is a framework based on the A&A meta-model
[28], [21]. It extends the agent programming paradigm with
the first-class entity of artifact: a resource that an agent can
use, and that models working environments. It provides a way
to define and organize workspaces, that are logical groups
of artifacts, that can be joined by agents at runtime. The
environment is itself programmable and encapsulates services
and functionalities. CArtAgO provides an API to program arti-
facts that agents can use, regardless of the agent programming
language or the agent framework used. This is possible by
means of the agent body metaphor: CArtAgO provides a native
agent entity, which allows using the framework as a complete
MAS platform as well as it allows mapping the agents of
some platform onto the CArtAgO agents, which, in this way,
becomes a kind of “proxy” in the artifacts workspace. The
former agent is the mind, that uses the CArtAgO agent as a
body, interacting with artifacts and sensing the environment.
An agent interacts with an artifact by means of public opera-
tions, which can be equipped with guards: conditions that must
hold in order for operations to produce their effects. When
guards do not hold, actions can still be performed but without
consequences.

Observable Properties
socialState: SocialState

<< Artifact >>
ProtocolArtifact

Artifact Operations

# create (commit: Commitment)
# discharge (commit: Commitment)
# cancel (commit: Commitment)
# release (commit: Commitment)
# assign (commit: Commitment, role: Role)
# delegate (commit: Commitment, role: Role)
# assertFact (fact: LogicalExpression)

commitments: Commitment [0…*] 
facts: SocialFact [0…*]
context: 
   CommitmentCommunicationArtifact

SocialState

+ getFacts (): SocialFact[ ]
+ getCommitments(): Commitment [ ]
+ addFact (fact: SocialFact)
+ addCommitment (commit: Commitment)
+ removeFact (fact: SocialFact)
+ removeCommitment (commit: Commitment)
+ getContext(): 
CommitmentCommunicationArtifact

creditor: Role
debtor: Role
antecedent: SocialFact [1…*]
consequent: SocialFact [1…*]
status : enum {created, discharged, ...}

Commitment

+ getCreditor(): Role
+ setCreditor (role: Role)
+ getDebtor (): Role
+ setDebtor (role: Role)
+ getStatus (): Role
+ setStatus (status: enum)

# id: RoleId
# agent: AID
# artid: ArtifactId
# player: Behaviour

Role

+ createArtifact (artifactName: String, 
artifactClass: Class<? extends Artifact>) : void
+ enact (roleName: String, artifact: ArtifactID, 
agent: AID, offeredPlayerBehaviour: 
Behaviour) : Role
+ deact (role: RoleId, artifact: ArtifactID, agent: 
AID, offeredPlayerBehaviour: Behaviour) : void

predicate: String
arguments: Object [0…*]

SocialFact

+ getPredicate (): String
+ setPredicate (pred: String)
+ getArguments (): Object [ ]
+ setArguments (list: Object [1…*] )0…*

0…*

1…*

Observable Properties
enactedRoles: Role [1…*]
tset: TupleSet

<< Artifact >>
CommunicationArtifact

Artifact Operations
+ in(message: RoleMessage): void
+ out(): RoleMessage

#checkRoleRequirements(roleName: String, 
offeredBehaviour:Behaviour)

Agent Platform A&A Platform
CArtAgO

ACLMessage

Agent

Agent
AbstractTuple

Space

<< Role >>
CARole

+ send(message: 
RoleMessage)
+ receive(): 
RoleMessage

+

<< Role >>
PARole

+ hasCommitmentInvolving(c: 
Commitment): boolean
+ socialFactExists(f: 
SocialFact): boolean

...query operations on
 SocialState ...

+

2COMM4JADE

Behaviour

1...n

Artifact

<< interface >>
ProtocolObserver

+ handleEvent (event: 
SocialEvent, args: Object[ ])

+

Fig. 1. Excerpt of the UML class diagram of 2COMM4JADE.

2COMM4JADE is organized as follows. JADE supplies
standard agent services, i.e. message passing, distributed con-
tainers, naming and yellow pages services, agent mobility.
When needed, an agent can enact a protocol role, which pro-
vides a set of operations by means of which agents participate
in a mediated interaction session. Protocol roles are provided
by communication artifacts, that are implemented by means
of CArtAgO. Each communication artifact corresponds to a

specific protocol enactment and maintains an own social state
and an own communication state.

Figure 1 reports an excerpt of the 2COMM4JADE UML
class diagram1. Let us get into the depths of the implementa-
tion:

• CommunicationArtifact (CA for short) provides the
basic communication operations in and out for allow-
ing mediated communication. CA extends an abstract
version of the TupleSpace CArtAgO artifact: briefly,
a blackboard that agents use as a tuple-based coordi-
nation means. In and out are, then, operations on the
tuple space. CA also traces who is playing which role
by using the property enactedRoles.

• Class Role extends the CArtAgO class Agent, and
contains the basic manipulation logic of CArtAgO
artifacts. Thus, any specific role, extending this super-
type, will be able to perform operations on artifacts,
whenever its player will decide to do so. Role provides
static methods for creating artifacts and for enact-
ing/deacting roles. This is done by passing a reference
to the JADE agent behaviour that will actually play the
role.

• The class CARole is an inner class of CA and extends
the Role class. It provides the send and receive prim-
itives, by which agents can exchange messages. Send
and receive are implemented based on the in and out
primitives provided by CA.

• ProtocolArtifact (PA for short) extends CA and allows
modeling the social layer with the help of commit-
ments. It maintains the state of the on-going protocol
interaction, via the property socialState, a store of
social facts and commitments, that is managed only
by its container artifact. This artifact implements the
operations needed to manage commitments (create,
discharge, cancel, release, assign, delegate). PA re-
alizes the commitment life-cycle and for the asser-
tion/retraction of facts. Operations on commitments
are realized as internal operations, that is, they are
not invokable directly: the protocol social actions will
use them as primitives to modify the social state. We
refer to modifications occurred to the social state as
social events. Being an extension of CA, PA maintains
two levels of interaction: the social one (based on
commitments), and the communication one (based on
message exchange).

• The class PARole is an inner class of PA and
extends the CARole class. It provides the primitives
for querying the social state, e.g. for asking the
commitments in which a certain agent is involved,
and the primitives that allow an agent to become,
through its role, an observer of the events occurring
in the social state. For example, an agent can query
the social state to verify if it contains a commitment
with a specific condition as consequent, via the
method existsCommitmentWithConsequent
(InteractionStateElement el).

1The source files of the system and examples are available at the URL
http://di.unito.it/2COMM.



Alternatively, an agent can be notified about the
occurrence of a social event, provided that it
implements the inner interface ProtocolObserver.
Afterwards, it can start observing the social state.
PARole also inherits the communication primitives
defined in CARole.

• The class SocialFact represents a fact of some rele-
vance for the ongoing interaction, that holds in the
current state of interaction. A social fact is asserted
for tracking the execution of a protocol action. Actions
can have additional effects on the social state; in this
case, corresponding social facts are added to it.

In order to specify a commitment-based interaction pro-
tocol, it is necessary to extend PA by defining the proper
social and communicative actions as operations on the artifact
itself. Actions can have guards that correspond to context
preconditions: each such condition specifies the context in
which the respective action produces the described social
effect. Since we want agents to act on artifacts only through
their respective roles, when defining a protocol it is also
necessary to create the roles. We do so by creating as many
extensions of PARole as protocol roles. These extensions are
realized as inner classes of the protocol: each such class will
specify, as methods, the powers of a role. Powers allow agents
who play roles to actually execute artifact operations. The
typical schema will be:

1 p u b l i c c l a s s M y P r o t o c o l A r t i f a c t
2 e x t e n d s P r o t o c o l A r t i f a c t {
3 / / . . .
4 s t a t i c {
5 addEnab ledRole ("Role1" , Role1 . c l a s s ) ;
6 addEnab ledRole ("Role2" , Role2 . c l a s s ) ;
7 / / . . .
8 }
9 / / MY PROTOCOL ARTIFACT OPERATIONS

10 @OPERATION
11 p u b l i c vo id op1 ( . . . ) {
12 / / p r e p a r e a message , i f needed ; i n t h a t case ,
13 send ( message ) ;
14 / / modify t h e s o c i a l s t a t e ,
15 / / e . g . c r e a t e commitment , u p d a t e commitment
16 }
17 / / . . .
18 / / INNER CLASSES f o r ROLES
19 p u b l i c c l a s s Role1 e x t e n d s PARole {
20 p u b l i c Role1 ( Behav iou r p l a y e r , AID a g e n t ) {
21 s u p e r ("Role1" , p l a y e r , a g e n t ) ;
22 }
23 / / d e f i n e s o c i a l a c t i o n s f o r Role1
24 p u b l i c vo id a c t i o n 1 ( . . . ) {
25 doAct ion ( t h i s . g e t A r t i f a c t I d ( ) ,
26 new Op("op1" , . . . , g e t R o l e I d ( ) ) ) ;
27 }
28 / / . . .
29 }
30 p u b l i c c l a s s Role2 e x t e n d s PARole {
31 / / . . .
32 }
33 / / . . .
34 }

Let us, now, consider Figure 2, which sketches how the
agent model reacts to a new social event occurrence. For
a JADE agent to play a role, one of its behaviours must
implement the method handleEvent, which receives the
event just occurred in the social state. The agent programmer

JADE Agent

2. activate behaviors according
to social events

Communication
State

Social
State

1. sense the social state

. . . .

<<interface>>
ProtocolObserver

+ handleEvent(SocialEvent 
e, Object … args)

RoleBehaviour
+ handleEvent(SocialEvent e, 
Object … args)

<<behaviour for event a >>
+ action()

<<behaviour for event b >>
+ action()

<<behaviour for event n >>
+ action()

Behaviour
Repository

3. schedule behavior
execution

Protocol Artifact

Fig. 2. 2COMM4JADE event handling schema.

will simply implement the logic for handling that event, adding
proper behaviour(s) to the agent’s behaviour repository. When
scheduled, the behaviour will be executed, and the event
handled. A methodological schema for handling a social event
follows.

Algorithm 1: Methodological Schema for Handling So-
cial Events.

Data: Social event se notified to agent a
Data: Set S of social events of interest
Result: Add a behaviour to the behaviour set of a
Check whether se involves a commitment c which has
a as debtor or creditor;
if se ∈ S then

b = behaviour that handles the occurred
modification of c;
add b to the set of behaviours of a;

end

The proposed algorithm explains how to use the notifica-
tions performed by the protocol artifact to the agent. Depend-
ing on which social event occurs, i.e. on which commitment is
modified and how (e.g. added, discharged, detached), a specific
behaviour is added and scheduled for execution, competing
with others already present in the behaviour set. The agent
designer can choose which social events are to be tackled by
the agent. The following is the pseudo-code of an example
implementation that agrees with the schema:

1 p u b l i c c l a s s MyBehaviour e x t e n d s
2 SomeJadeBehaviour implemen t s P r o t o c o l O b s e r v e r {
3 [ . . . ]
4 p u b l i c vo id a c t i o n ( ) {
5 A r t i f a c t I d a r t = Role . c r e a t e A r t i f a c t
6 ( myArt i factName , M y A r t i f a c t . c l a s s ) ;
7 myRole = ( SomeRole ) ( Role . e n a c t
8 ( M y A r t i f a c t .ROLE NAME, a r t , t h i s ,
9 myAgent . getAID ( ) ) ) ;

10 myRole . s t a r t O b s e r v i n g ( t h i s ) ;
11 / / add t h e i n i t i a l b e h a v i o u r o f t h e a g e n t
12 }
13 p u b l i c vo id h a n d l e E v e n t ( S o c i a l E v e n t e ,
14 O b j e c t . . . a r g s ) {
15 SETemplate t = new SETemplate (
16 myRole . g e t R o l e I d ( ) ) ;
17 SETemplate t 2 = new SETemplate (
18 myRole . g e t R o l e I d ( ) ) ;
19 t . iAmDebtor ( ) . commi t I sDe tached ( )



20 . consequen tMatch ( . . . ) ;
21 t 2 . iAmCred i to r ( ) . c o m m i t I s C o n d i t i o n a l ( )
22 . a n t e c e d e n t M a t c h ( . . . ) ;
23 i f ( t . match ( e ) {
24 myAgent . addBehav iou r ( . . . ) ;

/ / a b e h a v i o u r t o h a n d l e t h e c a s e
25 } e l s e i f ( t 2 . match ( e ) ) {
26 myAgent . addBehav iou r ( . . . ) ;

/ / a b e h a v i o u r t o h a n d l e a n o t h e r c a s e
27 } e l s e
28 / / . . .

/ / b e h a v i o u r s f o r d i f f e r e n t c a s e s
29 }
30

31 }
32 }

The agent behaviour implements ProtocolObserver, thus al-
lowing the agent to be notified about social events. This will be
done after the agent executes the method startObserving, spec-
ifying which artifact it requires to observe. The implementation
of ProtocolObserver requires, in turn, the implementation
of the method handleEvent. Here, it is possible to test the
kind of event that was notified. If it is a commitment, it is
possible to further check specific conditions of interest on it,
including its state, the identity of its debtor and/or creditor, the
antecedent or consequent condition (lines 19-22). The agent
will, then, add appropriate behaviours to handle the detected
situation. A template-based matching mechanism for social
events is provided (class SETemplate, lines 15–18) used
by programmer in order to specify matching conditions. Each
template class method returns this, thus compacting the
code for construction of complex conditions simply using the
standard method dot notation.

The handler represents the classical agent sense-plan-act
cycle, rephrased into “sense the social state”, “activate behav-
iors according to social events”, “schedule behavior execu-
tion”. Notice that this mechanism represents an agent-oriented
declination of callbacks. The agent paradigm forbids to make
use of pure method invocation on the agent, that is autonomous
by definition. Instead, the agent designer provides a collection
of behaviours in charge for handling the different, possible
evolutions of the social state, that are scheduled for execution
when the corresponding condition happens. For example, a
specific behaviour can be added when a new commitment is
added, and the creditor of that commitment is the agent; or
when a social event is added to the social state. This way, an
intuitive and social-based programming schema is provided to
agent developers.

IV. PROGRAMMING SOCIAL RELATIONSHIPS: AN
EXAMPLE

FinancialMAS is an example application of
2COMM4JADE. Inspired by [13], it allows financial
interactions between three categories of stakeholders: (1)
investors, (2) financial promoters and (3) banks. Investors
have the goal to place investments; promoters to propose and
finalize investment contracts, on behalf of a bank and on the
basis of current investor’s profile; banks to finalize contracts
placed by promoters.

Let us focus on the Contract Net Protocol (CNP for
short) [17], which is used inside FinancialMAS to manage the
interaction between the Investor and the Financial Promoter

when the former looks for some investment. We adopt the
following CNP formulation:

cfp causes create(C(i, p, propose, accept ∨ reject))
accept causes none
reject causes release(C(p, i, accept, done ∨ failure))
propose causes create(C(p, i, accept, done ∨ failure))
refuse causes release(C(i, p, propose, accept ∨ reject))
done causes none
failure causes none

where i stands for the role Initiator and p for Participant.
The instance used by FinancialMAS will tie the Investor to
the i and the Financial Promoter to p. Initiator supplies its
player the powers cfp (call for proposal), accept, and reject.
The first allows the initiator to ask participants for proposals
for solving a task of interest. If a proposal is chosen, action
accept notifies the winner and all other proposals are rejected.
The role participant supplies its player the powers propose,
refuse, done, and failure. Action propose allows a participant
to supply a solution for a task, action refuse allows declining
the invitation to send a proposal. If a proposal is accepted, the
winning participant is expected to execute the task and either
provide the result by means of the action done or communicate
its failure. Powers allow agents to affect the social state. For
instance, when an agent playing the role Initiator executes cfp,
the social state is modified by creating the commitment C(i,
p, propose, accept ∨ reject). This addition binds i to either
accept or reject a proposal, if one is received. The agent is
free to decide not only which course of action to take but also
how to realize acceptance or rejection.

Let us see how CNP is realized in 2COMM4JADE. The
class CNP extends ProtocolArtifact and implements as artifact
operations all the protocol actions. In the sketch below we
detail, for the sake of brevity, only the action cfp. Lines 6–10
represent the construction and sending of a call for proposals,
which will be inserted in the blackboard and made available
to participants. The recipient of the message is left generic
because the Initiator may not know its peers, who may join
even later in the future. Lines 15–19 modify the social state
by adding commitments and by stating that the event cfp has
occurred. Lines 27–42 defines the role in terms of its powers.
Here (lines 30–33), in fact, the power cfp is defined in terms
of the homonym artifact operation.

1 p u b l i c c l a s s CNP e x t e n d s P r o t o c o l A r t i f a c t {
2 / / . . .
3 @OPERATION
4 p u b l i c vo id c f p ( Task t a s k , R o l e I d i n i t i a t o r ) {
5 / / send message wi th t h e t a s k
6 RoleMessage c f p = new RoleMessage ( ) ;
7 Ro le Id d e s t = new R ole Id ( PARTICIPANT ROLE ,
8 Ro le Id . GENERIC ROLE ) ;
9 c f p . s e t C o n t e n t ( t a s k ) ;

10 c f p . s e t R o l e S e n d e r ( i n i t i a t o r ) ;
11 c f p . s e t R o l e R e c e i v e r ( d e s t ) ;
12 c f p . s e t P e r f o r m a t i v e ( ACLMessage . CFP ) ;
13 send ( c f p ) ;
14 / / u p d a t e t h e s o c i a l s t a t e
15 c r e a t e A l l C o m m i t m e n t s ( new Commitment
16 ( i n i t i a t o r , d e s t , "propose" ,
17 new C o m p o s i t e E x p r e s s i o n ( L o g i c a l O p e r a t o r T y p e .OR,
18 new F a c t ("accept" ) , new F a c t ("reject" ) ) ) ) ;
19 a s s e r t F a c t ( new F a c t ("cfp" , i n i t i a t o r , t a s k ) ) ;
20 }



21 @OPERATION
22 p u b l i c vo id p r o p o s e ( P r o p o s a l prop ,
23 Ro le Id p a r t i c i p a n t , R o l e Id i n i t i a t o r ) {
24 / / . . .
25 }
26 / / . . .
27 / / Role c l a s s e s
28 p u b l i c c l a s s I n i t i a t o r e x t e n d s PARole {
29 / / . . .
30 p u b l i c vo id c f p ( Task t a s k ) {
31 doAct ion ( t h i s . g e t A r t i f a c t I d ( ) ,
32 new Op("cfp" , t a s k , g e t R o l e I d ( ) ) ) ;
33 }
34 / / . . .
35 }
36 p u b l i c c l a s s P a r t i c i p a n t e x t e n d s PARole {
37 p u b l i c vo id p r o p o s e ( P r o p o s a l p r o p o s a l ,
38 Ro le Id p r o p o s a l S e n d e r ) {
39 / / . . .
40 }
41 / / . . .
42 }
43 }

The following, instead, is a sketch of the definition of a JADE
agent, playing the role Initiator by using 2COMM4JADE. In
this example, the artifact is created by the agent which, then,
enacts the role of interest. At line 12, the agent uses the power
cfp through the role it plays. Finally, at line 14, it inspects
if someone committed to accomplish the task, and reads the
proposals in the tuple space in order to make a choice.

1 p u b l i c c l a s s I n i t i a t o r A g e n t e x t e n d s Agent {
2 / / . . .
3 p u b l i c c l a s s I n i t i a t o r B e h a v i o u r
4 e x t e n d s OneShotBehaviour {
5 / / . . .
6 p u b l i c vo id a c t i o n ( ) {
7 A r t i f a c t I d a r t = Role . c r e a t e A r t i f a c t
8 (ARTIFACT NAME, C N P A r t i f a c t . c l a s s ) ;
9 i n i t i a t o r = ( I n i t i a t o r ) ( Role . e n a c t

10 ( C N P A r t i f a c t . INITIATOR ROLE , a r t , t h i s ,
11 myAgent . getAID ( ) ) ) ;
12 i n i t i a t o r . c f p ( t ) ;
13 / / . . .
14 b o o l e a n p r o p o s a l P e r f o r m e d =
15 i n i t i a t o r . ex i s t sCommi tmen tWi thConsequen t (
16 new C o m p o s i t e E x p r e s s i o n (
17 L o g i c a l O p e r a t o r T y p e .OR,
18 new F a c t ("done" ) , new F a c t ("failure" ) ) ;
19 / / . . .
20 }
21 }
22 }

More interesting is to exploit the feature of
2COMM4JADE, which allows roles to register for the
notification of social events. Thanks to the event handler,
modifications to the social state will add specific behaviours to
the agents, aimed at tackling the case. The code is organized
by following the schema described in Algorithm 1. Figure 3
contains the UML diagram for this solution.

1 p u b l i c a b s t r a c t c l a s s I n i t i a t o r B e h a v i o u r
2 e x t e n d s OneShotBehaviour
3 imp lemen t s P r o t o c o l O b s e r v e r {
4 p u b l i c S t r i n g a r t i f a c t N a m e ;
5 p r o t e c t e d I n i t i a t o r i n i t i a t o r ;
6 p u b l i c a b s t r a c t Behav iou r
7 c o m m i t T o A c c e p t O r R e j e c t I f P r o p o s e ( ) ;
8 p u b l i c a b s t r a c t Behav iou r
9 s a t i s f y C o m m i t T o A c c e p t O r R e j e c t ( ) ;

<< Artifact >>
CNP

Artifact Operations
+ cfp (proposal: Proposal) : void
+ accept () : void
+ reject (): void
+ propose(proposal: Proposal): void
+ refuse(task: Task): void
+ done(): void
+ failure(): void

Initiator

+ cfp(task: Task): void
+ accept(): void
+ rejecet(): void

Participant

+ propose(proposal: Proposal): void
+ refuse(task: Task): void
+ done(): void
+ failure(): void

+

+

2COMM4JADE

<<plays>>
<<plays>>

JADEjade.core.Behaviourjade.core.Agent

Agent1 Agent2

+commitToAcceptOrRejectIf
Propose(): Behaviour
+satisfyCommitToAccept 
OrReject(): Behaviour
+fulfilledCommitToDoneOr 
Failure(): Behaviour

+handleEvent(event: 
SocialEvent, args: Object[ ])

InitiatorBehaviour

JADE

Contract Net Protocol

+commitToDoneOrFailure 
IfAccept(): Behaviour
+fulfilledCommitToAcceptOr
Reject(): Behaviour

+handleEvent(event: 
SocialEvent, args: Object[ ])

ParticipantBehaviour

Observable Properties
socialState: SocialState

<< Artifact >>
ProtocolArtifact

Artifact Operations

# create (commit: Commitment)
# discharge (commit: Commitment)
# cancel (commit: Commitment)
# release (commit: Commitment)
# assign (commit: Commitment, role: Role)
# delegate (commit: Commitment, role: Role)
# assertFact (fact: LogicalExpression)

<< Role >>
PARole

+ hasCommitmentInvolving(c: 
Commitment): boolean
+ socialFactExists(f: 
SocialFact): boolean

...query operations on
 SocialState ...

<< interface >>
ProtocolObserver

+ handleEvent (event: 
SocialEvent, args: Object[ ])

+

<<implements>>

Agent1 Behaviours Agent2 Behaviours

CommitToAcceptOr
RejectIfPropose

+action(): void

SatisfyCommitTo 
AcceptOrReject

+action(): void

FulfilledCommitTo 
DoneOrFailure

+action(): void

CommitToDoneOr 
Failure

+action(): void

FulfilledCommitTo 
AcceptOrReject

+action(): void

Fig. 3. CNP with 2COMM4JADE and support for event handling.

10 p u b l i c a b s t r a c t Behav iou r
11 f u l f i l l e d C o m m i t T o D o n e O r F a i l u r e ( ) ;
12 p u b l i c I n i t i a t o r B e h a v i o u r ( S t r i n g a r t i f a c t N a m e ){
13 t h i s . a r t i f a c t N a m e = a r t i f a c t N a m e ;
14 }
15 p u b l i c vo id a c t i o n ( ) {
16 A r t i f a c t I d a r t = Role . c r e a t e A r t i f a c t ( a r t i f a c t N a m e ,
17 C N P A r t i f a c t . c l a s s ) ;
18 i n i t i a t o r = ( I n i t i a t o r ) ( Role . e n a c t (
19 C N P A r t i f a c t . INITIATOR ROLE , a r t , t h i s ,
20 myAgent . getAID ( ) ) ) ;
21 i n i t i a t o r . s t a r t O b s e r v i n g ( t h i s ) ;
22 myAgent . addBehav iou r (
23 t h i s . c o m m i t T o A c c e p t O r R e j e c t I f P r o p o s e ( ) ) ;
24 }
25 p u b l i c vo id h a n d l e E v e n t ( S o c i a l E v e n t e ,
26 O b j e c t . . . a r g s ) {
27 SETemplate t = new SETemplate ( i n i t i a t o r . g e t R o l e I d ( ) ) ;
28 t . iAmDebtor ( ) . commi t I sDe tached ( ) ;
29 t . m a t c h C r e d i t o r ( C N P A r t i f a c t . PARTICIPANT ROLE ) ;
30 t . ma tchConsequent ("accept OR reject" ) ;
31 i f ( t . match ( e ) ) {
32 myAgent . addBehav iou r (
33 s a t i s f y C o m m i t T o A c c e p t O r R e j e c t ( ) ) ;
34 } e l s e {
35 t . ma tchConsequent ("done OR failure" ) ;
36 i f ( t . match ( e ) )
37 myAgent . addBehav iou r (
38 f u l f i l l e d C o m m i t T o D o n e O r F a i l u r e ( ) ) ;
39 }
40 }
41 }

After line 21, all events occurring in the social state are notified
to the role Initiator, which will handle them by executing
handleEvent after a callback. The above abstract behaviour
is extended by the concrete behaviour of the agent that plays
the role Initiator. In particular, here we find the methods that
create the actual behaviours for managing the social events.

1 p u b l i c c l a s s I n i t i a t o r A g e n t e x t e n d s Agent {
2 / / . . .
3 p u b l i c c l a s s I n i t i a t o r B e h a v i o u r I m p l
4 e x t e n d s I n i t i a t o r B e h a v i o u r {
5 p u b l i c f i n a l S t r i n g ARTIFACT NAME = "CNP-1" ;
6 p u b l i c I n i t i a t o r B e h a v i o u r I m p l ( ) {
7 s u p e r (ARTIFACT NAME ) ;
8 }



9 p u b l i c Behav iou r c o m m i t T o A c c e p t O r R e j e c t I f P r o p o s e ( ){
10 r e t u r n new Commi tToAccep tOrRe jec t I fP ropose (
11 i n i t i a t o r ) ;
12 }
13 p u b l i c Behav iou r s a t i s f y C o m m i t T o A c c e p t O r R e j e c t ( ){
14 r e t u r n new S a t i s f y C o m m i t T o A c c e p t O r R e j e c t (
15 i n i t i a t o r ) ;
16 }
17 p u b l i c Behav iou r f u l f i l l e d C o m m i t T o D o n e O r F a i l u r e ( ){
18 r e t u r n new F u l f i l l e d C o m m i t T o D o n e O r F a i l u r e (
19 i n i t i a t o r ) ;
20 }
21 }
22 }

As an example, we describe the behaviour SatisfyCommitToAc-
ceptOrReject, which gathers proposals and selects the one to
accept.

1 p u b l i c c l a s s S a t i s f y C o m m i t T o A c c e p t O r R e j e c t
2 e x t e n d s OneShotBehaviour {
3 I n i t i a t o r i n i t i a t o r = n u l l ;
4 A r r a y L i s t<P r o p o s a l> p r o p o s a l s =
5 new A r r a y L i s t<P r o p o s a l > ( ) ;
6 p u b l i c S a t i s f y C o m m i t T o A c c e p t O r R e j e c t (
7 I n i t i a t o r i n i t i a t o r ) {
8 s u p e r ( ) ;
9 t h i s . i n i t i a t o r = i n i t i a t o r ;

10 }
11 p u b l i c vo id a c t i o n ( ) {
12 A r r a y L i s t<RoleMessage> p r op os =
13 i n i t i a t o r . r e c e i v e A l l ( ACLMessage . PROPOSE ) ;
14 f o r ( RoleMessage p : p rop os ) {
15 p r o p o s a l s . add ( ( P r o p o s a l ) ( p . g e t C o n t e n t s ( ) ) ) ;
16 }
17 i n i t i a t o r . a c c e p t ( p r o p o s a l s . g e t ( 0 ) ) ;
18 f o r ( i n t i = 1 ; i < p r o p o s a l s . s i z e ( ) ; i ++) {
19 i n i t i a t o r . r e j e c t ( p r o p o s a l s . g e t ( i ) ) ;
20 }
21 }
22 }

In 2COMM4JADE, an agent consists of a set of behaviours
aimed at accomplishing given social relationships: such be-
haviours depend neither on when nor on how the social
relationships of interest are created inside the social state.
These aspects are, in fact, encoded in the protocol artifact that
creates them based on the actions the agents perform. As a
consequence, modifying how or when a social relationship is
created does not have any impact on the agent implementation.

V. CONCLUSIONS AND DISCUSSION

In this work, we have proposed 2COMM4JADE, an infras-
tructure for allowing actors to behave following an accepted set
of regulations, in a self-governance context. 2COMM4JADE
is based on JADE, for what concerns the support to the
realization of interacting agents, and integrates self-governance
mechanisms by relying on the reification of commitments and
of commitment-based protocols. These are, at all respects,
resources that are made available to stakeholders and that
are realized by means of artifacts. We are working on an
extension for Jason too, called 2COMM4Jason; details in
[1]. Recently, we developed on top of 2COMM4JADE a
commitment-based typing system [2]. Such typing includes a
notion of compatibility, based on subtyping, which allows for
the safe substitution of agents to roles along an interaction that
is ruled by a commitment-based protocol. Type checking can
be done dynamically when an agent enacts a role.

The proposal is characterized, on the one hand, by the
flexibility and the openness that are typical of MAS, and,
on the other, by the modularity and the compositionality that
are typical requirements of the methodologies for design and
development. One of the strong points of the proposal is the
decoupling between the design of the agents and the design
of the interaction, that builds on the decoupling between com-
putation and coordination done by coordination models, like
tuple spaces. This is a difference with respect to JADE where
no decoupling occurs: a pattern of interaction is projected into
a set of JADE behaviours, one for each role. Binding the
interaction to ad-hoc behaviours does not allow having a global
view of the protocol and complicates its maintenance.

Decoupling is an effect of explicitly representing social
relationships as resources: agent behaviour is, thus, defined
based on the existing social relationships and not on the
process by which they are created. For instance, in CNP the
initiator becomes active when the commitments that involve it
as a debtor, and which bind it to accept or reject the proposals,
are detached. It is not necessary to specify nor to manage,
inside the agent, such things as deadlines or counting the
received proposals: the artifact is in charge of these aspects.

The difference with tuple spaces and CArtAgO itself
is that 2COMM4JADE artifacts reify social relationships as
commitments, giving them that normative value that, jointly
with the fact that by using an artifact an agent explicitly
accepts the regulations encoded by it, enables the generation of
expectations about the agents behaviour (as advised in [11]).
As such, it allows agents to reason and take decision also based
on the others’ expected behaviour. For instance, the presence
of a commitment C(i, p, propose, accept ∨ reject) grants the
participant that its proposal will receive a feedback (it will
either be accepted or rejected); if not, the initiator will be liable
of a violation. In a tuple space, instead, agents can just read
or write the shared blackboard but cannot have expectations
on the behaviour of their parties.

This work has also relationships with works concerning
e-institutions, like [15], [16], [20]. E-institutions introduce a
normative aspect that lies on a different level with respect
to the one we capture with commitments. Indeed, in our
proposal the normative layer stands in the observational se-
mantics of the social actions. We mean to extend the regulative
aspects, as a first step, by enriching commitment protocols
as proposed in [18], [3]. More in general, we mean to move
towards a representation of business processes as suggested
in the Comma methodology [26], where commitment patterns
regulate activities instead of being used for giving the action
semantics. Another advantage is that artifacts are an actual
system for implementing mediated interaction, they supply
efficient, simple, and direct means for checking the powers
for performing institutional actions, and they offer runtime
mechanisms for letting the agents perceive the state of the
interaction.

REFERENCES

[1] Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. Social
computing in JaCaMo. In Torsten Schaub, Gerhard Friedrich, and Barry
O’Sullivan, editors, ECAI 2014 - 21st European Conference on Artificial
Intelligence, 18-22 August 2014, Prague, Czech Republic - Including
Prestigious Applications of Intelligent Systems (PAIS 2014), volume 263



of Frontiers in Artificial Intelligence and Applications, pages 959–960.
IOS Press, 2014.

[2] Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. Typing
Multi-Agent Systems via Commitments. In M. B. van Riemsdijk,
F. Dalpiaz, and J. Dix, editors, Proc. of the 2nd International Workshop
on Engineering Multi-Agent Systems, EMAS 2014, held in conjuction
with AAMAS 2014, pages 341–359, Paris, France, May 2014. IFAA-
MAS.

[3] Matteo Baldoni, Cristina Baroglio, Elisa Marengo, and Viviana Patti.
Constitutive and Regulative Specifications of Commitment Protocols:
a Decoupled Approach. ACM Transactions on Intelligent Systems and
Technology, 4(2):22:1–22:25, March 2013.

[4] Matteo Baldoni, Guido Boella, and Leendert van der Torre. Interaction
between Objects in powerjava. Journal of Object Technology, Special
Issue OOPS Track at SAC 2006, 6(2):5–30, 2007.

[5] Matteo Baldoni, Andrea Omicini, Cristina Baroglio, Viviana Mascardi,
and Paolo Torroni. Agents, Multi-Agent Systems and Declarative
Programming: What, When, Where, Why, Who, How? In A. Dovier and
E. Pontelli, editors, Twenty-five Years of Logic Programming in Italy,
volume 6125 of Lecture Notes in Computer Science, pages 204–230.
Springer, Berlin Heidelberg, 2010.

[6] Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino
Poggi. JADE - A Java Agent Development Framework. In R. H.
Bordini, M. Dastani, J. JDix, and A. El Fallah-Seghrouchni, editors,
Multi-Agent Programming: Languages, Platforms and Applications,
volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, pages 125–147. Springer, Berlin Heidelberg, 2005.

[7] Guido Boella and Leendert W. N. van der Torre. The ontological
properties of social roles in multi-agent systems: definitional depen-
dence, powers and roles playing roles. Artificial Intelligence and Law,
15(3):201–221, 2007.

[8] Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah-
Seghrouchni, Jorge J. Gómez-Sanz, João Leite, Gregory M. P. O’Hare,
Alexander Pokahr, and Alessandro Ricci. A Survey of Programming
Languages and Platforms for Multi-Agent Systems. Informatica (Slove-
nia), 30(1):33–44, 2006.

[9] Frances M. T. Brazier, Barbara Dunin-Keplicz, Nicholas R. Jennings,
and Jan Treur. DESIRE: Modelling Multi-Agent Systems in a Compo-
sitional Formal Framework. Int. J. Cooperative Inf. Syst., 6(1):67–94,
1997.

[10] Amit K. Chopra. Commitment Alignment: Semantics, Patterns, and
Decision Procedures for Distributed Computing. PhD thesis, North
Carolina State University, Raleigh, NC, 2009.

[11] Amit K. Chopra and Munindar P. Singh. An Architecture for Multiagent
Systems: An Approach Based on Commitments. In Proc. of the AAMAS
Workshop on Programming Multiagent Systems (ProMAS), pages 184–
202, Budapest, Hungary, May 2009. IFAAMAS.

[12] Rosaria Conte, Cristiano Castelfranchi, and Frank Dignum. Au-
tonomous Norm Acceptance. In J. P. Müller, M. P. Singh, and A. S.
Rao, editors, Intelligent Agents V, Agent Theories, Architectures, and
Languages, 5th Int. Workshop, ATAL ’98, volume 1555 of Lecture Notes
in Computer Science, pages 99–112, Paris, France, 1999. Springer.

[13] European Parliament. Directive 2004/39/EC of the European Parliament
and of the Council of 21 April 2004 on markets in financial instruments.
Official Journal of the European Union, L145:1–44, 2004.

[14] Michael Fisher, Rafael H. Bordini, Benjamin Hirsch, and Paolo Torroni.
Computational Logics and Agents: A Road Map of Current Technolo-
gies and Future Trends. Computational Intelligence, 23(1):61–91, 2007.

[15] Nicoletta Fornara, Francesco Viganò, and Marco Colombetti. Agent
communication and artificial institutions. Autonomous Agents and
Multi-Agent Systems, 14(2):121–142, 2007.

[16] Nicoletta Fornara, Francesco Viganò, Mario Verdicchio, and Marco
Colombetti. Artificial institutions: a model of institutional reality for
open multiagent systems. Artificial Intelligence and Law, 16(1):89–105,
2008.

[17] Foundation for Intelligent Physical Agents. FIPA Specifications, 2002.
http://www.fipa.org.

[18] Elisa Marengo, Matteo Baldoni, Cristina Baroglio, Amit K. Chopra,
Viviana Patti, and Munindar P. Singh. Commitments with Regulations:
Reasoning about Safety and Control in REGULA. In K. Tumer,

P. Yolum, L. Sonenberg, and P. Stone, editors, Proceedings of the
10th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2011, volume 2, pages 467–474, Taipei, Taiwan, May
2011. IFAAMAS.

[19] Viviana Mascardi, Maurizio Martelli, and Leon Sterling. Logic-Based
Specification Languages for Intelligent Software Agents. Theory and
Practice of Logic Programming, 4(4):429–494, 2004.

[20] Daniel Okouya, Nicoletta Fornara, and Marco Colombetti. An Infras-
tructure for the Design and Development of Open Interaction Systems.
In M. Cossentino, A. El Fallah-Seghrouchni, and M. Winikoff, editors,
Engineering Multi-Agent Systems - 1st Int. Workshop, EMAS 2013,
Revised Selected Papers, volume 8245 of Lecture Notes in Computer
Science, pages 215–234, St. Paul, Minnesota, USA, 2013. Springer.

[21] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the
A&A meta-model for multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 17(3):432–456, 2008.

[22] Andrea Omicini and Franco Zambonelli. TuCSoN: a coordination
model for mobile information agents. In D. G. Schwartz, M. Divitini,
and T. Brasethvik, editors, Proc. of the 1st Int. Workshop on Innovative
Internet Information Systems (IIIS’98), pages 177–187, Pisa, Italy, 8–9
June 1998. IDI – NTNU, Trondheim (Norway).

[23] Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment
programming in multi-agent systems: an artifact-based perspective.
Autonomous Agents and Multi-Agent Systems, 23(2):158–192, 2011.

[24] Munindar P. Singh. An Ontology for Commitments in Multiagent
Systems. Artificial Intelligence and Law, 7(1):97–113, 1999.

[25] Munindar P. Singh. A Social Semantics for Agent Communication
Languages. In F. Dignum and M. Greaves, editors, Issues in Agent
Communication, volume 1916 of Lecture Notes in Computer Science,
pages 31–45, Berlin Heidelberg, 2000. Springer.

[26] Pankaj R. Telang and Munindar P. Singh. Comma: a commitment-
based business modeling methodology and its empirical evaluation. In
W. van der Hoek, L. Padgham, V. Conitzer, and M. Winikoff, editors, In-
ternational Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2012, pages 1073–1080, Valencia, Spain, 2012. IFAAMAS.

[27] Alexander Thiele, Thomas Konnerth, Silvan Kaiser, Jan Keiser, and
Benjamin Hirsch. Applying JIAC V to Real World Problems: The
MAMS Case. In L. Braubach, W. van der Hoek, P. Petta, and
A. Pokahr, editors, Multiagent System Technologies, 7th German Con-
ference, MATES 2009, volume 5774 of Lecture Notes in Computer
Science, pages 268–277, Hamburg, Germany, 2009. Springer.

[28] Danny Weyns, Andrea Omicini, and James Odell. Environment as a
first class abstraction in multiagent systems. Autonomous Agents and
Multi-Agent Systems, 14(1):5–30, 2007.

[29] Pinar Yolum and Munindar P. Singh. Commitment Machines. In
J.-J. Ch. Meyer and M. Tambe, editors, Intelligent Agents VIII, 8th
International Workshop, ATAL 2001, Revised Papers, volume 2333 of
Lecture Notes in Computer Science, pages 235–247, Seattle, WA, USA,
2002. Springer.


