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Abstract. A distributed query execution method for Resource Description Frame-
work (RDF) storage managers is proposed. Method is intended for use with an
RDF storage manager called big3store to enable it to perform efficient query ex-
ecution over large-scale RDF data sets. The storage manager converts SPARQL
queries into tree structures using RDF algebra formalism. The nodes of those tree
structures are represented by independent processes that execute the query au-
tonomously and in a highly parallel manner by sending asynchronous messages
to each other. The proposed data and query distribution method decreases the
amount of inter-server messages during query executions by use of the semantic
properties of RDF data sets.

1 Introduction

There is a growing interest to gather, store, and query data from various aspects of
human knowledge. Such data includes geographical data; data about various aspects
of human activities such as music, literature, and sport; scientific data from biology,
chemistry, astronomy, and other scientific fields; and data related to the activities of
governments and other influential institutions.

There is a consensus among Semantic Web researchers that data should be presented
in some form of graph data model in which simple and natural abstractions are used to
represent data as subjects and their properties described by objects — that is, by means
of the nodes and edges of a graph. Considering this from the point of view of knowledge
developed in the fields of data modeling and knowledge representation, all existing data
models and languages for the representation of knowledge can be transformed, in many
cases quite naturally, into some incarnation of a graph.

A number of practical projects that allow for the gathering and storing of graph
data already exist. One of the most famous examples is the Linked Open Data (LOD)
project, which gathered more than 32 giga triples from areas including the media, ge-
ography, government, life sciences and others. In that project, the Resource Description
Framework (RDF), which is a form of graph data model, was used to represent the data.

Storing and querying such huge amounts of structured data has created a problem-
atic scenario that could be compared to the problem of querying huge amounts of text
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that appeared after the advent of the Internet. The differences are in the degree of struc-
ture and semantics that data formats such as RDF and OWL encompass compared to
HTML. HTML data published on the Internet represents a huge hypergraph of docu-
ments interconnected with links. Links between documents do not carry any specific
semantics except those representing URIs.

In contrast to HTML, RDF is a data model in which all data is represented by triples
(subject, predicate, object). In this format, we can represent entities and their properties
similarly to object-oriented models or AI frames. Moreover, we can represent objects at
different levels of abstraction: RDF can model not only ordinary data and data modeling
schemata but also meta-data.

The primary modeling principle of RDF is the assignment of special meaning to
properties with selected names. In this way, we can define the exact meaning of prop-
erties that are commonly used to describe documents, persons, relationships, and oth-
ers. Vocabularies are employed to standardize the meaning of properties. The Dublin
Core [6] project is an example of defining a set of common properties of things. The
XML-schema [23] vocabulary defines the properties that can specify types of objects,
and the vocabularies of properties and things are used to define higher-level data models
realized on top of RDF. The RDF Schema [17] and the OWL [16] are two examples of
providing object-oriented data modeling facilities and constructs for the representation
of logic.

The contributions of this paper are as follows. Firstly, we propose an architecture
of RDF query processor that gives rise to novel distributed query execution method for
RDF storage managers. While the architecture is rooted in relational database technolo-
gies, we propose flexible and highly parallel solution allowing allocation and execution
of very large number of queries expressed as data-flow programs on cluster of servers.
Secondly, we propose the use of semantic distribution of triples that distributes data
based on relationships of triples to the conceptual schema. Semantic distribution pro-
vides very general means for partitioning triple-store into non-overlapping portions,
and, allows efficient distribution of query processing.

The paper is organized as follows. Section 2 presents architecture of storage system
big3store. This section introduces data distribution method and main building blocks
of storage system such as front servers and data servers. Conceptual design of query
execution is presented in Section 3. Query execution engine is based on efficient par-
allelisation of query trees. Related work is described in Section 4. Finally, concluding
remarks are given in Section 5.

2 Architecture of big3store

To provide fast access to big RDF databases and to allow a heavy workload, a storage
manager has to provide facilities for flexible distribution and replication of RDF data.
To this end, the storage manager has to be re-configurable to allow many servers to
work together in a cluster and to allow for different configurations of clusters to be used
when executing different queries.

The storage manager for big RDF databases should be based on SPARQL and on the
algebra of RDF graphs [19]. To provide a more general and durable storage manager,
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its design should be based on the concept of graph databases [2]. Such design would
enable adding interfaces for popular graph data models other than RDF to be added
later.

2.1 Storage manager as cluster of data servers

Possible distribution and replication is crucial for the design of the storage manager in
order for it to be available globally and to enable heavy workload that is expected if
LOD data is going to be used by the masses.

Heavy distribution and replication is currently possible because of the availability
of inexpensive commodity hardware for servers with huge RAM (1–100 GB) and rel-
atively large disks. The same concept was used by Google while bootstrapping and
remains the main design direction of Google data centers [10].

As we discuss in more detail later, a cluster of data servers can easily be configured
into a very fast data-flow machine answering a particular SPARQL query. A similar idea
has recently appeared in the area of super-computers [9], where advances in hardware
technologies now allow compiler preprocessors to configure hardware facilities for a
specific program. The program then runs on specially configured hardware that gains
considerable speed.

The leading idea for the distribution of SPARQL query processing is splitting a
SPARQL query into parts that are executed on different data servers, thus minimizing
the processing time. Data servers executing parts of the SPARQL query are connected
by streams of data to form a cluster configuration defined for a particular SPARQL
query. Similar to the way in which some super-computers are based on configuring
intelligent hardware, we also have a strict separation between two phases: 1) compiling
the program into a hardware configuration and 2) executing the program on the selected
hardware configuration.

Figure 1 shows a cluster composed of two types of servers: front servers repre-
sented as the nodes of plane A, and data servers represented as the nodes of plane B.
Data servers are configured in columns labeled from (a) to (f). A complete database is
distributed to columns. with each column storing a portion of the complete database.
The methods for distributing the RDF data are discussed in the following sections.

The portion of the database stored in a column is replicated into rows labeled from
1 to 5. The number of rows for a particular column is determined dynamically based on
the query workload for each particular column. The heavier the load on a given column,
the greater the number of row data servers chosen for replication. The particular row
used for executing a query is selected dynamically based on the current load of servers
in a column.

A particular cluster configuration for answering a particular SPARQL query is pro-
grammed by front servers. This is also where the optimization of the SPARQL query
takes place. The front server receives a SPARQL query, parses it to the query tree, and
performs optimization based on the algebraic properties of the SPARQL set algebra
operations. Parts of the query tree are sent to internal data servers to define the cluster
configuration used for a particular query execution.
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Fig. 1. Configuration of servers for a particular query

2.2 Data distribution

RDF data stored in a data center is distributed to columns of data servers that form the
cluster. Each data server includes a triple store accessible through TCP/IP. Each column
is composed of an array of data servers referred to as rows that are replicas storing the
identical portion of the big3store database.

Distribution of RDF data to columns can be defined in more ways. First, data can
be split manually by assigning larger data sets (databases) to columns. One example of
such a dataset is DBpedia [4]. Second, RDF data can be split into columns automatically
by using SPARQL queries as the means to determine groups of RDF triples that are
likely to be accessed by one query. In this context, RDFS classes can be employed as
the main subject of distribution, as suggested in [18]. Groups of classes that are usually
accessed together can be assigned to columns where similar class instances are stored.

The benefits of splitting a triple store into separate data stores (tables) have been
shown in [24]. Basically, queries can be executed a few times faster. The reason for this
can only be the size and height of indexes defined for tables representing triples. This
means that fewer blocks have to be read from a database if RDF data is distributed to
different tables.

There are two scenarios in which the automatic reconfiguration of an RDF database
can be implemented. First, a complete database may be automatically distributed into
columns, as described above. Second, the degree of replication of the portion of the
database stored in a column needs to be determined. In other words, we have to de-
termine how many rows (replicas) are needed to process queries targeting a particular
column efficiently.

2.3 Front servers

Front servers are servers where SPARQL queries initiated by remote users are accepted,
parsed, optimized, and then distributed to data servers.

A SPARQL parser checks the syntax of a query and returns a diagnosis to the user
as well as prepares the query tree for the optimization phase. The most convenient
approach to optimizing a SPARQL query is to transform queries into algebra and then
use the algebraic properties for optimization. The algebra of RDF graphs [19] designed
for big3store is based on the work of Angles and Gutierrez [1] and of Schmidt et al. [20].



A Distributed Query Execution Method for RDF Storage Managers 49

The algebra of RDF graphs reflects the nature of the RDF graph data model. While
it is defined on sets, the arguments of algebraic operation and its result are RDF graphs.
Furthermore, the expressions of RDF graph algebra are graphs themselves. Triple pat-
terns represent the leaves of expressions. Graph patterns are expressions that stand for
graphs with variables in place of nodes and edges.

In order to ship the partial results of a distributed query tree among data servers, the
algebra of RDF graphs uses operation copy, first introduced in [5]. Operation copy
can be well integrated with operations defined on graphs due to the simple set of alge-
braic rules that can be used for copy.

A query optimizer rooted in relational rule-based query optimization has been pro-
posed by Savnik in [18] for handling RDF queries. Similarly to our approach Schmidt
and Lausen [20] also use relational rules for the optimization of SPARQL queries. Op-
timization in big3store is based on a variant of dynamic programming algorithm for
optimizing the algebraic expressions called memoisation. Since the search space grows
exponentially with the number of the rules, we experiment with beam search selecting
only the most promising transformations. Query cost estimation, that is vital for guid-
ing beam search, is also rooted in cost estimation of relational database management
systems.

The result of query optimization for a given SPARQL query is a query tree where
operations copy are placed optimally representing the points where triples are shipped
from one data server to another. The global query is therefore split into parts that are
executed on different data servers. Initially, the front server sends a query to a data
server from a column that includes data needed to process the top level of the query
tree. Note that all query parts are already in optimized form.

2.4 Data servers with local triple store

In this section, we present the main features of a distributed query evaluation. We first
give an overview of the distributed query evaluation and then present some of the prop-
erties of the local triple store and the evaluation of queries within it.

Evaluation of distributed query The primary job of a data server is to evaluate the
query tree received from either the front server or some other data server. The query tree
includes detailed information about access paths and methods for the implementation
of joins used for processing the query. We refer to such a query tree as an annotated
query tree. The data server evaluates the annotated query tree as it is without further
optimization.

The triple store of the data server accepts queries via TCP/IP and returns the re-
sults to the return address of the calling server. The communication between the calling
server and a given data server is realized by means of streams of triples representing the
results of the query tree evaluation. When needed, the materialization of stream results
is handled by the calling server.

The query tree can include parts that have to be executed on some other data servers
if data needed for a particular query part is located at some other columns. Such query
parts are represented by query sub-trees with root nodes that denote operation copy.
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Again, query sub-trees can include additional instances of operation copy so that the
resulting structure of data servers constructed for a particular SPARQL query can form
a tree.

Since operation copy is implemented by using a stream of triples, the query parts
that form a complete query tree can be executed in parallel. While the data server is
processing the query sub-tree that computes the next triple to be consumed by a given
data server, it can also process previously read triples and/or perform other tasks such
as accessing local triples. Moreover, big3store can process many query parts in parallel
as a parallel data-flow machine.

Local evaluation of queries Let us now present the evaluation of queries on the local
data server. Assume the data server receives an annotated query tree qt. Recall that
qt includes information about access paths to the tables of triples and algorithms to be
used for implementing algebra operations.

The local triple store includes the implementations of algebra operations and of
access paths, i.e., methods for accessing indexed tables of triples. Algebraic operations
include selection with or without the use of index; projection; set operations for union,
intersection, and difference; and variants of nested-loop join with or without index,
where the index supports either equality joins or range queries.

A non-distributed storage manager for storing triples and indexes for accessing
triples has to deal with similar problems to those faced by relational storage managers.
We use a local database management system called Mnesia, which is a part of Erlang
programming language [3] distribution, to store and manage tables of triples, referred
to as triple-stores. Triple-store of big3store is a table including four attributes: triple
id, subject, property and object. Adding triple ids to triple-store is the decision that we
expect will allow more consistent and uniform storage of various data related to triples,
such as, named graphs and other groupings of triples, properties of triples (reification),
and the like. Each triple-store maintains 6 indexes for accessing SPO attributes and
additional index for triple ids.

We tend to use low levels of Mnesia storage manager including access to tables
and indexes since optimization is performed by global query optimizer of big3store.
Furthermore, lower levels of relational storage manager can be easily replaced by some
other storage manager or even with file-based storage system. We relate this level of
storage manager to data storage facilities of Hadoop [22]. Maps, for instance, represent
main indexing mechanism of Mnesia while they are well comparable to Hadoop Maps.
In this way, we achieve the simplicity of lower parts of storage manager in comparison
to the complexity of RDBMs—this may represent a trend started with Hadoop. We
can compare our work on compiling and executing high-level data-flow programs with
programs and scripts written using Hadoop. Finally, for practical reasons, some features
of Mnesia will be used for implementation of caching in big3store. Data about user
context, including the results of all his queries, can be easily stored in Mnesia RAM
tables increasing in this way significantly the speed of query evaluation.

Let us now give some more details about implementation of operation copy. As
stated briefly before, operation copy implements a stream between two data servers.
This stream is realized by first initiating the execution of a sub-tree of copy (i.e. a
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query part) and then requesting that the results be sent back to the calling data server by
means of a stream. On the caller side, access to the stream, i.e., the results of operation
copy, is realized as an access method that reads triples from the stream.

2.5 Distribution of Triples and Triple Patterns

The main idea of semantic distribution is to distribute database triples on the basis of
database schema. In other words, the distribution of triples to data servers (columns) is
based on the relationship of triples to triple-base schema.

We suppose that we have triple-base such that complete schema for ground triples is
defined and stored in database. An example of such RDF datasets is YAGO [13] which
includes classes of all subjects, schema for all properties as well as taxonomy of classes.

In the sequel we will first present semantic distribution function in general. Class-
based and property-based semantic distribution functions will be described in more
detail. Some properties and trade-offs of semantic distribution function will be given.

Distribution function The distribution of triples can be achieved by means of a dis-
tribution function dist(), which maps a triple or a triple pattern into a set of column
identifiers. Each column identifier represents a portion of the complete triple-base. The
sizes of distributed portions must be similar.

The proposed method for semantic distribution is general since it allows various
subsets of {S, P,O} to be used as the means for distribution.

For instance, distribution can be defined on S part of the schema: instances of S’s
type c are stored in a column assigned to type c. Similarly, triples can also be stored
on the basis of P part. In this case, each property has a column where its instances
are stored. Furthermore, if we would like to separate properties defined for particular
classes, distribution might be defined on the S and P parts of the triple schema.

Let us now consider two types of semantic distribution in more detail. Firstly, we
present class-based semantic distribution which uses S part of triples, and secondly, we
consider property-based semantic distribution which uses P part of triples.

Class-based distribution The first possibility of triple distributions is to distribute
triples in partitions on the basis of the S part of triple schema, i.e., based on RDF class.
A triple belongs to a RDF class if it describes the property of an instance of that class.
The RDF class of the instance is determined by means of the rdf :type property. We
assume that all instances of classes have an rdf :type relationship defined in a given
triple store.

What are the effects of triple distribution based on classes in terms of query eval-
uation? In the case of queries related to the properties of two classes, the queries are
evaluated on two different servers. In the case of queries tackling the properties of in-
stances of three RDF classes, they are evaluated on three servers, etc.

In the case in which spreading the evaluation of queries to more data servers is
desired, the properties pertaining to a particular class must not be stored in one column
but rather must be distributed into additional columns.
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Continuing to distribute the properties of RDF classes to different columns would in
the end result in a distribution function based on the P -part of triples and not on RDF
classes. This would make sense if we could determine experimentally that it is more
efficient to distribute a query tree to data servers such that one query node is executed
on one query node.

Property-based distribution The second type of semantic distribution can be defined
on the basis of P part of triples, i.e., based on RDF properties. Since each ground triple
includes the property part same as does the schema triple denoting given ground triple,
it is easier to define the distribution based on properties. Columns are assigned to each
property so that database triples are distributed uniformly to data servers.

In this case the distribution function can be simply defined by extracting P part of
triple or triple pattern, and, then, mapping property to columns using predefined table.
However, a problem appears in the case P part of triple pattern includes a variable. The
only possible way to query properties when using distribution based on properties is by
sending “broadcast” query to data servers of all columns.

Trade-offs of distribution function It remains to be determined experimentally what
kind of distribution function behaves optimally for a given triple-base and query work-
load.

The first aspect of query evaluation that needs to be considered is weather it is better
to store data and evaluate all query nodes related to a given class c on one data server
or, is it better to split data and query nodes related to c to separate data servers (i.e.,
columns).

Another variable of query evaluation, that is not directly related to semantic distri-
bution, is to determine how many query nodes should be assigned to one data server in
average to give optimal performances.

In one extreme, complete query is executed on one data server and the other extreme
is that each query node is executed on a separate data server, each of which is connected
by streams. The optimal distribution of queries to an array of data servers may require
assigning query nodes to data servers such that each data server executes an average of
two to three query nodes.

The patterns in mapping nodes of query trees to data servers that achieve fast exe-
cution of query trees on a given triple-base need to be excavated through experiments.
The patterns can be used as a target structure of query optimization. One way to do
that is to use patterns for tuning parameters of query optimization such as cost of mov-
ing intermediate results of queries among data servers. Another way to use patterns in
query optimization is to restrict search space by focusing search to queries that match
excavated patterns.

3 Conceptual Design of Query Execution

The query execution module (QEM) of the big3store system takes query tree structures
as inputs and produces streams of result messages as outputs. When a SPARQL query
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is requested to be execute on the big3store system, the query is translated into a graph
structure called a query tree (an example is shown in Figure 3). The query tree can be
modified by the query optimizer module of big3store to make the structure better for ef-
ficient execution. While query trees are represented in some data structures in big3store,
QEM takes query trees represented by processes. These processes are dynamically gen-
erated by the preparation procedure of the big3store system. Query trees are executed
by those processes cooperating with other big3store processes. Therefore, QEM is not
a single process but rather consists of several processes including query tree processes
to be executed. These processes can be distributed to multiple physical server machines
that are connected by an ordinary network. A process is identified by a combination of
server id and process id.

While most parts of the big3store system have not been developed, the prototype
of QEM was developed and tested using small example data on a single server (non-
distributed) environment. The reason for developing QEM first is that the investigation
of query execution efficiency seems to be the most important challenge. The next step
of our research will be to experiment the QEM execution in distributed environments.

In this section, we introduce processes for performing such query executions and
then give an example of the entire flow of a query execution.

3.1 Query tree

Process query_tree accepts requests for managing query nodes. A physical server
machine has only one query_tree process in big3store. It manages active query node
processes, which are described in the next subsection; accepts requests for creating and
deleting query nodes on any server; and provides unique process ids in the server on
which the query_tree is running for creating query nodes on the server.

3.2 Query node

Process query_node implements a query node that constructs a query tree with other
query nodes to represent a query. A query_node process can run on any physical
server machine on which a query_tree process is running. Each query_node
process has its own hash table on which to store multiple property values. It provides
put and get interfaces for accessing property values. While various types of relations
between query nodes can be represented by properties, parent relations are used for
representing the stem structures of query trees. Each query tree has a root query node
that has no value for a parent property. Each query node excepting the root query node
must have a parent property for representing its parent query node by a combination
of server id and process id. A query_node process must have a type property that
indicates an operation type of RDF algebra [19]. Currently, triple pattern and join types
are implemented.

Triple pattern query node A triple pattern query_node process represents a match-
ing condition for triples. It must have a triple_pattern property for representing a triple
pattern that consists of IRIs, literals, or variables in subject, predicate, and object slots.



54 Kiyoshi Nitta, Iztok Savnik

It can handle list_vars, eval, and result asynchronous messages. If it receives a list_vars
message, it sends a list of variables contained in the triple pattern to its parent by a
construct_vars asynchronous message. It also sets a vars property for reminding the
list of variables. If it receives an eval message, it sends a find_stream asynchronous
message to data server processes for invoking streamer processes that repeatedly send
result messages to the triple pattern process, each of which contains a concrete triple
matching the triple pattern. If it receives a result message, it sends the message to its
parent query node.

Join query node A join query_node process represents a conjunctive condition
of two query nodes. It must have nodInner and nodOuter properties for representing
the target query nodes of the inner and outer edges, respectively. It can handle eval,
construct_vars, and result asynchronous messages.

If it receives an eval message, it sends list_vars messages to its inner and outer query
nodes for listing all variables that appear in the sub tree. At the same time, it sends an
eval message to the outer query node. Granted query tree structures are left-deep style
and only permit outer edges to have join query nodes (Figure 3). Therefore, this eval-
propagation strategy successfully constructs a variable list for any granted query tree. If
a join query node process receives construct_vars messages from inner and outer query
nodes, it merges both variable lists and sends the merged list to its parent query node
by another construct_vars message.

If it receives a result message from its outer query node, it sends synchronous mes-
sages to data servers for inquiring whether the triple set in the result message satisfies
the join condition or not. A result message consists of an alpha map and a val map, the
structures of which are shown in Tables 1 and 2, respectively. The alpha map associates
the set of triples and their origin query nodes, each of which has a matching triple pat-
tern, and the val map represents variable bindings that were determined by the set of
triples. When the query node asks the data servers to process the result message, the
node fetches a triple pattern from its inner query node, substitutes the val map variable
bindings in the inner triple pattern, and sends the substituted triple pattern to the data
servers. If the data servers find no matching triple, the node does nothing. Otherwise,
the node generates new result messages for each matched triple and sends them to a par-
ent query node asynchronously. The new result messages are made by a new alpha map
and a new val map. The alpha map is added by an element that maps the found triple
with the inner query node and the val map is added by variable bindings determined by
the found triple.

Table 1. Alpha map structure

No. Field name Description
1 triple triple id in the triple table
2 query_node process id of corresponding query node
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Table 2. Val map structure

No. Field name Description
1 variable string_id coded id of the variable string
2 value string_id coded id of the IRI or literal value

3.3 Other processes

There are several other processes that are necessary to execute QEM successfully.

Data server Each process of the data_server holds a chunk of triple data, and
multiple data server processes are invoked in running the b3s server of a distributed
configuration. A data server process dispatches storing and retrieving requests of held
triple data. It also accepts requests for producing streams of data that match specific
triple patterns. It uses a Mnesia table for storing triple data.

Streamer A data server streamer process is invoked by a data server process when
it receives a request for generating streams for a given triple pattern. The streamer re-
trieves matching triples from the data server’s triple table. After sending all stream data,
the streamer closes the stream and terminates itself.

Map between string and id Process string_id maintains a mapping table and
dispatches access operations for the table.

Translating all IRIs and literals into integer ids makes the triple tables smaller. How-
ever, the cost of processing the translation might create a bottleneck affecting the exe-
cution efficiency of distributed systems. One solution is to run multiple string_id
processes in different servers, but this would also increase the number of translate op-
erations for identifying the same strings between different string_id processes.

3.4 An Example

In this subsection, we describe a message stream flow using the example query shown
in Figure 2 in order to explain the conceptual design of the big3store query execution
mechanism.

SELECT * WHERE {
?c <hasArea> ?a .
?c <hasLatitude> ?l .
?c <hasInfration> ?i

}

Fig. 2. SPARQL query of q01a.
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Fig. 3. Query tree structure of query q01a.

A query tree can be executed by sending an {eval, Root, Parent} asynchronous mes-
sage to a query_tree process. The argument Root shows the root query node of a
query tree to be executed. The query_tree process sends an eval message to the root
node. The argument Parent shows a process that receives the result of the query. Figure
3 depicts the query tree structure of the example SPARQL query shown in Figure 2,
where the black and white circles show the triple pattern and join query nodes, respec-
tively. Query nodes are numbered N01, N02, ... in this figure for convenience. Query
node N01 is a root join query node that is connected to query nodes N02 and N05 by
outer and inner edges, respectively. Query node N02 is a join query node that is con-
nected to query nodes N03 and N04 by outer and inner edges, respectively. Query nodes
N03, N04, and N05 are triple pattern query nodes. Because query node N01 is the root
of the query tree, it receives an eval asynchronous message for starting the execution of
the query tree.

After receiving the initial eval message, the join query nodes propagate eval mes-
sages following outer edges. Figure 4 shows the messages sent by the processes for
executing the query tree of Figure 3. As in Figure 3, black and white circles are used for
representing the triple pattern and join query nodes. Each circle also represents an inde-
pendent process in this figure. Two gray circles are added to represent a data server and a
streamer processes. Edges drawn in solid lines show asynchronous messages and edges
drawn in dashed lines show synchronous messages or function calls. After query node
N01 receives an eval message, N01 sends another eval message to its outer query node
N02. Query node N02 then performs the same action to N03. Because N03 is a triple
pattern query node, it sends a {find_stream, TriplePattern, QueryNode} asynchronous
messages to the data server process. The argument TriplePattern is the triple pattern that
was set to N03. The argument QueryNode is used for specifying the caller of the mes-
sage. It is N03 in this example. When the data server process receives the find_stream
message, it invokes a new streamer process on the same physical server machine with
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Fig. 4. Message stream flow of the execution of q01a.

the data server. The streamer process repeatedly sends result asynchronous messages to
N03, each of which has a triple that matches the triple pattern of N03.

Each triple is represented in an alpha map entry in a corresponding result message.
When query node N03 receives a result message, N03 checks a triple in the message for
the selection condition. If the triple satisfies the condition, query node N03 sends the
result message to its parent query node N02. When query node N02 receives a result
message, N02 substitutes the triple pattern of N04 with val map variable bindings in the
message. N02 then sends a synchronous search message to the data server process for
retrieving triples that match the substituted N04 triple pattern. When query node N02
retrieves a matching triple from the data server, N02 modifies alpha and val maps in the
received message and sends the new result message to its parent query node N01. Note
that plural triples from the data server produce plural result messages from query node
N02. Query node N01 performs actions similar to N02 for retrieving triples that match
the triple pattern of N05. The answers for the query of Figure 2 are sent from query
node N01 as a stream of result messages, each of which includes a set of triples that is
a concrete solution of the query.

4 Related Work

In this section, we present some of the more relevant systems for querying RDF data,
including 3store, 4store, Virtuoso, and Hexastore. See the survey presented in [14] for
a more complete overview of RDF storage managers.

3store 3store [11] was originally used for Semantic Web applications, particularly for
storing the hyphen.info RDF dataset describing computer science research in the UK.
The final version of the database consisted of 5,000 classes and about 20 million triples.
3store was implemented on top of a MySQL database management system and included
simple inferential capabilities (e.g., class, sub-class, and sub-property queries) mainly
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implemented by means of MySQL queries. Hashing was used to translate URIs into the
internal form of representation.

The query engine of 3store used RDQL query language originally defined in the
frame of the Jena project. RDQL triple expressions are first translated into relational
calculus and constraints are added to relational calculus expressions that are then trans-
lated into SQL. Inference is implemented by a combination of forward and backward
chaining that computes the consequences of asserted data.

4store 4store [12] was designed and implemented to support a range of novel appli-
cations emerging from the Semantic Web. RDF databases were constructed from Web
pages including people-centric information, resulting in ontology with billions of RDF
triples. The requirements were to store and manage 15× 109 triples.

4store is designed to operate on clusters of low-cost servers. It is implemented in
ANSI C. It was estimated that the complete index for accessing quads would require
around 100 GB of RAM, which is why data was distributed to a cluster of 64-bit mul-
ticore x86 Linux servers, each storing a portion of RDF data. The architecture of the
cluster is a "Shared Nothing" type. Cluster nodes are divided into processing and stor-
age nodes. Data segments stored on different nodes are determined by a simple formula
that calculates the RID of the subject modulo number of segments. The benefit of such
design is parallel access to RDF triples distributed to nodes holding segments of RDF
data. Furthermore, segments can be replicated to distribute the total workload to the
nodes holding replicated RDF data. Communication between nodes is directed by pro-
cessing nodes via TCP/IP. There is no communication between data nodes.

The 4store query engine is based on relational algebra. The Primary source of opti-
mization is conventional ordering on the joins. However, they also use common subject
optimization and cardinality reduction. In spite of considerable work on query opti-
mization, 4store lacks complete query optimization as it is provided by relational query
optimizers.

Virtuoso Virtuoso [7, 8, 15] is a multi-model database management system based on
relational database technology. The approach of Virtuoso is to treat a triple store as a
table composed of four columns. The main concept of the approach to the manage-
ment of RDF data is to exploit existing relational techniques and to add functionality
to RDBMS in order to deal with features specific to RDF data. The most important
aspects considered by Virtuoso designers include extending SQL types with RDF data
types, dealing with unpredictable object sizes, providing efficient indexing, extending
relational statistics to cope with an RDF store based on a single table, and ensuring
efficient storage of RDF data.

Virtuoso integrates SPARQL into SQL. SPARQL queries are translated into SQL
during parsing. SPARQL has in this way all aggregation functions. SPARQL union
is translated directly into SQL and SPARQL optional is translated into left outer join.
Since RDF triples are stored in one quad table, relational statistics is not useful. Virtuoso
uses sampling during query translations to estimate the cost of alternative plans. Basic
RDF inference on TBox is done using query rewriting. For ABox reasoning, Virtuoso
expands the semantics of owl : same− as by transitive closure.
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Hexastore The Hexastore [21] approach to RDF storage system uses triples as the basis
for storing RDF data. The problems of existent triple stores pursued are the scalability of
RDF databases in a distributed environment and the complete implementation of query
processors including query optimization, persistent indexes, and other issues inherent
in database technology.

Six indexes are defined on top of a table with three columns, one for each combina-
tion of three columns. The index used for the implementation has three levels ordered
by a particular combination of SPO attributes. Each level is sorted in this way, which
enables the use of ordering for optimizations during query evaluation. The proposed in-
dex provides a natural representation of multi-valued properties and allows for the fast
implementation of merge-join, intersection, and union.

5 Conclusion and Future Work

The rough design of the big3store system and precise implementation of query execu-
tion module (QEM) were presented. A semantic distribution method of RDF data and
a distributed query execution method for RDF storage managers were presented. The
storage manager big3store converts SPARQL queries into query tree structures using
RDF algebra formalism. Nodes of those tree structures are represented by indepen-
dent query node processes that execute the query autonomously and in a highly parallel
manner while sending asynchronous messages to each other. The semantic data distri-
bution method decreases the number of inter-server messages during query executions
by using the semantic properties of RDF data sets.

This research is currently at the preliminary stage, and so far only the query exe-
cution module has been implemented and tested. While we are currently focusing on
the effective execution of SPARQL queries in distributed computational environments,
our future work will include the implementation of the minimum big3store system,
benchmarks using large-scale triple data, and the confirmation of the efficiency of the
proposed methods.
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