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Invited Talk: RDFox A Modern Materialisation-Based RDF
System

Boris Motik

University of Oxford

Abstract. RDFox is a new materialisation-based RDF system currently being developed
at Oxford University. The system is currently RAM-based, and its algorithms have been
designed to take full advantage of modern multi-core/processor systems. In my talk I will
present an overview of some of the techniques we developed in the context of the RDFox
project. In particular, I will discuss our algorithm that parallelises computation with very
little overhead, I will present an overview of our lock-free indexes for RDF data, and I will
discuss a novel incremental update algorithm. I will also briefly talk about some issues that
we are currently working on, such as improving query planning and distributing data in a
cluster of servers.





The NPD Benchmark for OBDA Systems

Davide Lanti, Martin Rezk, Mindaugas Slusnys, Guohui Xiao, and Diego Calvanese

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

Abstract. In Ontology-Based Data Access (OBDA), queries are posed over a
high-level conceptual view, and then translated into queries over a potentially
very large (usually relational) data source. The ontology is connected to the data
sources through a declarative specification given in terms of mappings. Although
prototype OBDA systems providing the ability to answer SPARQL queries over the
ontology are available, a significant challenge remains: performance. To properly
evaluate OBDA systems, benchmarks tailored towards the requirements in this
setting are needed. OWL benchmarks, which have been developed to test the
performance of generic SPARQL query engines, however, fail to evaluate OBDA
specific features. In this work, we propose a novel benchmark for OBDA systems
based on the Norwegian Petroleum Directorate (NPD). Our benchmark comes
with novel techniques to generate, from available data, datasets of increasing size,
taking into account the requirements dictated by the OBDA setting. We validate
our benchmark on significant OBDA systems, showing that it is more adequate
than previous benchmarks not tailored for OBDA.

1 Introduction
In Ontology-Based Data Access (OBDA), queries are posed over a high-level con-

ceptual view, and then translated into queries over a potentially very large (usually
relational) data source. The conceptual layer is given in the form of an ontology that
defines a shared vocabulary. The ontology is connected to the data sources through a
declarative specification given in terms of mappings that relate each (class and property)
symbol in the ontology to a (SQL) view over the data. The W3C standard R2RML [10],
was created with the goal of providing a standardized language for the specification of
mappings in the OBDA setting. The ontology and expose a virtual instance (RDF graph)
that can be queried using the de facto query language in the Semantic Web community:
SPARQL. To properly evaluate the performance of OBDA systems, benchmarks tailored
towards the requirements in this setting are needed. OWL benchmarks, which have been
developed to test the performance of generic SPARQL query engines, however, fail at
1) exhibiting a complex real-world ontology, 2) providing challenging real world queries,
3) providing large amounts of real world data, and the possibility to test a system over
data of increasing size, and 4) capturing important OBDA-specific measures related to
the rewriting-based query answering approach in OBDA.

In this work, we propose a novel benchmark for OBDA systems based on the
Norwegian Petroleum Directorate (NPD), which is a real world use-case adopted in the
EU project Optique1. In the benchmark, which is available online2, we adopt the NPD

1 http://www.optique-project.eu/
2 https://github.com/ontop/npd-benchmark
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Fact Pages as dataset, the NPD Ontology, which has been mapped to the NPD Fact Pages
stored in a relational database, and queries over such an ontology developed by domain
experts. One of the main challenges we address here has been to develop a data generator
for generating datasets of increasing size, starting from the available data. This problem
has been studied before in the context of databases [2], where increasing the data size
is achieved by encoding domain-specific information into the data generator [9, 4, 5].
One drawback of this approach is that each benchmark requires its ad-hoc generator,
and also that it disregards OBDA specific aspects. In the context of triple stores, [25, 14]
present an interesting approach based on machine learning. Unfortunately, the approach
proposed in these papers is specifically tailored for triple stores, and thus it is not directly
applicable to the OBDA settings.

In Section 2, we present the necessary requirements for an OBDA Benchmark. In
Section 3, we discuss the requirements for an OBDA instance generator. In Section 4, we
present the NPD benchmark and an associated relational database generator that gives
rise to a virtual instance through the mapping; we call our generator Virtual Instance
Generator (VIG). In Section 5, we perform a qualitative analysis of the virtual instances
obtained using VIG. In Section 6, we carry out a validation of our benchmark, showing
that it is more adequate than previous benchmarks not tailored for OBDA. We conclude
in Section 7.

2 Requirements for Benchmarking OBDA
In this section we study the requirements that are necessary for a benchmark to

evaluate OBDA systems. In order to define these requirements, we first recall that the
three fundamental components of such systems are: (i) the conceptual layer constituted
by the ontology; (ii) the data layer provided by the data sources; and (iii) the mapping
layer containing the declarative specification connecting the ontological terms to the
data sources. It is this mapping layer that decouples the virtual instance being queried,
from the physical data stored in the data sources. Observe that triple stores cannot be
considered as full-fledged OBDA systems, since they do not make a distinction between
physical and virtual layer. However, given that both, OBDA systems and triple stores,
are considered as (usually SPARQL) query answering systems, we consider it important
that a benchmark for OBDA can also be used to evaluate triple stores. Also, since one
of the components of an OBDA system is an ontology, the requirements we identify
include those to evaluate general knowledge based systems [18, 14, 25]. However, due to
the additional components, there are also notable differences.

Typically OBDA systems follow the workflow below for query answering:

1. Starting phase. The system loads the ontology, the mappings, and performs some
auxiliary tasks needed to process/answer queries in a later stage. Depending on the
system, this step step might be critical, since it might include some reasoning tasks,
for example inference materialization or the embedding of the inferences into the
mappings (T-mappings [20]).

2. Query rewriting phase. The input query is rewritten to a (maybe more complex)
query that takes into account the inferences induced by the intensional level of the
ontology (we forward the interested reader to [16]).

3. Query translation (unfolding) phase. The rewritten query is transformed into a query
over the data sources. This is the phase where the mapping layer comes into play.
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Table 1: Measures for OBDA
Performance Metrics

name triple store related to phase

Loading Time (T) 1
Rewriting Time (T∗) 2
Unfolding Time — 3
Query execution time (T) 4
Overall response time (T) 2, 3, 4

Quality Metrics
Simplicity R Query (T∗) 2
Simplicity U Query — 3
Weight of R+U (T∗) 2, 3, 4

4. Query execution phase. The data query is executed over the original data source,
answers are produced according to the data source schema, and are translated into
answers in terms of the ontology vocabulary and RDF data types, thus obtaining an
answer for the original input query.

Note that a variation of the above workflow has actually been proposed in [18], but
without identifying a distinct starting phase, and singling out a result translation phase
from query execution. There are several approaches to deal with Phase 2 [16, 24]. The
most challenging task in this phase is to deal with existentials in the right-hand side
of ontology axioms. These axioms infer unnamed individuals in the virtual instance
that cannot be retrieved as part of the answer, but can affect the evaluation of the query.
An approach that has proved to produce good results in practice is the tree-witness
rewriting technique, for which we refer to [16]. For us, it is only important to observe
that tree-witnesses lead to an extension of the original query to account for matching in
the existentially implied part of the virtual instance. Below, we take the number of tree-
witnesses identified in Phase 2 as one of the parameters to measure the complexity of the
combination ontology/query. Since existentials do not occur very often in practice [16],
and can produce an exponential blow-up in the query size, some systems allow to turn
off the part of Phase 2 that deals with reasoning with respect to existentials.

Ideally, an OBDA benchmark should provide meaningful measures for each of
these phases. Unfortunately, such a fine-grained analysis is not always possible, for
instance because the system comes into the form of a black-box with proprietary code
with no APIs providing the necessary information, e.g., the access to the rewritten
query; or because a system combines one or more phases, e.g., query rewriting and
query translation. Based on the above phases, we identify the measures important for
evaluating OBDA systems in Table 1. The meaning of the Performance Measures is
clear from the name, but we will give a brief explanation of the meaning of the Quality
Metrics:

– Simplicity R Query. Simplicity of the rewritten query in terms of language dependent
measures, like the number of rules in case the rewritten query is a datalog program.
In addition, one can include system-dependent features, e.g., # of tree-witnesses in
Ontop .
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– Simplicity U Query. This measures the simplicity of the query over the data source,
including relevant SQL-specific metrics like the number of joins/left-join, the
number of inner queries, etc.

– Weight of R+U. It is the cost of the construction of the SQL query divided by the
overall cost.

We label with (T) those measures that are also valid for triple stores, and with (T∗) those
that are valid only if the triple store is based on query rewriting (e.g., Stardog). Notice
that the two Simplicity measures, even when retrievable, are not always suitable for
comparing different OBDA systems. For example, it might not be possible to compare
the simplicity of queries in the various phases, when such queries are expressed in
different languages.

With these measures in mind, the different components of the benchmark should
be designed so as to reveal strengths and weaknesses of a system in each phase. The
conclusions drawn from the benchmark are more significant if the benchmark resembles
a typical real-world scenario in terms of the complexity of the ontology and queries and
size of the data set. Therefore, we consider the requirements in Table 2.

Table 2: Benchmark Requirements
O1 Q1 M1

The ontology should include
rich hierarchies of classes and
properties.

The query set should be
based on actual user queries.

The mappings should be de-
fined for elements of most hi-
erarchies.

O2 Q2 M2
The ontology should contain
a rich set of axioms that infer
new objects and could lead to
inconsistency, in order to test
the reasoner capabilities.

The query set should be com-
plex enough to challenge the
query rewriter.

The mappings should con-
tain redundancies, and subop-
timal SQL queries to test op-
timizations.

D1 D2 S1
The virtual instance should
be based on real world data.

The size of the virtual in-
stance should be tunable.

The languages of the on-
tology, mapping, and query
should be standard, i.e.,
based on R2RML, SPARQL,
and OWL respectively.

The current benchmarks available for OBDA do not meet several of the requirements
above. Next we list some of the best known benchmarks and their shortcomings when it
comes to evaluate OBDA systems. We show general statistics in Table 3.

Adolena: Designed in order to extend the South African National Accessibility Por-
tal [15] with OBDA capabilities. It provides a rich class hierarchy, but a quite poor
structure for properties. This means that queries over this ontology will usually be
devoid of tree-witnesses. No data-generator is included, nor mappings.
Requirements Missing: O1, Q2, D2, S1

LUBM: The Lehigh University Benchmark (LUBM) [13] consists of a university
domain ontology, data, and queries. For data generation, the UBA (Univ-Bench
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Table 3: Popular Benchmark Ontologies: Statistics
Ontology Stats. (Total) Queries Stats. (Max)

name #classes #obj/data prop #i-axioms #joins #opt #tw

adolena 141 16 189 5 0 0
lubm 43 32 91 7 0 0
dbpedia 530 2148 3836 7 8 0
bsbm 8 40 0 14 4 0
fishmark 11 94 174 24 12 0

Artificial) data generator is available. However, the ontology is rather small, and the
benchmark is not tailored towards OBDA, since no mappings to a (relational) data
source are provided.
Requirements Missing: O1, Q2, M1, M2, D1

DBpedia: The DBpedia benchmark consists of a relatively large—yet, simple3—
ontology, a set of user queries chosen among the most popular queries posed against
the DBpedia4 SPARQL endpoint, and a synthetic RDF data generator able to
generate data having similar properties to the real-world data. This benchmark is
specifically tailored to triple stores, and as such it does not provide any OBDA
specific components like R2RML mappings, or a data set in the form of a relational
database.
Requirements Missing: O1, O2, Q2, M1, M2

BSBM: The Berlin SPARQL Benchmark [3] is built around an e-commerce use case. It
has a data generator that allows one to configure the data size (in triples), but there is
no ontology to measure reasoning tasks, and the queries are rather simple. Moreover,
the data is fully artificial.
Requirements Missing: O1, O2, Q2, M1, M2, D1,

FishMark: FishMark [1] collects comprehensive information about finned fish species.
This benchmark is based in the FishBase real world dataset, and the queries are
extracted from popular user SQL queries over FishBase; they are more complex
than those from BSBM. However, the benchmark comes neither with mappings nor
with a data generator. The data size is rather small (≈20M triples).
Requirements Missing: O1, D2, S1

A specific challenge comes from requirements D1 and D2, i.e., given an initial
real-world dataset, together with a rich ontology and mappings, expand the dataset in
such a way that it populates the virtual instance in a sensible way (i.e., coherently with
the ontology constraints and relevant statistical properties of the initial dataset). We
address this problem in the next section.

3 Requirements for Generating Virtual Instances
In this section, we present the requirements for an OBDA data generator, under the

assumption that we have an initial database that can be used as a seed to understand the

3 In particular, it is not suitable for reasoning w.r.t. existentials.
4 http://dbpedia.org/sparql
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distribution of the data that needs to be increased. To ease the presentation, we illustrate
the main issues that arise in this context with an example.

Example 1. Suppose we have the following database tables, where the primary keys
are in bold font and the foreign keys are emphasized. We assume that every employee
sells the majority of the products, hence the table TSellsProduct contains roughly
the cross product of the tables TEmployee and TProduct. Next we present only a
fragment of the data.

TEmployee

id name branch

1 John B1
2 Lisa B1

TAssignment

branch task

B1 task1
B1 task2
B2 task1
B2 task2

TSellsProduct

id product

1 p1
2 p2
1 p2
2 p3

TProduct

product size

p1 big
p2 big
p3 small
p4 big

Consider the following mappings populating the ontology concepts Employee,
Branch, and ProductSize, and the object properties SellsProduct and
AssignedTo.

M1 :{id} rdf:type :Employee ← SELECT id from TEmployee
M2 :{branch} rdf:type :Branch ← SELECT branch FROM TAssignments
M3 :{branch} rdf:type :Branch ← SELECT branch FROM TEmployee
M4 :{id} :SellsProduct :{product} ← SELECT id, product FROM TSellsProduct
M5 :{size} rdf:type :ProductSize ← SELECT size FROM TProduct
M6 :{id} :AssignedTo :{task} ← SELECT id, task

FROM TEmployee
NATURAL JOIN
TAssignments

The virtual instance corresponding to the above database and mappings includes the
following RDF triples:

:1 rdf:type :Employee.
:2 rdf:type :Employee.

:1 :SellsProduct :p1.
:1 :SellsProduct :p2.
:2 :AssignedTo :t1.

Suppose now we want to increase the virtual RDF graph by a growth-factor of 2.
Observe that this is not as simple as doubling the number of triples in every concept
and property, or the number of tuples in every database relation. Let us first analyze the
behavior of some of the ontology elements w.r.t. this aspect, and then how the mappings
to the database come into play.

– ProductSize: This concept will contain two individuals, namely small and
big, independently of the growth-factor. Therefore, the virtual instances of the
concept should not be increased when the RDF graph is extended.

– Employee and Branch: Since these classes do not depend on other properties,
and since they are not intrinsically constant, we expect their size to grow linearly
with the growth-factor.

– AssignedTo: Since this property represents an n-to-n relationship, we expect its
size to grow roughly quadratically with the growth-factor.

– SellsProduct: The size of this property grows roughly with the product of the
numbers of Employees and Products. Hence, when we double these numbers,
the size of SellsProduct will roughly quadruplicate.
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In fact, the above considerations show that we do not have one uniform growth-factor
for the ontology elements. Our choice is to characterize the growth in terms of the
increase in size of those concepts in the ontology that are not intrinsically constant
(e.g., ProductSize), and that do not “depend” on any other concept, considering the
semantics of the domain of interest (e.g., Employee). We take this as measure for the
growth-factor.

The problem of understanding how to generate from a given RDF graph new ad-
ditional triples coherently with the domain semantics is addressed in [25, 19]. The
algorithm in [25] starts from an initial RDF graph and produces a new RDF graph,
considering key features of the original graph (e.g., the distribution of connections
among individuals). However, this approach, and all approaches producing RDF graphs
in general, cannot be directly applied to the context of OBDA, where the RDF graph
is virtual and generated from a relational database. Trying to apply these approaches
indirectly, by first producing a “realistic” virtual RDF graph and then trying to reflect
the virtual data into the physical (relational) data-source, is far from trivial due to the
correlations in the underlying data. This problem, indeed, is closely related to the view
update problem [8], where each class (resp., role or data property) can be seen as a
view on the underlying physical data. The view update problem is known to be chal-
lenging and actually decidable only for a very restricted class of queries used in the
mappings [12]. Note, however, that our setting does not necessarily require to fully solve
the view update problem, since we are interested in obtaining a physical instance that
gives rise to a virtual instance with certain statistics, but not necessarily to a specific
given virtual instance. The problem we are facing nevertheless remains challenging, and
requires further research. We illustrate the difficulties that one encounters again on our
example.

– The property SellsProduct grows linearly w.r.t. the size of the table
TSellsProduct, hence also this table has to grow quadratically with the growth-
factor. Since TSellsProduct has foreign keys from the tables TEmployee and
TProduct, to preserve the inter-table correlation (according to which roughly
every employee is connected to every product), the two tables TEmployee and
TProduct have both to grow linearly. It is worth noting that, to produce one
SellsProduct triple in the virtual instance, we have to insert three tuples in the
database.

– Since also the Branches concept should grow linearly with the growth-factor,
while preserving the intra- and inter-table correlations, also the TAssignment
table should grow linearly, and there should always be less branches than employees
in TEmployee.

– Since ProductSize does not grow, the attribute Size must contain only two
values, despite the linear growth of TProduct.

The previous example illustrated several challenges that need to be addressed by the
generator regarding the analysis of the virtual and physical data, and the insertion of
values in the database. Our goal is to generate a synthetic virtual graph where the cost
of the queries is as similar as possible to the cost that the same query would have in a
real-world virtual graph of comparable size. Observe that the same virtual graph can
correspond to different database instances, that could behave very differently w.r.t. the
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cost of SQL query evaluation. Therefore, in order to keep the cost of the SPARQL query
“realistic”, we need to keep the cost of the translated SQL “realistic” as well.

We are interested in data generators that perform an analysis phase on real-world
data, and that use the statistical information learned in the analysis phase for their task.
We present first in Table 5 the measures that are relevant in the analysis phase. We then
derive the requirements for the data generator by organizing them in two categories: one
for the analysis phase, and one for the generation phase.

Measures for the Analysis Phase. Table 5 is divided in three parts. The top part refers
to measures relevant at virtual instance level, i.e., those capturing the shape of the virtual
instance. Virtual correlation measures the correlation between individuals connected
through a property, i.e., the number of individuals/values to which every individual is
connected via an object/data property. Virtual growth is the expected growth for each
ontology term w.r.t. the growth-factor. Observe that these two measures are strongly
related to each other. The middle part refers to measures at the physical level that strongly
affect the shape of the virtual instance through the form of the mappings. They are based
on the sets of attributes of a table used to define individuals and values in the ontology
through the mapping. We call such a set of attributes an IGA (individual-generating
attributes set). Establishing the relevant statistics requires to identify pairs of IGAs
through mapping analysis. Specifically, intra-table IGA correlation is defined for two
IGAs of the same table, both mapped to individuals/values at the virtual level. It is
measured for tuples over the IGAs as the virtual correlation of the individuals that are
generated via the mapping from the tuples. Inter-table IGA correlation is measured for
IGAs belonging to two different tables, by taking the intra-table IGA correlation over
the join of the two tables. The bottom part refers to measures at the physical level that do
not affect correlation at the virtual instance level, but that influence growth at the virtual
level and the overall performance of the system. Specifically, IGA duplication measures
the number of identical copies of tuples over an IGA, while (intra-table and inter-table)
IGA-pair duplication is measured as the number of identical copies of a tuple over two
correlated IGAs. Notice that, for benchmarking purposes, both IGA correlation and IGA
duplication are important.

Now we are ready to list the requirements for a data generator for OBDA systems.

Requirements for the Analysis Phase. The generator should be able to analyze the
physical instance and the mappings, in order to acquire statistics to assess the measures
identified in Table 5.

Requirements for the Generation Phase. We list now important requirements for the
generation of physical data that gives rise through the mappings to the desired virtual
data instance.

Tunable. The user must be able to specify a growth factor according to which the virtual
instance should be populated.

Virtually Sound. The virtual instance corresponding to the generated physical data must
meet the statistics discovered during the analysis phase and that are relevant at the
virtual instance level.

Physically Sound. The generated physical instance must meet the statistics discovered
during the analysis phase and that are relevant at the physical instance level.



The NPD Benchmark for OBDA Systems 11

Table 5: Relevant measures at the virtual and physical instance level
Measures affecting the virtual instance level

Virtual Correlation (VC) Virtual Growth (VG)
Correlations between the various elements in
the virtual instance.

Function describing how fast concepts (resp.,
role/data properties) grow w.r.t. the growth-
factor.

Measures affecting virtual correlation and virtual growth
Intra-table IGA Correlation (Intra-C) Inter-table IGA Correlation (Inter-C)

Correlation (obtained through repetition anal-
ysis) between IGAs belonging to the same ta-
ble and generating objects connected through a
mapped property.

Correlation (obtained through analysis of the
repetitions of tuples used to join IGAs and of
the joined IGAs) between IGAs belonging to
different tables.

Measures affecting RDBMS performance and virtual growth
IGA Duplication (D)

Repeated IGAs
Intra-table IGA-pair Duplication (Intra-D) Inter-table IGA-pair Duplication (Inter-D)

Repeated pairs of intra-table correlated IGAs. Repeated pairs of inter-table correlated IGAs.

Database Compliant. The generator must generate data that does not violate the con-
straints of the RDBMS engine—e.g., primary keys, foreign keys, constraints on
datatypes, etc.

Fast. The generator must be able to produce a vast amount of data in a reasonable
amount of time (e.g., 1 day for generating an amount of data sufficient to push the
limits of the considered RDBMS system). This requirement is important because
OBDA systems are expected to operate in the context of “big-data” [6].

4 NPD Benchmark
The Norwegian Petroleum Directorate5 (NPD) is a governmental organisation whose

main objective is to contribute to maximize the value that society can obtain from the oil
and gas activities. The initial dataset that we use are the NPD Fact Pages6, containing
information regarding the petroleum activities on the Norwegian continental shelf. The
ontology, the query set, and the mappings to the dataset have all been developed at the
University of Oslo [22], and are freely available online7. Next we provide more details
on each of these items.

The Ontology. The ontology contains OWL axioms specifying comprehensive informa-
tion about the underlying concepts in the dataset; specifically rich hierarchies of classes
and properties, axioms that infer new objects, and disjointness assertions. We took the
OWL QL fragment of this ontology, and we obtained 343 classes, 142 object properties,
238 data properties, 1451 axioms, and maximum hierarchy depth of 10. Since we are
interested in benchmarking OBDA systems that are able to rewrite queries over the
ontology into SQL-queries that can be evaluated by a relational DBMS, we concentrate

5 http://www.npd.no/en/
6 http://factpages.npd.no/factpages/
7 http://sws.ifi.uio.no/project/npd-v2/
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Table 6: Statistics for the queries considered in the benchmark
query #operators #join #depth #tw max(#subclasses) # opt
Q1 12 4 8 0 0 0
Q2 14 5 9 0 0 0
Q3 10 3 7 0 0 0
Q4 14 5 9 0 0 0
Q5 14 5 8 0 0 0
Q6 18 6 12 2 23 0
Q7 17 7 10 0 0 0
Q8 10 3 7 0 0 0
Q9 10 3 7 0 38 0
Q10 9 2 7 0 0 0
Q11 20 7 12 2 23 0
Q12 26 8 12 4 23 0
Q13 8 2 7 0 0 2
Q14 12 2 7 0 0 2

here on the OWL 2 QL profile8 of OWL, which guarantees rewritability of unions of
conjunctive queries (see, e.g., [7]). This ontology is suitable for benchmarking reasoning
tasks, given that (i) it is a representative [17] and complex real-world ontology in terms
of number of classes and maximum depth of the class hierarchy (hence, it allows for
reasoning w.r.t. class hierarchies); (ii) it is complex w.r.t. properties, therefore it allows
for reasoning with respect to existentials.
From the previous facts, it follows that the ontology satisfies requirements O1, O2, S1.

The Query Set. The original NPD SPARQL query set contains 25 queries obtained by
interviewing users of the NPD dataset. Starting from the original NPD query set, we
devised 14 queries having different degrees of complexity (see Table 6). In particular,
observe that most complex queries involve both classes with a rich hierarchy and
tree witnesses, which means that they are particularly suitable for testing the reasoner
capabilities. We also fixed some minor issues, e.g., the absence in the ontology of certain
concepts present in the queries, removing aggregates (to be tackled in future work), and
flattening of nested sub-queries.
From the previous facts, it follows that the queries satisfy requirements Q1, Q2, S1.

The Mappings. The R2RML mapping consists of 1190 assertions mapping a total of 464
among classes, objects properties, and data properties. The SQL queries in the mappings
count an average of 2.6 unions of select-project-join queries (SPJ), with 1.7 joins per
SPJ. We observe that the mappings have not been optimized to take full advantage of an
OBDA framework, e.g., by trying to minimize the number of mappings that refer to the
same ontology class or property, so as to reduce the size of the SQL query generated
by unfolding the mapping. This gives the opportunity to the OBDA system to apply
different optimization on the mappings at loading time.
From the previous facts, it follows that the mappings satisfies requirements M1, M2, S1.

4.1 VIG: The Data Generator.
Next we present the Virtual Instances Generator (VIG) that we implemented in the

NPD Benchmark. VIG produces a virtual instance by inserting data into the original
database. The generator is general in the sense that, although it currently works with
the NPD database, it can produce data also starting from instances different than NPD.
The algorithm can be divided into two main phases, namely (i) an analysis phase, where

8 http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
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statistics for relevant measures on the real-world data are identified; (ii) a generation
phase, where data is produced according to the statistics identified in the analysis phase.

VIG starts from a non-empty database D. Given a growth factor g, VIG generates a
new database D′ such that |T ′| = |T | · (1+ g), for each table T of D (where |T | denotes
the number of tuples of T ). This first approach assumes that each table in the database
should grow linearly with respect to the growth factor, which is not true in general, but it
holds for NPD. In addition, VIG approximates the measures described Table 5 as shown
below.
Measures (D), (Intra-D). We compute (an approximation for) these measures by Du-
plicate Values Discovery. For each column T.C of a table T ∈ D, VIG discovers the
duplicate ratio for values contained in that column. The duplicate ratio is the ratio
(||T.C|| − |T.C|)/||T.C||, where ||T.C|| denotes the number of values in the column T.C,
and |T.C| denotes the number distinct of values in T.C. A duplicate ratio “close to 1”
indicates that the content of the column is essentially independent from the size of the
database, and it should not be increased by the data generator.
Measures (Intra-C), (Inter-C), (Inter-D). Instead of computing (an approximation for)
these measures, VIG identifies the domain of each attribute. That is, for each non-fixed
domain column T.C in a table T , VIG analyzes the content of T.C in order to decide the
range of values from which fresh non-duplicate values can be chosen. More specifically,
if the domain of T.C is a string or unordered (e.g., polygons), then simply a random value
is generated. Instead, if the domain is a total order, then fresh values can be chosen from
the non-duplicate values in the interval [min(T.C),max(T.C)] or in the range of values
adjacent to it. Observe that this helps in maintaining the domain of a column similar to
the original one, and this in turn helps in maintaining intra- and inter-table correlations.
VIG also preserves standard database constraints, like primary keys, foreign keys, and
datatypes, that during the generation phase will help in preserving the IGA correlations.
For instance, VIG analyses the loops in foreign key dependencies in the database. Let
T1 → T2 denote the presence of a foreign key from table T1 to table T2. In case of a
cycle T1 → T2 → · · · → Tk → T1, inserting a tuple in T1 could potentially trigger an
infinite number of insertions. VIG performs an analysis on the values contained in the
columns involved by the dependencies and discovers the maximum number of insertions
that can be performed in the generation phase.

Next we describe the generation phase, and how it meets some of the requirements given
in Section 5.

Duplicate Values Generation. VIG inserts duplicates in each column according to the
duplicate ratio discovered in the analysis phase. Each duplicate is chosen with a uniform
probability distribution. This ensures, for those concepts that are not dependent from
other concepts and whose individual are “constructed” from a single database column, a
growth that is equal to the growth factor. In addition, it prevents intrinsically constant
concepts from being increased (by never picking a fresh value in those columns where
the duplicates ratio is close to 1). Finally, it helps keeping the sizes for join result sets
“realistic” [23]. This is true in particular for the NPD database, where almost every join
is realized by a single equality on two columns.
Requirement: Physically/Virtually Sound.
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Fresh Values Generation. For each column, VIG picks fresh non-duplicate values from
the interval discovered during the analysis phase. If the number of values to insert
exceeds the number of different fresh values that can be chosen from the interval I , then
values outside the interval are allowed. The choices for the generation of new value
guarantee that columns always contain values “close” to the ones already present in the
column. This ensures that the number of individual for concepts based on comparisons
grows accordingly to the growth factor.
Requirement: Physically/Virtually Sound.

Metadata Constraints VIG generates values that do not violate the constraints of the
underlying database, like primary keys, foreign keys, or type constraints. The NPD
database makes use of geometric datatypes available in MYSQL. Some of them come
with constraints, e.g., a polygon is a closed non-intersecting line composed of a finite
number of straight lines. For each geometric column in the database, VIG first identifies
the minimal rectangular region of space enclosing all the values in the column, and
then it generates values in that region. This ensures that artificially generated geometric
values will fall in the result sets of selection queries.
Requirement: Database Compliant/Virtually Sound.

Length of Chase Cycles. In case a cycle of foreign key dependencies was identified
during the analysis phase, then VIG stops the chain of insertions according to the
boundaries identified in the analysis phase, while ensuring that no foreign key constraint
is violated. This is done by inserting either a duplicate or a null in those columns that
have a foreign key dependency.
Requirement: Database Compliant.

Furthermore, VIG allows the user to tune the growth factor, and the generation
process is considerably fast, for instance, it takes ≈10hrs to generate 130 Gb of data.

5 Validation of the Data Generator

In this section we perform a qualitative analysis of the virtual instances obtained
using VIG. We focus our analysis on those concepts and properties that either are
supposed to grow linearly w.r.t. the growth factor or are supposed not to grow. These are
138 concepts, 28 object properties, and 226 data properties.

We report in Table 7 the growth of the ontology elements w.r.t. the growth of
databases produced by VIG and by a purely random generator. The first column indicates
the type of ontology elements being analyzed, and the growth factor g (e.g., “class npd2”
refers to the population of classes for the database incremented with a growth factor
g = 2). The columns “avg dev” show the average deviation of the actual growth from the
expected growth, in terms of percentage of the expected growth. The remaining columns
report the number and percentage of concepts (resp., object/data properties) for which
the deviation was greater than 50%.

Concerning concepts, VIG behaves close to optimally. For properties, the difference
between the expected virtual growth and the actual virtual growth is more evident.
However, it is orders of magnitude better than the random generator. We shall see how
this difference strongly affects the results of the benchmark (Section 6).
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Table 7: Comparison between VIG and a random data generator
avg dev err≥50% (absolute) err≥50% (relative)

type db heuristic random heuristic random heuristic random

class npd2 3.24% 370.08% 2 67 1.45% 48.55%
class npd10 6.19% 505.02% 3 67 2.17% 48.55%
obj npd2 87.48% 648.22% 8 12 28.57% 42.86%
obj npd10 90.19% 883.92% 8 12 28.57% 42.86%
data npd2 39.38% 96.30% 20 46 8.85% 20.35%
data npd10 53.49% 131.17% 28 50 12.39% 22.12%

Table 8: Tractable queries (time in ms)
db avg(ex time) avg(out time) avg(res size) qmpH #(triples)

NPD 62 113 16766 1507.85 ≈2M
NPD2 116 232 35991 896.55 ≈6M
NPD5 246 410 70411 554.35 ≈12M
NPD10 408 736 124253 305.46 ≈25M
NPD50 2138 3208 539461 66.82 ≈116M
NPD100 5292 6727 1160972 29.12 ≈220M
NPD500 37382 48512 7511516 4.22 ≈1.3B
NPD1500 132155 148495 23655243 1.27 ≈4B

Virtual Correlation. From our experiments we witnessed that the virtual correlation is
preserved for the 28 object properties that are generated from a single table. That is,
the correlation remains constant and it grows only in the case of cartesian products on
columns with high duplicate ratio and that together form a primary key. More results can
be found in the benchmark page.

6 Benchmark Results
We ran the benchmark on the Ontop system9 [21], which, to the best of our knowl-

edge, is the only fully implemented OBDA system that is freely available. In addition, we
compared Ontop with Stardog 2.1.3. Stardog10 is a commercial RDF database developed
by Clark&Parsia that supports SPARQL 1.1 queries and OWL 2 for reasoning. Since
Stardog is a triple store, we needed to materialize the virtual RDF graph exposed by the
mappings and the database using Ontop .

MYSQL was used as underlying relational database system. The hardware consisted
of an HP Proliant server with 24 Intel Xeon X5690 CPUs (144 cores @3.47GHz),
160GB of RAM and a 1TB 15K RPM HD. The OS is Ubuntu 12.04 LTS. Due to space

9 http://ontop.inf.unibz.it/
10 http://stardog.com/

Table 9: Hard Queries Rewriting And Unfolding
Ext. Reasoning OFF Ext. Reasoning ON

query #rw #un rw time un time #rw #un rw time un time
sec. sec. sec. sec.

q6 — 48 — 0.1 73 1740 1.8 1.3
q9 — 570 — 0.1 1 150 0 0.03
q10 — 24 — 0.9 1 24 0 0.01
q11 — 1 — 0.1 73 870 0.03 0.7
q12 — 1 — 0.2 10658 5220 525 139
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constraints, we present the results for only one running client. We obtained results with
the existential reasoning on and off.

In order to test the scalability of the systems w.r.t. the growth of the database, we
used the data generator described in Section 4.1 and produced several databases, the
largest being approximately 1500 times bigger than the original one (“NPD1500” in
Table 8, ≈ 117 GB of size on disk (≈ 6 Bn triples)).

Table 8 shows the 9 easiest queries from the initial query set, for which the unfolding
produces a single select-project-join SQL query. These results were obtained in Ontop .
The query mix of 9 queries was executed 10 times, each time with different filter
conditions so that the effect of caching is minimized, and statistics were collected in
each execution. We measure the sum of the query execution time (avg(ex time)), the
time spent by the system to display the results to the user (avg(out time)), the number
of results (avg(res size)), and the query mixes per hour (qmpH), that is, the number of
times that the 9 queries can be answered in one hour.

Table 9 contains results showing the number of unions of SPJ queries generated
after rewriting (#rw) and after unfolding (#un) for the 5 hardest queries. In addition, it
shows the time spent by Ontop on rewriting and unfolding. Here we can observe how
existential reasoning can produce a noticeable performance overhead, by producing
queries consisting of unions of more than 5000 sub-queries (c.f., q12). This blow-up is
due to the combination of rich hierarchies, existentials, and mappings. These queries are
meant to be used in future research on query optimization in OBDA.

Table 10 contains results for the 5 hardest queries in Ontop. Each query was run
once, since qmpH is not so informative in this case. Observe that the response time
tends to grow faster than the growth of the underlying database. This follows from the
complexity of the queries produced by the unfolding step, which usually contain several
joins (remember that the worst case cardinality of a result set produced by a join is
quadratic in the size of the original tables). Column NPD10 RAND witnesses how using
a purely random data generator gives rise to datasets for which the queries are much
simpler to evaluate. This is mainly due to the fact that a random generation of values
tends to decrease the ratio of duplicates inside columns, resulting in smaller join results
over the tables [23]. Hence, purely randomly generated datasets are not appropriate for
benchmarking.

Table 11 shows the 6 queries where the performance difference is bigger. As expected,
the 3 queries with worst performance in OBDA are those that were affected by the blow-
up shown in Table 9. On the other hand, the 3 queries that perform the best are those
where the different optimization led to a simple SPJ SQL query. Note how in these 3
queries, in Ontop , the overhead caused by the increment of dataset size is minimum.

7 Conclusions and Future Work
The benchmark proposed in this work is the first one that thoroughly analyzes a

complete OBDA system in all significant components. So far, little or no work has
been done in this direction, as pointed out in [18], since the research community has
mostly focused on rewriting engines. Thanks to our work, we have gained a better
understanding of the current state of the art for OBDA systems: first, we confirm [11]
that the unfolding phase is the real bottleneck of modern OBDA systems; second, more
research work is needed in order to understand how to improve the design of mappings,
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Table 10: Hard queries
query NPD NPD2 NPD5 NPD10 NPD10 RAND

rp t/weight R+U rp t/weight R+U rp t/weight R+U rp t/weight R+U rp t/weight R+U
(sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio)

No Existentials Reasoning
q6 1.5/0.07 8.2/0.02 23/<0.01 51/<0.01 54/<0.01
q9 0.6/0.17 2.3/0.03 4/0.03 50/<0.01 51/<0.01
q10 0.07/0.14 0.1/0.1 0.16/0.06 0.2/0.05 0.3/0.03
q11 0.9/0.1 36/<0.01 198/<0.01 1670/<0.01 70/<0.01
q12 0.8/0.16 41/<0.01 275/<0.01 1998/<0.01 598/<0.01

Existentials Reasoning
q6 8.5/0.35 18/0.19 36/0.09 85/0.04 88/0.03
q9 0.2/0.2 0.2/0.2 0.2/0.2 0.2/0.2 0.2/0.2
q10 0.1/0.2 0.1/0.2 0.3/0.07 0.7/0.03 1.8/0.01
q11 3/0.2 25/0.03 980/<0.01 980/<0.01 41/0.02
q12 686/0.97 733/0.91 868/0.74 2650/0.24 880/0.74

Table 11: Query executions in Stardog and Ontop (Time in sec.)
Query NPD1 NPD2 NPD5 NPD10

Stardog Ontop Stardog Ontop Stardog Ontop Stardog Ontop
q1 1.56 0.597 1.616 0.463 1.852 0.683 6.184 0.571
q7 1.585 0.021 2.223 0.041 3.714 0.108 5.199 0.204
q8 0.865 0.08 1.561 0.192 2.504 0.526 6.492 0.669
q6 0.486 1.593 1.592 21.217 2.678 23.272 4.285 88.979
q11 0.394 0.974 1.412 25.693 2.138 197.786 2.584 978.465
q12 0.425 0.934 1.649 275.548 2.65 1396.185 3.464 3292.464
Mater. 54.75s 2m58.014s 9m58.509s 41m23s
Load 60.935s 4m42.849s 12m8.565s 57m18.297s

avoiding the use of mappings that give rise to huge queries after unfolding. We conclude
by observing that for a better analysis it is crucial to refine the generator in such a way
that domain-specific information is taken into account, and a better approximation of
real-world data is produced.
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Abstract. When providing public access to data on the Semantic Web,
publishers have various options that include downloadable dumps, Web
APIs, and SPARQL endpoints. Each of these methods is most suitable
for particular scenarios. SPARQL provides the richest access capabili-
ties and is the most suitable option when granular access to the data
is needed. However, SPARQL expressivity comes at the expense of high
evaluation cost. The potentially large variance in the cost of different
SPARQL queries makes guaranteeing consistently good quality of ser-
vice a very difficult task. Current practices to enhance the reliability of
SPARQL endpoints, such as query timeouts and limiting the number of
results returned, are far from ideal. They can result in under utilisation
of resources by rejecting some queries even when the available resources
are sitting idle and they do not isolate “well-behaved” users from “ill-
behaved” ones and do not ensure fair sharing among different users. In
similar scenarios, where unpredictable contention for resources exists,
scheduling algorithms have proven to be effective and to significantly
enhance the allocation of resources. To the best of our knowledge, using
scheduling algorithms to organise query execution at SPARQL endpoints
has not been studied. In this paper, we study, and evaluate through simu-
lation, the applicability of a few algorithms to scheduling queries received
at a SPARQL endpoint.

1 Introduction

When providing public access to data on the Semantic Web, publishers have
various options that include downloadable dumps, Web APIs, and SPARQL
endpoints. Each of these methods is most suitable for particular scenarios, how-
ever none of them provides an ideal global solution [7, 13]. SPARQL, the rec-
ommended W3C query language1, is an attractive option to provide expressive
access to RDF data. SPARQL is basically a graph pattern matching language
that provides rich capabilities for slicing and dicing RDF data. The latest version,
SPARQL 1.1, added support for aggregation, nested and distributed queries, and
other features.

However, supporting public SPARQL access to data is expensive. It has been
shown that evaluating SPARQL is PSPACE-complete in general and coNP-
complete for well-defined queries [10]. Therefore, the cost of different SPARQL

1 http://www.w3.org/TR/sparql11-query/
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queries can vary a lot; making guaranteeing consistently good quality of service
a very difficult task. Evidence of this can be seen on the SPARQL Endpoint
Status web page2, in literature [2] and across the Web3 and the blogosphere4.

Existing SPARQL endpoints employ different measures to enhance their re-
liability and to ensure consistent quality of service. Such measures include query
timeouts, refusing expensive SPARQL queries, limiting the number of triples re-
turned or returning partial results. For example, 4Store supports a soft limit for
execution time5 and Virtuoso allows setting a maximum threshhold on the ex-
pected query cost6. There are still a number of problems with these approaches:
(i) they provide an inconsistent user experience and limit the expressiveness of
allowed queries (ii) there is no clear way to communicate these non-standard
shortcomings to the user (iii) they can result in under utilisation of resources by
rejecting some queries even when the available resources are sitting idle (iv) they
do not isolate “well-behaved” users from “ill-behaved” ones and do not ensure
fair sharing among different users.

In similar scenarios, where unpredictable contention for resources exists,
scheduling algorithms have proven to be effective and to significantly enhance the
allocation of resources. Scheduling has been utilised for data networks [3, 12], for
processes assignment in operating systems [8], for cloud and grid computing [9,
4], and recently to schedule jobs sent to a Hadoop cluster [15, 14]. Nevertheless,
to the best of our knowledge, it has not been studied in the context of SPARQL
endpoints.

In this paper we argue for employing scheduling algorithms to organise query
execution at a, possibly public, SPARQL endpoint. Giving the wide applicability
of scheduling, there exists a large number of scheduling algorithms. In this paper,
we study, and evaluate through a simulation, the applicability of a few algorithms
to schedule queries received at some SPARQL endpoint. A number of scheduling
algorithms, mainly from the data networks domain, are reviewd (Section 3.1).
We then describe their applicability to scheduling SPARQL queries (Section 3.2)
and study through a simulation their effect on two popular SPARQL engines
(Section 4).

We do not claim that scheduling solves the problem of providing a reli-
able publicly-accessible SPARQL endpoint. Nevertheless, our results show that
scheduling enhances throughput and reduces the effect of complex queries on
simpler ones. We also note that scheduling has the extra advantages of reward-
ing socially-aware behaviour and achieving better utilisation and fairer allocation
of the available resources.

2 http://sparqles.okfn.org/
3 See for example http://answers.semanticweb.com/questions/14440/

can-the-economic-problem-of-shared-sparql-endpoints-be-solved
4 E.g. http://daverog.wordpress.com/2013/06/04/the-enduring-myth-of-the-sparql-endpoint/

and http://ruben.verborgh.org/blog/2013/09/30/

can-i-sparql-your-endpoint/
5 http://4store.org/trac/wiki/SparqlServer
6 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

VirtSPARQLEndpointProtection
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Fig. 1: General model of scheduling

2 Related Work

Most current practices to enhance the reliability of SPARQL endpoints are based
on introducing ad-hoc measures and limits such as query timeouts, refusing
expensive SPARQL queries, limiting the number of triples returned or returning
partial results. These measures have a number of problems as discussed in the
introduction. Linked Data Fragments [13] is a recent proposal to enhance the
reliability of SPARQL endpoints via shifting part of the computation needed
to answer SPARQL queries towards the client side. Furthermore, [1] proposed
a vision for a workload-aware and adaptive system to deal with the diversity
and dynamism that are inherent in SPARQL workloads. To the best of our
knowledge, scheduling has not been studied in the context of SPARQL endpoints.
Nevertheless, scheduling has been used and studied in many domains.

Scheduling has been extensively studied in data networks where the capac-
ity of a switch is shared by multiple senders [3, 6, 12]. We describe the main
algorithms used in data networks in the next section.

Scheduling has also been used to organise jobs of shared Hadoop clusters.
First In First Out (FIFO) Scheduler, Fair Scheduler7 and Capacity Scheduler8

are the most widely used schedulers in practice. Similar to our work, these sched-
ulers re-use algorithms defined for the data networks. Notice that, in contrast
to SPARQL queries, Hadoop jobs are expected to take a long time and their
execution can be pre-empted.

Moreover, scheduling has also been applied in wireless networks [5], grid
computing [4] and distributed hash tables [11].

3 Scheduling

Figure 1 depicts a generic model for scheduling. There is a single server, and
N job arrival streams, each feeding a different first in, first out (FIFO) queue.

7 http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
8 http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
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The scheduler decides which stream gets served at each moment and for how
long. The goal is usually to maximise throughput while ensuring fair sharing of
resources and avoiding long waiting times. Keeping a separate queue for each
stream puts up “firewalls” protecting well-behaved streams against streams that
might otherwise saturate the server capacity and drive delays to unacceptable
levels.

3.1 Scheduling Algorithms

We next describe a number of scheduling algorithms used mainly for data net-
works and then discuss their applicability to SPARQL endpoints.

Ideal Scheduler A mathematical idealization of queuing, which was originally
proposed as an idealization of time-slicing in computer systems (Kleinrock 1976
as cited in [6]), known as Processor Sharing (PS). In PS, the server cycles through
the active jobs, giving each a small time quantum of service, and then preempting
the job to work on the next. The PS mechanism allots resources fairly and
provides full utilisation of the resources. However, in settings where pre-empting
jobs is not feasible, such as data networks, PS cannot be applied. A number of
“emulations” of it exist nevertheless. We next discuss two of them.

Fair Scheduler Described in [3] and [6]. Fair scheduling emulates the PS fair
scheduling by maintaining a notion of virtual time (what time an input stream
would have been served had PS been applied). Streams are then served in in-
creasing order of their virtual finish time. It has been shown that this algorithm
emulates the fair PS algorithm well [6].

Deficit Round-Robin Scheduler Described in [12]. Each input stream holds
a deficit counter (a credit balance) and only gets served if the query cost is less
than its balance. After execution, the cost is subtracted from the balance. If the
queue is not served due to insufficient balance, it gets a quantum charge that
can be used in the next round, i.e. a queue is compensated when its service is
delayed.

3.2 Scheduling for SPARQL

We consider scheduling as a service running on top of SPARQL endpoints. The
scheduler receives the queries and then decides in what order to send them to
the endpoint. The goal is to: (i) minimize the effect that expensive queries can
have on other queries (ii) maximize the utilization of the available resources (iii)
reward socially-aware behaviour (e.g., simpler queries that set a limit on the
number of required results).

However, contrary to the typical scheduling scenario depicted in Figure 1,
a SPARQL endpoint can handle multiple queries at a time. In fact, as triple
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stores, Web servers and the underlying operating systems each have their own
resource utilisation and sharing facilities, it will be very inefficient to send only
one query at a time to the endpoint. Therefore, SPARQL scheduler sends mul-
tiple queries to the endpoint as long as their total cost is under a configured
threshold. Upon the completion of processing some query, its cost is substracted
from the tracked total cost. The threshold is necessary to avoid overwhelming
the endpoint as sending many queries simultaneously to an endpoint results in
rejecting to process many queries by the endpoint.

In practice, three further challenges need to be addressed:

– Efficiently estimating the cost of an incoming SPARQL query. The cost in-
volves multiple paramters such as CPU, memory, network and I/O cost. The
cost also depends on the query, the data and the triple store. However, this
problem is beyond the scope of this paper.

– Identifying the source of each query in order to define streams of inputs.
In the absence of user authentication, IP addresses and session detection
techniques can be used.

– Setting the threshold of total computing capacity. This can be set via exper-
imenting.

4 Simulation Experiment

4.1 Implementation

We implemented three scheduling algorithms in Java 9:

– FIFO: A First-In-First-Out queue. This scheduler serves input streams in
order (one query at a time) while keeping track of the total cost of queries
being processed at every point and ensuring that this cost is always kept
lower than the computing capacity threshold.

– Deficit: Implements a deficit round-robin algorithm as described in Sec-
tion 3.1.

– Fair: Implements a fair scheduling algorithm as described in Section 3.1.

4.2 Experiment Setup

We experimented with two triple stores, Virtuoso Open-Source Edition 7.0.0
Release10 and Jena Fuseki 1.0.111. Both triple stores were run on a Mac with
8GB memory and a 2.9GHz Intel Core i7 CPU. Jena Fuseki was run in memory
with a maximum heap size of 3GB.

We used the Semantic Web Dog Food12 data that contains information about
papers published in the main conferences and workshops in the area of Semantic

9 The code is avaialble at https://gitlab.insight-centre.org/Maali/

sparql-endpoints-scheduler
10 http://virtuoso.openlinksw.com/
11 http://jena.apache.org/documentation/serving_data/
12 http://data.semanticweb.org/
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Web research. The data was downloaded13 from the Semantic Web Dog Food
website in Februaury 2014.

The Web logs of the Semantic Web Dog Food were made available as part
of the USEWOD 2013 Data Challenge14. To get real-world SPARQL queries for
our experiment, we extracted SPARQL queries from these Web logs. We ran
each query three times on Fuseki (without any added scheduling) and classified
it as simple or complex based on the time it took. All simple queries took an
average of less than 90ms, while complex queries took more than 450ms. We use
these numbers (90 and 450) as a proxy for the query costs.

We simulated two concurrent flows of queries, one with simple queries and
the other with complex queries. This simulates two applications with different
needs. Queries were selected randomly from the set of simple and complex queries
respectively. Both flows follow a Poisson distribution. We experimented with
differnet means of the Poisson distribution (a.k.a. interval) and with different
thesholds for the computing capacity (i.e., total cost of queries being processed
at a time). Each run was stopped after 5 minutes and logs were collected then.

We consider a query to be fully processed if it is sent to the endpoint and all
results sent back from the endpoint are received (within the 5 minute cut-off).
For each query we measure two durations:

Waiting Time: the time taken from the moment the query is received at the
scheduler until it is sent to the endpoint.

Processing Time: the time taken from the moment the query is received at
the scheduler until the moment at which the query is fully processed.

We wanted to include a no-scheduling setting as a baseline, however running
these flows without any scheduling resulted in overwhelming the endpoint and
therefore most of the queries were dropped without getting answered.

4.3 Results & Discussion

We experimented with intervals of 100, 200, 500 and 1000 milliseconds (ms).
Queries sent with intervals 500 and 1000 ms were not frequent enough to require
any waiting and therefore resulted in no scheduling. We report only on queries
with intervals 100 and 200 ms. We experimented with different thresholds for
the computing capacity. We report here only on the results when the threshold is
set to 8000 because it showed the most effective results for the three scheduling
algorithms tested; all larger values overwhelmed the endpoint. Notice that 8000 is
just a proxy for the computation capacity available and it needs to be interpreted
together with the cost of the queries (we used 90 and 450 for simple and complex
queries respectively).

Table 1 shows the percentage of queries completed when sent at a 100 ms
interval on Fuseki. On Virtuoso all queries were fully processed, while on Fuseki
it can be noticed that the FIFO algorithm processed equivalent percentages of

13 http://data.semanticweb.org/dumps/
14 http://data.semanticweb.org/usewod/2013/challenge.html
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both simple and complex queries while the other two algorithms “favoured”
simple queries and “penalised” complex ones. Deficit scheduling showed better
throughput.

Figures 2 and Figure 3 show the processing and waiting times for simple
and complex queries when running against Virtuoso and Fuseki. Similar to the
throughput results, it can be noticed how penalising complex queries results in
smaller waiting and processing times for simple queries when using deficit or fair
scheduling. On the other hand, complex queries have smaller waiting and pro-
cessing times using FIFO scheduling with 200 milliseconds interval. The higher
processing time of complex queries using FIFO scheduling was surprising. Our
interpretaion of this is that prioritising simple queries allowed better utilisa-
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tion of the available resources when queries arrive at a high frequency that can
overwhelm the endpoint.

In summary, scheduling allowed getting better throughput by delaying queries
instead of rejecting them (recall that running without scheduling resulted in re-
jecting most of the queries). Deficit and Fair scheduling algorithms favoured
simpler queries. In general, deficit scheduling, the simpler algorithm, showed
better results in our settings than fair scheduling.
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Simple Queries Complex Queries

FIFO 47.3% 47.4%
Deficit 100% 42%

Fair 77% 40%

Table 1: Percentage of fully processed queries on Fuseki (throughput)

5 Conclusions & Future Work

We reported a simulation experiment to study the effects different scheduling
algorithms can have when used to organise execution of SPARQL queries re-
ceived at some endpoint. We note that simple scheduling can be implemented
with minimal overhead and has effect only when queries are received at high
frequency.

We consider this work as an initial step and hope to extend the experiment
and deploy it in some real-world use case.
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Abstract. Web-scale RDF datasets are increasingly processed using dis-
tributed RDF data stores built on top of a cluster of shared-nothing
servers. Such systems critically rely on their data partitioning scheme
and query answering scheme, the goal of which is to facilitate correct
and efficient query processing. Existing data partitioning schemes are
commonly based on hashing or graph partitioning techniques. The latter
techniques split a dataset in a way that minimises the number of connec-
tions between the resulting subsets, thus reducing the need for commu-
nication between servers; however, to facilitate efficient query answering,
considerable duplication of data at the intersection between subsets is
often needed. Building upon the known graph partitioning approaches,
in this paper we present a novel data partitioning scheme that employs
minimal duplication and keeps track of the connections between par-
tition elements; moreover, we propose a query answering scheme that
uses this additional information to correctly answer all queries. We show
experimentally that, on certain well-known RDF benchmarks, our data
partitioning scheme often allows more answers to be retrieved without
distributed computation than the known schemes, and we show that our
query answering scheme can efficiently answer many queries.

1 Introduction

While the flexibility of the RDF data model offers many advantages, efficient
management of large RDF datasets remains an open research topic. RDF data
management systems can be conceived as single-machine systems constructed
using techniques originating from relational databases [12, 2, 1, 20, 4], but the
size of some RDF datasets exceeds the capacity of such systems. As a possible
solution, distributed architectures based on a cloud of shared-nothing servers
have been developed [9, 11, 21]. Such systems are promising, but research is still
at a relatively early stage and scalability remains an open and critical problem.

The two main challenges in developing a distributed RDF system are (i) how
to split up the data across multiple servers (i.e., data partitioning), and (ii) how
to answer queries in a distributed environment (i.e., distributed query answer-
ing). These two challenges are closely connected: knowledge about data parti-
tioning is relevant for query answering, and knowledge of typical query structure
can be used to inform the data partitioning scheme. Nevertheless, one can inves-
tigate independently from query answering the extent to which a specific data
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partitioning scheme reduces the need for distributed processing; for example,
one can identify the percentage of the query answers that can be computed
locally—that is, by evaluating queries on each server independently.

Data partitioning via hashing is a well-known partitioning scheme from the
database community, and it has been applied in several RDF systems [21, 15, 4,
8, 13, 7]. In its simplest form, it distributes RDF data in a cluster by applying a
hash function to a component of an RDF triple. Triples are commonly hashed
by their subject to guarantee that star queries (i.e., queries containing only
subject–subject joins) can be evaluated locally. Hashing has often been imple-
mented using the MapReduce framework [3, 5, 19]; although hashing is typically
not discussed explicitly in such systems, it is implicit in the map phase of dis-
tributed join processing. This approach, however, does not take into account the
graph structure of RDF data, so nodes that are close together in the graph may
not be stored on the same server, resulting in considerable distributed processing
for many queries. As an alternative, an approach based on graph partitioning
has been developed [9]. The goal of graph partitioning is to divide the nodes
of the graph into several subsets while minimising the number of links with
endpoints in different subsets. Thus, by partitioning RDF data using graph par-
titioning, one increases the chance that highly interconnected nodes are placed
on the same server, which in turn increases the likelihood that query answers can
be computed locally. This scheme, however, does not guarantee that common
queries (such as star queries) can be evaluated locally, and it may thus require a
significant amount of distributed computation to guarantee completeness, even
in cases where locally computed answers fully answer the query.

These approaches can be augmented by duplicating data on partition bound-
aries [9, 11]. For sufficiently small queries, data duplication ensures that each
query answer can be computed locally, and it can be used to provide the local
evaluation guarantee for star-shaped queries in the graph partitioning setting [9].
Data duplication, however, can incur considerable storage overhead, potentially
increasing the number of servers required to store a given RDF graph.

Our Approach We present a novel RDF data partitioning scheme that aims to
reduce the need for distributed computation on common queries, but with min-
imal duplication and storage overhead; moreover, we present a query answering
scheme that can correctly answer conjunctive queries over the partitioned data.
Our main idea is to keep track of places where each data subset makes connec-
tions to other data subsets, and to exploit this information during query answer-
ing in order to identify possible non-local answers. In this way we can enjoy the
benefits of graph partitioning and reduce the need for distributed processing,
with only a minimal overhead of data duplication.

In this paper we focus mainly on the effects of our data partitioning scheme,
which we experimentally show to be very promising on the LUBM [6] and the
SP2B [16] benchmarks. For all queries from these two benchmarks, our data
partitioning scheme ensures that a higher proportion of query answers can be
retrieved without any distributed processing than with subject-based hashing
[8, 13, 7] or the semantic hash partitioning (SHAPE) [11] approach. We do not
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explicitly compare our approach with the original graph partitioning approach
[9] because the SHAPE approach has already been shown to be more effective.

We also experimentally evaluate our query answering scheme, which we show
can effectively answer many queries from the LUBM and SP2B benchmarks with
little or no distributed processing. On some queries, however, our scheme be-
comes impractical as it requires the computation of a large number of partial
matches (see Section 4 for details)—a drawback we look to overcome in our fu-
ture work. These results are preliminary in the absence of a complete distributed
system that would allow us to measure query processing times; instead, we mea-
sure the amount of work (in a sense that we make precise in Section 4) involved
in distributed query processing.

2 Preliminaries

2.1 RDF

Let R be a set of resources. An RDF term is either a variable or a resource from
R; a term is ground if it is not a variable. An RDF atom A is an expression
of the form 〈s, p, o〉 where s, p, and o are RDF terms; the vocabulary of A is
defined as voc(A) = {s, p, o}; var(A) is the set of all variables in voc(A); atom A
is ground if var(A) = ∅; a triple is a ground atom; and an RDF graph G is a set
of triples. The vocabulary of G is defined as voc(G) =

⋃
A∈G voc(A). As in the

SPARQL query language, all variables in this paper start with a question mark.
A variable assignment µ (or just assignment) is a partial mapping of variables
to resources. For r a resource, let µ(r) = r; for A = 〈s, p, o〉 an RDF atom, let
µ(A) = 〈µ(s), µ(p), µ(o)〉; and for S a set of atoms, let µ(S) =

⋃
A∈S µ(A). The

domain dom(µ) of µ is the set of variables that µ is defined on; and the range
rng(µ) of µ is rng(µ) = {µ(x) | x ∈ dom(µ)}. An RDF conjunctive query Q is an
expression of the form (1), where each Ai, 1 ≤ i ≤ m, is an RDF atom.

Q = A1 ∧ . . . ∧Am (1)

By a slight abuse of notation, we often identify Q with the set of its atoms. The
vocabulary and the set of variables of Q are defined as follows.

voc(Q) =
⋃

1≤i≤m

voc(Ai) var(Q) =
⋃

1≤i≤m

var(Ai) (2)

We sometimes write queries using the SPARQL syntax. An answer to a query
Q over an RDF graph G is an assignment µ such that dom(µ) = var(Q) and
µ(Q) ⊆ G; and ans(Q,G) is the set of all answers to Q over G. Note that our
definitions do not support variable projection.

2.2 RDF Data Partitioning and Distributed Query Answering

A partition of an RDF graph G is an n-tuple of RDF graphs G = (G1, . . . , Gn)
such that G ⊆ G1 ∪ . . . ∪Gn. Each Gi is called a partition element, and n is the
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size of G; an n-partition is a partition of size n. One might expect a partition
to satisfy G = G1 ∪ . . . ∪Gn, but our relaxed condition allows us to capture our
ideas in Section 3. Furthermore, we allow triples to be duplicated across partition
elements—that is, we do not require Gi ∩ Gj = ∅ for i 6= j. A partitioning
scheme is a process that, given an RDF graph G, produces a partition G. Given
an RDF conjunctive query Q, an answer µ ∈ ans(Q,G) is local for Q and G
if some 1 ≤ i ≤ n exists such that µ ∈ ans(Q,Gi); otherwise, µ is non-local for
Q and G. When Q and G are clear, we simply call µ local or non-local. Since
non-local answers span partition elements, they are more expensive to compute
if each partition element is stored on a separate server; hence, the main aim of
a partitioning scheme is to maximise the number of local answers to common
queries. The quality of a partition G for a set of queries Q is defined as the ratio
of local answers to all answers for all of the queries in Q on G. We often use
this term informally, in which case we consider partition quality with respect to
an unspecified set of queries that can be considered typical.

Allowing duplication of triples in partition elements can improve partition
quality: given a non-local answer µ to a query Q, answer µ becomes local if we
add µ(Q) to some partition element. However, duplication also increases storage
overhead, and in the limit it can result in each partition element containing a
complete copy of G. Hence, another aim of a partitioning scheme is to achieve a
suitable balance between triple duplication and partition quality.

A distributed query answering scheme, or just a query answering scheme, is
a process that, given a partition G and a query Q, returns a set of assignments
ans(Q,G) such that ans(Q,G) = ans(Q,G). If the shape of Q guarantees that
all answers are local, one can evaluate Q against each element of G and take
the union of all answers; otherwise, additional work is required to identify non-
local answers or to detect that no such answers exist. Query answering schemes
differ mainly in how they handle the latter case: answer pieces are spread across
multiple partition elements and they must be retrieved and joined together.
We now have two clear goals for a query answering scheme: the first goal is to
ensure correctness—that is, that ans(Q,G) = ans(Q,G)—and the second goal is
to minimise the amount of work required to construct non-local answers.

2.3 Existing Solutions

Now we present a brief overview of partitioning schemes and query answering
schemes known in the literature.

Hashing is the simplest and most common data partitioning scheme [14, 18,
21]. Typically, a hashing function maps triples of an RDF graph to m buckets,
each of which corresponds to a partition element. The hashing function is often
applied to the triple’s subject or the predicate, with subject being the most
popular choice: this guarantees that triples with the same subject are placed
together, ensuring that all answers to star queries are local.

Graph-based approaches exploit the graph structure of RDF data. In particu-
lar, one can use min-cut graph partitioning software such as METIS [10], which
takes as input a graph G and the partition size n, and outputs n disjoint sets
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of nodes of G such that all sets are of similar sizes and the number of edges in
G connecting nodes in distinct sets is minimised. The approach by [9] reduces
RDF data partitioning to min-cut graph partitioning to ensure that highly con-
nected RDF resources are placed together into the same partition element, thus
increasing the likelihood of a query answer being local.

One can combine an arbitrary data partitioning scheme with n-hop duplica-
tion to increase the proportion of local answers. Given an RDF graph G and
a subgraph H ⊆ G, the n-hop expansion Hn of H with respect to G is defined
recursively as follows: H0 = H and, for each 1 ≤ i ≤ n,

Hi = Hi−1 ∪ {〈s, p, o〉 | 〈s, p, o〉 ∈ G and {s, o} ∩ voc(Hi−1) 6= ∅}. (3)

While n-hop partitioning can considerably improve partition quality [9], it can
also incur a substantial storage overhead. For example, even just 2-hop dupli-
cation can incur a storage overhead ranging from 67% to 435% [11]. Various
optimisations have been developed to reduce this overhead, such as using di-
rected expansion and excluding high degree nodes from the expansion.

Most data partitioning schemes are paired with a specific query answering
scheme. Due to lack of space, we cannot present all such approaches in detail.
Many of them have been implemented using MapReduce [3]—a framework for
handling and processing large amounts of data in parallel across a cluster; a
recent survey of MapReduce solutions can be found in [5]. Moreover, the Trin-
ity.RDF system [21] uses Trinity [17]—a distributed in-memory key-value store.

3 Partitioning RDF Data

3.1 Aims

We now present our novel data partitioning scheme. Similar to [9], we use min-cut
graph partitioning, but we extend the approach by recording the outgoing links in
each partition element so as to facilitate the reconstruction of non-local answers.
More specifically, we introduce a wildcard resource ∗, and use it to represent all
resources ‘external’ to a given partition element. Thus, we know in each partition
element which resources are connected to resources in other partition elements;
we exploit this feature in Section 4 in order to obtain a correct query answering
scheme. This allows us to attain a high degree of partition quality, while at the
same time answering queries correctly without n-hop duplication.

The quality of partitions critically depends on the structure of the data and
the anticipated query workload. Although application specific, we found the
following assumptions to be common to a large number of applications.

Assumption 1. Subject–subject joins are common.
Assumption 2. Queries often constrain variables to elements of classes—that

is, they often contain atoms of the form 〈?x, rdf :type, class〉.
Assumption 3. Joins involving resources representing classes are uncommon—

that is, queries rarely contain atoms 〈?x1, rdf :type, ?y〉 ∧ 〈?x2, rdf :type, ?y〉.
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Assumption 4. Joins on resources that are literals are uncommon—that is, if
a query contains atoms 〈?x1, :R, ?y〉∧〈?x2, :S , ?y〉, it is unlikely that a query
answer will map variable ?y to a literal.

Assumption 5. The number of schema triples in G is small, so all schema
triples can be replicated in each partition element.

Although n-hop duplication can increase partition quality [9, 11], it is often
associated with a considerable storage overhead, particularly with real (as op-
posed to synthetic) RDF graphs. With this in mind, we formulate the following
aims for our partitioning scheme:

Aim 1. maximise the number of local answers to star queries,
Aim 2. achieve similar, or better, partition quality than schemes employing

n-hop duplication, and
Aim 3. minimise duplication, particularly compared to n-hop duplication.

3.2 Our Data Partitioning Scheme

Given an RDF graph G, let ∗ be a distinguished wildcard resource such that
∗ 6∈ voc(G). Now let V ⊆ voc(G) be a subset of the vocabulary of G. Given a
resource r, let [r]V = r if r ∈ V and [r]V = ∗ otherwise. Moreover, given an RDF
atom A = 〈s, p, o〉, let [A]V = 〈[s]V , [p]V , [o]V 〉. Finally, given an RDF graph G,
let [G]V be the RDF graph defined by [G]V = {[A]V | A ∈ G}. In the rest of
this section we formalise our data partitioning scheme, and in Section 4 we show
how to use the wildcard resource to answer queries.

Instead of partitioning triples directly, we partition the vocabulary of the
graph and use the result to construct a partition of the triples. More precisely, to
construct an n-partition of G we first partition voc(G) into n subsets V1, . . . , Vn,
and then we use these to construct a partition G = ([G]V1

, . . . , [G]Vn
) of G. To

ensure that G is a valid partition, we must select V1, . . . , Vn such that

G ⊆ [G]V1 ∪ . . . ∪ [G]Vn (4)

holds. To achieve this, we first partition the vocabulary voc(G) into n disjoint sets
V ′1 , . . . , V

′
n, and then we extend these sets so that condition (4) is satisfied. This

extension allows resources to be duplicated in multiple partition elements, which
in turn means triples can also be duplicated. Typically, the duplicated triples
are those that are on, or near, the border between partition elements. Since
resource ∗ is not contained in voc(G), we use the subset relation in condition
(4), rather than a more intuitive equality relation. Furthermore, our approach
ensures that, for each partition element Gi = [G]Vi

and each triple 〈s, p, o〉 ∈ G,
if {s, p, o} ⊆ voc(Gi), then 〈s, p, o〉 ∈ Gi holds. This property is not satisfied in
previously known partitioning schemes, but it increases partition quality. We
formalise these ideas using the following steps.

Step 1. Compute the undirected graph G′ by removing from G all schema
triples and triples containing class and literal resources (i.e., all triples of
the form 〈s, rdf :type, o〉 and 〈s, p, `〉 with ` a literal), and by treating each
remaining triple 〈s, p, o〉 as an undirected edge connecting s and o.
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Step 2. Partition the nodes of G′ into n disjoint sets using min-cut graph parti-
tioning (e.g., using METIS), and let V ′1 , . . . , V

′
n be the resulting vocabularies.

Step 3. Extend each V ′i to V ?i = V ′i ∪ {r | r occurs in a schema triple in G}.
Step 4. Extend each V ?i to Vi = V ?i ∪ {o | 〈s, p, o〉 ∈ G and s ∈ V ?i }.
Step 5. Calculate [G]Vi

for each Vi, and set G = {[G]V1
, . . . , [G]Vn

}.

In Step 1, we takes into account Assumption 5 that schema triples can be
replicated in each partition element. Furthermore, in line with our Assumptions
3 and 4 on our query workload, we do not expect triples to participate in joins
on classes and literals; thus, we remove such triples in Step 1 so that the min-cut
graph partitioning algorithm does not attempt to place resources connected via
class or literal resources into the same partition element.

In order to satisfy (4), we must ensure that, for each triple A ∈ G, some
Vi exists such that voc(A) ∈ Vi. Thus, we must reintroduce the triples from G
that correspond to edges in G′ that were ‘cut’ during min-cut partitioning, as
well as triples removed in Step 1. Thus, in Step 3 we introduce all resources
occurring in the schema (including all classes and properties) into all partition
elements; note that this ensures an efficient evaluation of queries mentioned in
Assumption 2. Finally, since we assume that subject–subject joins are common
(cf. Assumption 1), in Step 4 we reintroduce the missing triples into the partition
element that contains the triple subject.

Partition element [G]Vi is the core owner of a resource r if r ∈ V ′i . Note that,
if [G]Vi is the core owner of a resource r, then [G]Vi contains all triples in which
r occurs in the subject position. Hence, if Q is a star query in which variable ?x
participates in subject–subject joins, then all answers in which ?x is mapped to
r can be obtained by evaluating Q in [G]Vi

; in other words, all answers to star
queries are local, which is in line with our Aim 1.

3.3 An Example

To make our scheme clear, we present an extended example. Let G be the RDF
graph containing the following eight triples, shown schematically in Figure 1a.

G = { 〈a,R, b〉, 〈b, R, c〉, 〈b, R, d〉, 〈d,R, f〉, 〈e,R, d〉,
〈f,R, a〉, 〈f,R, e〉, 〈b, rdf :type, s〉, 〈e, rdf :type, t〉} (5)

To produce a 2-partition of G, in Step 1 we first remove all triples containing
class and literal resources; in our example, we remove triples 〈b, rdf :type, s〉 and
〈d, rdf :type, t〉. In Step 2 we then apply min-cut graph partitioning to the re-
sulting graph to split the resources into two sets while minimising the number
of cut edges; let us assume that this produces the following vocabularies:

V ′1 = {a, b, c} V ′2 = {d, e, f} (6)

In Steps 3 and 4 we then extend these vocabularies so that each partition element
that is a core owner of a subject also contains all triples with that subject, and
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(a) Example Graph G (b) Partition Element [G]V1
(c) Partition Element [G]V2

Fig. 1: Example Graph G and the Resulting Partitioning Elements

so that each partition element includes all class and property resources; in our
example, this produces the following vocabularies:

V1 = {a, b, c, d, s, t, R, rdf :type} V2 = {a, d, e, f, s, t, R, rdf :type} (7)

Due to this step, nodes a, d, s and t as duplicated in V1 and V2; we explain
using node d why this is necessary. Graph [G]V1

must contain all triples whose
subject is in V ′1 ; thus, since 〈b, R, d〉 is in G and b is in V ′1 , we must add d to
V1. Finally, we construct [G]V1

and [G]V2
as shown in Figures 1b and 1c.

4 Distributed Query Answering

Although there is considerable variation in the details, existing query answering
schemes, such as [9, 11], generally proceed via the following steps: a query is
broken up into pieces, all of which can be evaluated independently within par-
tition elements; each query piece is evaluated in the relevant partition element
to obtain partial matches; and the partial matches are then joined into query
answers. As an example, consider the following query:

Q = 〈?x, rdf :type, s〉 ∧ 〈?x,R, ?y〉 ∧ 〈?z,R, ?x〉 (8)

The data partitioning scheme critically governs the first step. For example, if the
data partitioning scheme guarantees that subject–subject joins can be evaluated
locally, then the query must be broken up into pieces each of which involves only
subject–subject joins; thus, query Q will be broken into the following pieces:

Q1 = 〈?x, rdf :type, s〉 ∧ 〈?x,R, ?y〉 Q2 = 〈?z,R, ?x〉 (9)

If the data partitioning scheme employs n-hop duplication, one can break the
query into pieces that involve joins with n hops; however, as we show in Section 5,
duplication can incur a considerable storage overhead.

The main drawback of such approaches is that they do not take advantage of
local answers. For example, answer µ = {?x 7→ b, ?y 7→ d, ?z 7→ b} is local with
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respect to the partition [G]V1
shown in Figure 1b, but it would not be retrieved

by evaluating Q on [G]V1
directly; instead, one must evaluate Q1 and Q2 on [G]V1

and then join the results. This can be problematical since evaluating query pieces
might be less efficient than evaluating the entire query at once.

Our query answering scheme uses a completely different approach. Roughly
speaking, we first evaluate each query in each partition element independently,
thus retrieving all local answers without any partial query evaluation or commu-
nication between the servers. However, in this step we may also retrieve answers
containing the wildcard resource, each of which represents a potential match of
the query across partition elements, so we join such answers to obtain all an-
swers to the query. In this way, we restrict communication and partial query
evaluation to (possible) non-local answers, rather than all answers.

4.1 Formalisation

To formalise our query answering scheme, we first introduce some notation. Let
V be a vocabulary not containing ∗. For Q a conjunctive query of the form (1), let
[Q]V = [A1]V ∧ . . . ∧ [Am]V . Furthermore, for µ a variable assignment, let [µ]V
be the variable assignment such that dom([µ]V ) = dom(µ) and, for each variable
x ∈ dom(µ), we have [µ]V (x) = µ(x) if µ(x) ∈ V , and [µ]V (x) = ∗ if µ(x) 6∈ V .

In the rest of this section, we fix an arbitrary conjunctive query Q of the
form (1) with m atoms, an arbitrary RDF graph G, and an arbitrary partition
G = ([G]V1

, . . . , [G]Vn
) of G. To evaluate Q in G, we first evaluate [Q]Vi

in [G]Vi

for each 1 ≤ i ≤ n. Note that query Q may contain resources not contained in Vi;
therefore, in each partition element [G]Vi we evaluate [Q]Vi , rather than Q. We
then join all answers obtained in the previous step, while assuming that resource
∗ matches any other resource. We formalise the join procedure as follows.

Definition 1. A variable assignment µ is a join of assignments µ1 and µ2,
written µ = µ1 ./ µ2, if dom(µ) = dom(µ1) = dom(µ2) and, for each x ∈ dom(µ),
(i) µ1(x) = µ2(x) implies µ(x) = µ1(x) = µ2(x), and (ii) µ1(x) 6= µ2(x) implies
µ1(x) = ∗ and µ(x) = µ2(x), or µ2(x) = ∗ and µ(x) = µ1(x).

An assignment can be an answer to Q on G only if it instantiates all atoms
of Q, which we formalise as follows.

Definition 2. Let µ be a variable assignment with dom(µ) = var(Q). The set of
valid atoms of Q under µ is defined as valµ(Q) = {j | ∗ 6∈ voc(µ(Aj))}. Moreover,
µ is valid for Q if |valµ(Q)| = m.

Furthermore, when evaluating [Q]Vi
in [G]Vi

, we can ignore any variable
assignment µ1 ∈ ans([Q]Vi , [G]Vi) that is redundant according to the following
definition. Intuitively, µ1 is redundant if, for each µ ∈ ans(Q,G) that ‘extends’
µ1 (i.e., such that µ1 = [µ]Vi

), there exists a variable assignment µ2 obtained by
evaluating [Q]Vj

in some partition element [G]Vj
such that µ extends µ2, and

the set of atoms of Q fully instantiated by µ2 strictly includes the set of atoms
fully instantiated by µ1. Note that this includes the case where no µ ∈ ans(Q,G)
extends µ1. This idea is formally captured using the following definition.
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Definition 3. Consider arbitrary 1 ≤ i ≤ n and µ1 ∈ ans([Q]Vi
, [G]Vi

). Assign-
ment µ1 is redundant for Q and i if, for each assignment µ ∈ ans(Q,G) such
that µ1 = [µ]Vi , there exist 1 ≤ j ≤ n and an assignment µ2 ∈ ans([Q]Vj , [G]Vj )
such that µ2 = [µ]Vj and valµ1([Q]Vi) ( valµ2([Q]Vj ). If such µ1 is neither valid
for Q nor redundant for Q and i, then µ1 is a partial match of Q in [G]Vi

.

As a simple consequence of Definition 3, note that the number of non-
redundant answers in each partition element is at most equal to the number of
non-local query answers. Theorem 1 captures the essence of our query answer-
ing scheme. Intuitively, it says that each answer µ to Q on G is obtained either
by evaluating [Q]Vi

on some partition element [G]Vi
(i.e., it is a local answer),

or by joining non-valid and non-redundant assignments µ1, . . . , µn obtained by
evaluating [Q]Vi

on [G]Vi
that instantiate all atoms of Q.

Theorem 1. For a variable assignment µ, we have µ ∈ ans(Q,G) if and only if

1. µ is valid for Q and µ ∈ ans([Q]Vi
, [G]Vi

) for some 1 ≤ i ≤ n, or
2. variable assignments µ1, . . . , µn exist such that

(a) for each 1 ≤ i ≤ n, either dom(µi) = var(Q) and rng(µi) = {∗}, or we
have µi ∈ ans([Q]Vi , [G]Vi) and µi is a partial match of Q in [G]Vi ,

(b) for each 1 ≤ j ≤ m, some 1 ≤ k ≤ n exists such that j ∈ valµk
([Q]Vk

),
and

(c) µ = µ1 ./ . . . ./ µn.

Proof. (⇒) Assume that µ ∈ ans(Q,G). The claim holds trivially if µ satisfies
(1), so assume that µ does not satisfy (1). For each 1 ≤ i ≤ n, let ξi = [µ]Vi

, and
let µi be such that dom(µi) = var(Q) and rng(µi) = {∗} if ξi is redundant for Q
and µi = ξi otherwise. We next show that each µi satisfies (2a)–(2c).

(2a) Consider an arbitrary 1 ≤ i ≤ n. The claim holds trivially if ξi is re-
dundant for Q and i, so we assume that µi = ξi is not redundant for Q and i.
Since we assume that µ 6∈ ans(Q,G), assignment ξi is not valid for Q. For each
1 ≤ j ≤ m, since µ(Aj) ∈ G, we clearly have [µ(Aj)]Vi

∈ [G]Vi
; furthermore, we

have [µ(Aj)]Vi
= µi([Aj ]Vi

), so µi([Aj ]Vi
) ∈ [G]Vi

holds. Consequently, we have
µi ∈ ans([Q]Vi , [G]Vi), as required.

(2b) Consider an arbitrary 1 ≤ j ≤ m; then, µ ∈ ans(Q,G) clearly implies
µ(Aj) ∈ G. Since G ⊆

⋃
i[G]Vi

, some 1 ≤ i ≤ n exists such that ξi(Aj) ∈ [G]Vi
, so

clearly j ∈ valξi([Q]Vi
). Now choose 1 ≤ k ≤ n such that valµk

([Q]Vk
) is a largest

set satisfying valξi([Q]Vi
) ⊆ valξk([Q]Vk

). Since valµk
([Q]Vk

) is largest, such ξk is
not redundant for Q and k, so µk = ξk; but then, j ∈ valµk

([Q]Vk
), as required.

(2c) For each variable x ∈ dom(µ), some 1 ≤ i ≤ n exists such that µ(x) ∈ Vi;
hence, it is obvious that µ = ξ1 ./ . . . ./ ξn holds. We next show that we can
successively replace in this equation each ξi that is redundant for Q and i
with µi. To this end, choose an arbitrary ξi that is redundant for Q and i,
and choose an arbitrary 1 ≤ j ≤ n such that valξi([Q]Vi

) ⊆ valξj ([Q]Vj
) and ξj

is not redundant for Q and j; clearly, we have [ξi]Vj ./ µj = µj . Now consider
an arbitrary variable x ∈ dom(ξi) such that ξi(x) 6= ∗ and ξi(x) 6= ξj(x). Since
valξi([Q]Vi

) ⊆ valξj ([Q]Vj
) holds, variable x occurs in Q only in atoms A` such
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that ∗ ∈ voc(ξi(A`)), so ` 6∈ valξi([Q]Vi
). But then, by (2b), some 1 ≤ k ≤ n ex-

ists such that ξk(x) = ξi(x) and ξk is not redundant for Q and k. But then,
µ = ξ1 ./ . . . ξi−1 ./ µi ./ ξi+1 ./ ξn clearly holds. We can iteratively replace in
this equation each ξi that is redundant for Q and i with µi without affecting the
equality, as required.

(⇐) Assume that (1) is true for some µ; then µ([Aj ]Vi) = µ(Aj) for each
1 ≤ j ≤ m, so clearly µ ∈ ans(Q,G). Assume now that (2a)–(2c) are true, and
consider an arbitrary 1 ≤ j ≤ m. By (2a) and (2b), some 1 ≤ i ≤ n exists such
that µi([Aj ]Vi

) ∈ [G]Vi
and ∗ 6∈ voc(µi([Aj ]Vi

)). But then, µi([Aj ]Vi
) ∈ G; fur-

thermore, by (2c), µi(x) = µ(x) for each variable x ∈ Vj , so µ(Aj) ∈ G. Conse-
quently, µ ∈ ans(Q,G). ut

Hence, the answers to a query Q over G can be computed as follows. First,
each i-th server computes ans([Q]Vi , [G]Vi) in parallel, and it immediately re-
turns all answers that are valid for Q. Second, the server identifies a sub-
set Pi ⊆ ans([Q]Vi

, [G]Vi
) of partial matches of Q in [G]Vi

, and it also extends
Pi with assignment µ such that dom(µ) = var(Q) and rng(µ) = {∗}. Third, all
servers communicate Pi to one designated server, which then computes the join
P1 ./ . . . ./ Pn and returns each result that instantiates all atoms of Q. Our
query answering scheme thus requires distributed computation only for answers
spanning partition boundaries.

4.2 Identifying Redundant Answers

Checking whether some µ1 ∈ ans([Q]Vi
, [G]Vi

) is redundant for Q and i requires
one to consider each µ ∈ ans(Q,G), which is clearly impractical. Thus, in this
section we present an approximate redundancy check. Note that Theorem 1 holds
even if some µi in Condition (2a) is redundant, so using an approximate check
is safe from the correctness point of view.

Our optimisation is based on the fact that our data partitioning scheme
ensures that answers to subject–subject joins are always local. Hence, if, for
some µ, each ‘star’ in Q contains an atom that is not valid for µ, then µ is
redundant. This is captured formally in Proposition 1; its proof is trivial, so we
omit it for the sake of brevity.

Proposition 1. Consider an arbitrary 1 ≤ i ≤ n and an arbitrary variable as-
signment µ ∈ ans([Q]Vi

, [G]Vi
). Then, µ is redundant for Q and i if, for each

term s 6= ∗ occurring in µ([Q]Vi
) in a subject position, an atom A ∈ Q exists

such that s occurs in the subject position of µ([A]Vi
) and ∗ ∈ voc(µ([A]Vi

)).

4.3 Limitations of our Query Answering Strategy

Practical applicability of our approach depends critically on effective removal of
redundant answers. As we show in Section 5, the optimisation from Proposition 1
is effective on some, but not on all queries. The latter is often the case for long
chain queries (i.e., queries of the form 〈x0, R1, x1〉∧ . . .∧〈xn−1, Rn, xn〉): in each
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partition element, the wildcard resource typically has a large fan-out and fan-in,
and it also occurs in triples of the form 〈∗, Ri, ∗〉, which can give rise to a large
number of answers that are not redundant.

As a possible remedy, we shall explore the possibility of adapting the ap-
proach presented in [21]. We envisage an algorithm that evaluates a query in
each partition element using nested index loop joins; however, as soon as the
algorithm matches some variable to ∗, the algorithm sends the variable matches
identified thus far to other servers for continued evaluation. Such an algorithm
would still produce all local answers locally and without breaking the query up
into pieces, thus reaping the same benefits as the the approach we presented
in this paper, but it would not explore any redundant answers. The main open
question is to develop a suitable query planning algorithm.

5 Experimental Evaluation

In this section we experimentally evaluate our approach using the Lehigh Uni-
versity Benchmark (LUBM) and the SPARQL Performance Benchmark (SP2B).
Each test dataset was split into a partition of size 20, and we used the queries
available in the respective benchmarks. This size was chosen to make it directly
comparable to related works such as [9, 11]. For a fixed dataset, increasing the
partition size is likely to increase the number of non-local answers as the data be-
comes more fragmented; in contrast, fixing partition size while increasing the size
of the dataset is likely to reduce the proportion of non-local answers. The extent
to which these changes affect partition quality is out of the scope of this paper
and we leave it for our future work. As we have already mentioned, we have not
yet implemented a complete system that would allow us to measure end-to-end
query answering times; hence, we only conducted the following experiments.

For each G = (G1, . . . , G20) of a test dataset G, we calculated (i) the per-
centage of local answers to test queries, (ii) the storage overhead—that is, the

percentage |G1|+...+|G20|−|G|
|G| , and (iii) the number of partial matches to test

queries, according to Proposition 1. While experiment (i) determines how many
non-local answers must be constructed, experiment (iii) provides us with an
indication of how much work is required for this construction. This is critical be-
cause, in order to ensure the completeness of query answers, all partial matches
in all partition elements must be computed and joined together.

We compared our approach with subject-based hash partitioning (written
Hash) as in [8, 21], and semantic hash partitioning (written SHAPE ) [11], which
uses an optimised form of subject hashing and directed 2-hop duplication. We
did not consider the graph partitioning approach by [9] because SHAPE was
shown to offer superior performance. All of these partitioning approaches ensure
that all answers to all star queries are local. Furthermore, Proposition 1 ensures
there are no partial matches to star queries so we did not consider them in our
tests. We used the RDFox system1 to compute non-local answers, and so we use
RDFox as the name of our approach.

1 http://www.cs.ox.ac.uk/isg/tools/RDFox/
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5.1 Test Datasets

The Lehigh University Benchmark (LUBM) [6] is a commonly used Semantic
Web benchmark. It consists of a synthetic data generator for a simple univer-
sity domain ontology, and 14 test queries, nine of which are star queries. The
generator is parameterised by a number of universities, for which it creates data
from the university domain. We used LUBM-2000, containing approximately 267
million triples. The main drawback of LUBM is that the data for each university
is highly modular: entities in each university contain many more links amongst
themselves than to entities in other universities. We used the five non-star bench-
mark queries and the following manually created circular query Qc:

SELECT DISTINCT ?w ?x ?y ?z WHERE {

?x ub:worksFor ?y . ?y ub:subOrganizationOf ?z .

?w ub:undergraduateDegreeFrom ?z . ?w ub:advisor ?x }

Some LUBM queries have non-empty results only if the data is extended
according to the axioms from the LUBM ontology; however, since distributed
reasoning is out of scope of this paper, we rewrote the test queries into unions
of conjunctive queries in order to take the ontology axioms into account.

The SPARQL Performance Benchmark (SP2B) [16] is another synthetic
benchmark that produces DBLP-like bibliographic data. We used an SP2B
dataset with approximately 200 million triples. The benchmark provides 12
queries, of which we have used the five non-star queries for our comparison.
Some of these queries contain OPTIONAL clauses, which we simply deleted
because optional matches are currently not supported in our framework.

5.2 Partition Quality

Table 1 shows the percentage of local answers for each LUBM query. RDFox
and SHAPE were able to answer all queries completely, which is in part due
to the modular nature of the data; however, hashing performs poorly on all
queries. Table 2 shows the results for SP2B. Again, hashing performs very poorly.
Furthermore, both RDFox and SHAPE handled queries 4 and 6 well; however,
RDFox significantly outperformed SHAPE on queries 5, 7, and 8.

One can intuitively understand these results as follows. Hashing by subject,
although effective for star queries, performs very poorly for other types of query:
in most cases, it provides almost no local answers. Thus, hashing is likely to be a
poor data partitioning scheme for applications with diverse query loads. SHAPE
considerably improves hashing, to the extent that only two benchmark queries
are problematic. However, by partitioning the data based on its structure, one
can further improve the overall performance: our approach is weakest on query
Q5 from SP2B, but it still provides a high percentage of local answers.
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Table 1: LUBM Percentage of Local Answers
System Q2 Q8 Q9 Q11 Q12 Qc

RDFox 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

SHAPE 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Hash 0.44% 4.96% 0.23% 5.80% 0.00% 0.04%

Table 2: SP2B Percentage of Local Answers
System Q4 Q5 Q6 Q7 Q8

RDFox 95.95% 73.00% 99.90% 92.41% 91.45%

SHAPE 95.23% 9.72% 100.00% 41.97% 73.72%

Hash 0.01% 0.77% 0.25% 0.08% 0.26%

Table 3: Storage Overhead
RDFox SHAPE Hash

LUBM 3.60% 84.23% 0.00%
SP2B 0.60% 38.63% 0.00%

5.3 Storage Overhead

As we have already discussed, the percentage of local answers can be increased
using n-hop duplication, but at the expense of storage overhead. For example,
with 2-hop duplication, the approach by [9] can incur an overhead up to 430%.

Table 3 shows the overhead for all partitioning schemes and data sets we
considered in our experiments. Hashing clearly incurs no overhead; moreover,
although SHAPE incurs a considerable overhead, that can be acceptable for
some applications. Our partitioning scheme, however, exhibits a negligible over-
head. Intuitively, this is due to the fact that min-cut graph partitioning tries to
minimise the number of cut edges, which leads to a small level of duplication.

5.4 Query Evaluation

We evaluated each test query on each partition element, and we discarded all
valid assignments and some redundant assignments (according to Proposition 1).
For each query, we computed the mean, minimum, maximum, and the sum of
the numbers of partial matches across all partition elements.

On LUBM, queries 2, 8, 11 and 12 had no partial matches, so they can be
evaluated fully locally without the need for any distributed processing. Queries
9 and c had 6 and 11, respectively, partial matches in total, so the necessary
distributed processing is negligible.

On SP2B, evaluating queries 4 and 8 on all partition elements did not finish
within an hour, producing very large numbers of partial matches. Since the
number of partial matches in each partition element is bounded by the number
of non-local answers and the latter is small (cf. Table 2), this result shows that
Proposition 1 is not very efficient in identifying redundant answers for queries
4 and 8. Table 4 summarises the results for the remaining queries; in order to
better understand these numbers, the table also shows the numbers of total
and non-local answers. For queries 5 and 7, the numbers of partial matches are
much smaller than the numbers of non-local answers, suggesting that joining the
partial matches should be practically feasible. In contrast, the number of partial
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Table 4: Partial Matches for SP2B

Query
Total

Answers
Non-local
Answers

Partial Matches
Mean Min Max Total

Q5 2,970,234 801,958 19,128 1,847 43,755 382,564

Q6 38,111,881 38,048 819,709 117,781 1,321,781 16,394,172

Q7 184,193 13,989 2,874 642 6,528 57,471

matches to query 6 is orders of magnitude larger than the number of non-local
answers, suggesting that joining the partial answers might be difficult.

To summarise, our approach produces no or few partial matches on many
types of query, but it runs into problems with long chain queries such as SP2B
query 8. We shall try to improve on this using the ideas outlined in Section 4.3.

6 Conclusion

We have presented a new scheme for partitioning RDF data across a cluster
of shared-nothing servers. Our main goal is to minimise the number of connec-
tions between partition elements so as to ensure that most answers to typical
queries are local (i.e., they can be obtained by evaluating the query locally in
all partition elements). We encode in each partition element links to other par-
tition elements, and we use this information in a novel query answering scheme
to correctly compute all answers to queries. Unlike existing systems, our query
answering scheme retrieves all local answers by simply evaluating the query in
each partition element, and it uses the encoded links to reduce the need for dis-
tributed processing. We have shown that, on the LUBM and SP2B benchmarks,
test queries have more local answers under our data partitioning scheme than
with subject-based hashing or semantic partitioning [11], and that our data par-
titioning scheme incurs a negligible storage overhead. Finally, we have shown
that our query answering scheme is effective on many, but not all test queries.

We see two main challenges for our future work. First, we shall try to adapt
the graph exploration technique by [21] to obtain a more robust query answering
scheme. Second, we shall extend the RDFox system to a fully fledged distributed
RDF data store and compare it with existing systems.
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Abstract. A distributed query execution method for Resource Description Frame-
work (RDF) storage managers is proposed. Method is intended for use with an
RDF storage manager called big3store to enable it to perform efficient query ex-
ecution over large-scale RDF data sets. The storage manager converts SPARQL
queries into tree structures using RDF algebra formalism. The nodes of those tree
structures are represented by independent processes that execute the query au-
tonomously and in a highly parallel manner by sending asynchronous messages
to each other. The proposed data and query distribution method decreases the
amount of inter-server messages during query executions by use of the semantic
properties of RDF data sets.

1 Introduction

There is a growing interest to gather, store, and query data from various aspects of
human knowledge. Such data includes geographical data; data about various aspects
of human activities such as music, literature, and sport; scientific data from biology,
chemistry, astronomy, and other scientific fields; and data related to the activities of
governments and other influential institutions.

There is a consensus among Semantic Web researchers that data should be presented
in some form of graph data model in which simple and natural abstractions are used to
represent data as subjects and their properties described by objects — that is, by means
of the nodes and edges of a graph. Considering this from the point of view of knowledge
developed in the fields of data modeling and knowledge representation, all existing data
models and languages for the representation of knowledge can be transformed, in many
cases quite naturally, into some incarnation of a graph.

A number of practical projects that allow for the gathering and storing of graph
data already exist. One of the most famous examples is the Linked Open Data (LOD)
project, which gathered more than 32 giga triples from areas including the media, ge-
ography, government, life sciences and others. In that project, the Resource Description
Framework (RDF), which is a form of graph data model, was used to represent the data.

Storing and querying such huge amounts of structured data has created a problem-
atic scenario that could be compared to the problem of querying huge amounts of text
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that appeared after the advent of the Internet. The differences are in the degree of struc-
ture and semantics that data formats such as RDF and OWL encompass compared to
HTML. HTML data published on the Internet represents a huge hypergraph of docu-
ments interconnected with links. Links between documents do not carry any specific
semantics except those representing URIs.

In contrast to HTML, RDF is a data model in which all data is represented by triples
(subject, predicate, object). In this format, we can represent entities and their properties
similarly to object-oriented models or AI frames. Moreover, we can represent objects at
different levels of abstraction: RDF can model not only ordinary data and data modeling
schemata but also meta-data.

The primary modeling principle of RDF is the assignment of special meaning to
properties with selected names. In this way, we can define the exact meaning of prop-
erties that are commonly used to describe documents, persons, relationships, and oth-
ers. Vocabularies are employed to standardize the meaning of properties. The Dublin
Core [6] project is an example of defining a set of common properties of things. The
XML-schema [23] vocabulary defines the properties that can specify types of objects,
and the vocabularies of properties and things are used to define higher-level data models
realized on top of RDF. The RDF Schema [17] and the OWL [16] are two examples of
providing object-oriented data modeling facilities and constructs for the representation
of logic.

The contributions of this paper are as follows. Firstly, we propose an architecture
of RDF query processor that gives rise to novel distributed query execution method for
RDF storage managers. While the architecture is rooted in relational database technolo-
gies, we propose flexible and highly parallel solution allowing allocation and execution
of very large number of queries expressed as data-flow programs on cluster of servers.
Secondly, we propose the use of semantic distribution of triples that distributes data
based on relationships of triples to the conceptual schema. Semantic distribution pro-
vides very general means for partitioning triple-store into non-overlapping portions,
and, allows efficient distribution of query processing.

The paper is organized as follows. Section 2 presents architecture of storage system
big3store. This section introduces data distribution method and main building blocks
of storage system such as front servers and data servers. Conceptual design of query
execution is presented in Section 3. Query execution engine is based on efficient par-
allelisation of query trees. Related work is described in Section 4. Finally, concluding
remarks are given in Section 5.

2 Architecture of big3store

To provide fast access to big RDF databases and to allow a heavy workload, a storage
manager has to provide facilities for flexible distribution and replication of RDF data.
To this end, the storage manager has to be re-configurable to allow many servers to
work together in a cluster and to allow for different configurations of clusters to be used
when executing different queries.

The storage manager for big RDF databases should be based on SPARQL and on the
algebra of RDF graphs [19]. To provide a more general and durable storage manager,
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its design should be based on the concept of graph databases [2]. Such design would
enable adding interfaces for popular graph data models other than RDF to be added
later.

2.1 Storage manager as cluster of data servers

Possible distribution and replication is crucial for the design of the storage manager in
order for it to be available globally and to enable heavy workload that is expected if
LOD data is going to be used by the masses.

Heavy distribution and replication is currently possible because of the availability
of inexpensive commodity hardware for servers with huge RAM (1–100 GB) and rel-
atively large disks. The same concept was used by Google while bootstrapping and
remains the main design direction of Google data centers [10].

As we discuss in more detail later, a cluster of data servers can easily be configured
into a very fast data-flow machine answering a particular SPARQL query. A similar idea
has recently appeared in the area of super-computers [9], where advances in hardware
technologies now allow compiler preprocessors to configure hardware facilities for a
specific program. The program then runs on specially configured hardware that gains
considerable speed.

The leading idea for the distribution of SPARQL query processing is splitting a
SPARQL query into parts that are executed on different data servers, thus minimizing
the processing time. Data servers executing parts of the SPARQL query are connected
by streams of data to form a cluster configuration defined for a particular SPARQL
query. Similar to the way in which some super-computers are based on configuring
intelligent hardware, we also have a strict separation between two phases: 1) compiling
the program into a hardware configuration and 2) executing the program on the selected
hardware configuration.

Figure 1 shows a cluster composed of two types of servers: front servers repre-
sented as the nodes of plane A, and data servers represented as the nodes of plane B.
Data servers are configured in columns labeled from (a) to (f). A complete database is
distributed to columns. with each column storing a portion of the complete database.
The methods for distributing the RDF data are discussed in the following sections.

The portion of the database stored in a column is replicated into rows labeled from
1 to 5. The number of rows for a particular column is determined dynamically based on
the query workload for each particular column. The heavier the load on a given column,
the greater the number of row data servers chosen for replication. The particular row
used for executing a query is selected dynamically based on the current load of servers
in a column.

A particular cluster configuration for answering a particular SPARQL query is pro-
grammed by front servers. This is also where the optimization of the SPARQL query
takes place. The front server receives a SPARQL query, parses it to the query tree, and
performs optimization based on the algebraic properties of the SPARQL set algebra
operations. Parts of the query tree are sent to internal data servers to define the cluster
configuration used for a particular query execution.
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Fig. 1. Configuration of servers for a particular query

2.2 Data distribution

RDF data stored in a data center is distributed to columns of data servers that form the
cluster. Each data server includes a triple store accessible through TCP/IP. Each column
is composed of an array of data servers referred to as rows that are replicas storing the
identical portion of the big3store database.

Distribution of RDF data to columns can be defined in more ways. First, data can
be split manually by assigning larger data sets (databases) to columns. One example of
such a dataset is DBpedia [4]. Second, RDF data can be split into columns automatically
by using SPARQL queries as the means to determine groups of RDF triples that are
likely to be accessed by one query. In this context, RDFS classes can be employed as
the main subject of distribution, as suggested in [18]. Groups of classes that are usually
accessed together can be assigned to columns where similar class instances are stored.

The benefits of splitting a triple store into separate data stores (tables) have been
shown in [24]. Basically, queries can be executed a few times faster. The reason for this
can only be the size and height of indexes defined for tables representing triples. This
means that fewer blocks have to be read from a database if RDF data is distributed to
different tables.

There are two scenarios in which the automatic reconfiguration of an RDF database
can be implemented. First, a complete database may be automatically distributed into
columns, as described above. Second, the degree of replication of the portion of the
database stored in a column needs to be determined. In other words, we have to de-
termine how many rows (replicas) are needed to process queries targeting a particular
column efficiently.

2.3 Front servers

Front servers are servers where SPARQL queries initiated by remote users are accepted,
parsed, optimized, and then distributed to data servers.

A SPARQL parser checks the syntax of a query and returns a diagnosis to the user
as well as prepares the query tree for the optimization phase. The most convenient
approach to optimizing a SPARQL query is to transform queries into algebra and then
use the algebraic properties for optimization. The algebra of RDF graphs [19] designed
for big3store is based on the work of Angles and Gutierrez [1] and of Schmidt et al. [20].
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The algebra of RDF graphs reflects the nature of the RDF graph data model. While
it is defined on sets, the arguments of algebraic operation and its result are RDF graphs.
Furthermore, the expressions of RDF graph algebra are graphs themselves. Triple pat-
terns represent the leaves of expressions. Graph patterns are expressions that stand for
graphs with variables in place of nodes and edges.

In order to ship the partial results of a distributed query tree among data servers, the
algebra of RDF graphs uses operation copy, first introduced in [5]. Operation copy
can be well integrated with operations defined on graphs due to the simple set of alge-
braic rules that can be used for copy.

A query optimizer rooted in relational rule-based query optimization has been pro-
posed by Savnik in [18] for handling RDF queries. Similarly to our approach Schmidt
and Lausen [20] also use relational rules for the optimization of SPARQL queries. Op-
timization in big3store is based on a variant of dynamic programming algorithm for
optimizing the algebraic expressions called memoisation. Since the search space grows
exponentially with the number of the rules, we experiment with beam search selecting
only the most promising transformations. Query cost estimation, that is vital for guid-
ing beam search, is also rooted in cost estimation of relational database management
systems.

The result of query optimization for a given SPARQL query is a query tree where
operations copy are placed optimally representing the points where triples are shipped
from one data server to another. The global query is therefore split into parts that are
executed on different data servers. Initially, the front server sends a query to a data
server from a column that includes data needed to process the top level of the query
tree. Note that all query parts are already in optimized form.

2.4 Data servers with local triple store

In this section, we present the main features of a distributed query evaluation. We first
give an overview of the distributed query evaluation and then present some of the prop-
erties of the local triple store and the evaluation of queries within it.

Evaluation of distributed query The primary job of a data server is to evaluate the
query tree received from either the front server or some other data server. The query tree
includes detailed information about access paths and methods for the implementation
of joins used for processing the query. We refer to such a query tree as an annotated
query tree. The data server evaluates the annotated query tree as it is without further
optimization.

The triple store of the data server accepts queries via TCP/IP and returns the re-
sults to the return address of the calling server. The communication between the calling
server and a given data server is realized by means of streams of triples representing the
results of the query tree evaluation. When needed, the materialization of stream results
is handled by the calling server.

The query tree can include parts that have to be executed on some other data servers
if data needed for a particular query part is located at some other columns. Such query
parts are represented by query sub-trees with root nodes that denote operation copy.
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Again, query sub-trees can include additional instances of operation copy so that the
resulting structure of data servers constructed for a particular SPARQL query can form
a tree.

Since operation copy is implemented by using a stream of triples, the query parts
that form a complete query tree can be executed in parallel. While the data server is
processing the query sub-tree that computes the next triple to be consumed by a given
data server, it can also process previously read triples and/or perform other tasks such
as accessing local triples. Moreover, big3store can process many query parts in parallel
as a parallel data-flow machine.

Local evaluation of queries Let us now present the evaluation of queries on the local
data server. Assume the data server receives an annotated query tree qt. Recall that
qt includes information about access paths to the tables of triples and algorithms to be
used for implementing algebra operations.

The local triple store includes the implementations of algebra operations and of
access paths, i.e., methods for accessing indexed tables of triples. Algebraic operations
include selection with or without the use of index; projection; set operations for union,
intersection, and difference; and variants of nested-loop join with or without index,
where the index supports either equality joins or range queries.

A non-distributed storage manager for storing triples and indexes for accessing
triples has to deal with similar problems to those faced by relational storage managers.
We use a local database management system called Mnesia, which is a part of Erlang
programming language [3] distribution, to store and manage tables of triples, referred
to as triple-stores. Triple-store of big3store is a table including four attributes: triple
id, subject, property and object. Adding triple ids to triple-store is the decision that we
expect will allow more consistent and uniform storage of various data related to triples,
such as, named graphs and other groupings of triples, properties of triples (reification),
and the like. Each triple-store maintains 6 indexes for accessing SPO attributes and
additional index for triple ids.

We tend to use low levels of Mnesia storage manager including access to tables
and indexes since optimization is performed by global query optimizer of big3store.
Furthermore, lower levels of relational storage manager can be easily replaced by some
other storage manager or even with file-based storage system. We relate this level of
storage manager to data storage facilities of Hadoop [22]. Maps, for instance, represent
main indexing mechanism of Mnesia while they are well comparable to Hadoop Maps.
In this way, we achieve the simplicity of lower parts of storage manager in comparison
to the complexity of RDBMs—this may represent a trend started with Hadoop. We
can compare our work on compiling and executing high-level data-flow programs with
programs and scripts written using Hadoop. Finally, for practical reasons, some features
of Mnesia will be used for implementation of caching in big3store. Data about user
context, including the results of all his queries, can be easily stored in Mnesia RAM
tables increasing in this way significantly the speed of query evaluation.

Let us now give some more details about implementation of operation copy. As
stated briefly before, operation copy implements a stream between two data servers.
This stream is realized by first initiating the execution of a sub-tree of copy (i.e. a
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query part) and then requesting that the results be sent back to the calling data server by
means of a stream. On the caller side, access to the stream, i.e., the results of operation
copy, is realized as an access method that reads triples from the stream.

2.5 Distribution of Triples and Triple Patterns

The main idea of semantic distribution is to distribute database triples on the basis of
database schema. In other words, the distribution of triples to data servers (columns) is
based on the relationship of triples to triple-base schema.

We suppose that we have triple-base such that complete schema for ground triples is
defined and stored in database. An example of such RDF datasets is YAGO [13] which
includes classes of all subjects, schema for all properties as well as taxonomy of classes.

In the sequel we will first present semantic distribution function in general. Class-
based and property-based semantic distribution functions will be described in more
detail. Some properties and trade-offs of semantic distribution function will be given.

Distribution function The distribution of triples can be achieved by means of a dis-
tribution function dist(), which maps a triple or a triple pattern into a set of column
identifiers. Each column identifier represents a portion of the complete triple-base. The
sizes of distributed portions must be similar.

The proposed method for semantic distribution is general since it allows various
subsets of {S, P,O} to be used as the means for distribution.

For instance, distribution can be defined on S part of the schema: instances of S’s
type c are stored in a column assigned to type c. Similarly, triples can also be stored
on the basis of P part. In this case, each property has a column where its instances
are stored. Furthermore, if we would like to separate properties defined for particular
classes, distribution might be defined on the S and P parts of the triple schema.

Let us now consider two types of semantic distribution in more detail. Firstly, we
present class-based semantic distribution which uses S part of triples, and secondly, we
consider property-based semantic distribution which uses P part of triples.

Class-based distribution The first possibility of triple distributions is to distribute
triples in partitions on the basis of the S part of triple schema, i.e., based on RDF class.
A triple belongs to a RDF class if it describes the property of an instance of that class.
The RDF class of the instance is determined by means of the rdf :type property. We
assume that all instances of classes have an rdf :type relationship defined in a given
triple store.

What are the effects of triple distribution based on classes in terms of query eval-
uation? In the case of queries related to the properties of two classes, the queries are
evaluated on two different servers. In the case of queries tackling the properties of in-
stances of three RDF classes, they are evaluated on three servers, etc.

In the case in which spreading the evaluation of queries to more data servers is
desired, the properties pertaining to a particular class must not be stored in one column
but rather must be distributed into additional columns.
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Continuing to distribute the properties of RDF classes to different columns would in
the end result in a distribution function based on the P -part of triples and not on RDF
classes. This would make sense if we could determine experimentally that it is more
efficient to distribute a query tree to data servers such that one query node is executed
on one query node.

Property-based distribution The second type of semantic distribution can be defined
on the basis of P part of triples, i.e., based on RDF properties. Since each ground triple
includes the property part same as does the schema triple denoting given ground triple,
it is easier to define the distribution based on properties. Columns are assigned to each
property so that database triples are distributed uniformly to data servers.

In this case the distribution function can be simply defined by extracting P part of
triple or triple pattern, and, then, mapping property to columns using predefined table.
However, a problem appears in the case P part of triple pattern includes a variable. The
only possible way to query properties when using distribution based on properties is by
sending “broadcast” query to data servers of all columns.

Trade-offs of distribution function It remains to be determined experimentally what
kind of distribution function behaves optimally for a given triple-base and query work-
load.

The first aspect of query evaluation that needs to be considered is weather it is better
to store data and evaluate all query nodes related to a given class c on one data server
or, is it better to split data and query nodes related to c to separate data servers (i.e.,
columns).

Another variable of query evaluation, that is not directly related to semantic distri-
bution, is to determine how many query nodes should be assigned to one data server in
average to give optimal performances.

In one extreme, complete query is executed on one data server and the other extreme
is that each query node is executed on a separate data server, each of which is connected
by streams. The optimal distribution of queries to an array of data servers may require
assigning query nodes to data servers such that each data server executes an average of
two to three query nodes.

The patterns in mapping nodes of query trees to data servers that achieve fast exe-
cution of query trees on a given triple-base need to be excavated through experiments.
The patterns can be used as a target structure of query optimization. One way to do
that is to use patterns for tuning parameters of query optimization such as cost of mov-
ing intermediate results of queries among data servers. Another way to use patterns in
query optimization is to restrict search space by focusing search to queries that match
excavated patterns.

3 Conceptual Design of Query Execution

The query execution module (QEM) of the big3store system takes query tree structures
as inputs and produces streams of result messages as outputs. When a SPARQL query
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is requested to be execute on the big3store system, the query is translated into a graph
structure called a query tree (an example is shown in Figure 3). The query tree can be
modified by the query optimizer module of big3store to make the structure better for ef-
ficient execution. While query trees are represented in some data structures in big3store,
QEM takes query trees represented by processes. These processes are dynamically gen-
erated by the preparation procedure of the big3store system. Query trees are executed
by those processes cooperating with other big3store processes. Therefore, QEM is not
a single process but rather consists of several processes including query tree processes
to be executed. These processes can be distributed to multiple physical server machines
that are connected by an ordinary network. A process is identified by a combination of
server id and process id.

While most parts of the big3store system have not been developed, the prototype
of QEM was developed and tested using small example data on a single server (non-
distributed) environment. The reason for developing QEM first is that the investigation
of query execution efficiency seems to be the most important challenge. The next step
of our research will be to experiment the QEM execution in distributed environments.

In this section, we introduce processes for performing such query executions and
then give an example of the entire flow of a query execution.

3.1 Query tree

Process query_tree accepts requests for managing query nodes. A physical server
machine has only one query_tree process in big3store. It manages active query node
processes, which are described in the next subsection; accepts requests for creating and
deleting query nodes on any server; and provides unique process ids in the server on
which the query_tree is running for creating query nodes on the server.

3.2 Query node

Process query_node implements a query node that constructs a query tree with other
query nodes to represent a query. A query_node process can run on any physical
server machine on which a query_tree process is running. Each query_node
process has its own hash table on which to store multiple property values. It provides
put and get interfaces for accessing property values. While various types of relations
between query nodes can be represented by properties, parent relations are used for
representing the stem structures of query trees. Each query tree has a root query node
that has no value for a parent property. Each query node excepting the root query node
must have a parent property for representing its parent query node by a combination
of server id and process id. A query_node process must have a type property that
indicates an operation type of RDF algebra [19]. Currently, triple pattern and join types
are implemented.

Triple pattern query node A triple pattern query_node process represents a match-
ing condition for triples. It must have a triple_pattern property for representing a triple
pattern that consists of IRIs, literals, or variables in subject, predicate, and object slots.
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It can handle list_vars, eval, and result asynchronous messages. If it receives a list_vars
message, it sends a list of variables contained in the triple pattern to its parent by a
construct_vars asynchronous message. It also sets a vars property for reminding the
list of variables. If it receives an eval message, it sends a find_stream asynchronous
message to data server processes for invoking streamer processes that repeatedly send
result messages to the triple pattern process, each of which contains a concrete triple
matching the triple pattern. If it receives a result message, it sends the message to its
parent query node.

Join query node A join query_node process represents a conjunctive condition
of two query nodes. It must have nodInner and nodOuter properties for representing
the target query nodes of the inner and outer edges, respectively. It can handle eval,
construct_vars, and result asynchronous messages.

If it receives an eval message, it sends list_vars messages to its inner and outer query
nodes for listing all variables that appear in the sub tree. At the same time, it sends an
eval message to the outer query node. Granted query tree structures are left-deep style
and only permit outer edges to have join query nodes (Figure 3). Therefore, this eval-
propagation strategy successfully constructs a variable list for any granted query tree. If
a join query node process receives construct_vars messages from inner and outer query
nodes, it merges both variable lists and sends the merged list to its parent query node
by another construct_vars message.

If it receives a result message from its outer query node, it sends synchronous mes-
sages to data servers for inquiring whether the triple set in the result message satisfies
the join condition or not. A result message consists of an alpha map and a val map, the
structures of which are shown in Tables 1 and 2, respectively. The alpha map associates
the set of triples and their origin query nodes, each of which has a matching triple pat-
tern, and the val map represents variable bindings that were determined by the set of
triples. When the query node asks the data servers to process the result message, the
node fetches a triple pattern from its inner query node, substitutes the val map variable
bindings in the inner triple pattern, and sends the substituted triple pattern to the data
servers. If the data servers find no matching triple, the node does nothing. Otherwise,
the node generates new result messages for each matched triple and sends them to a par-
ent query node asynchronously. The new result messages are made by a new alpha map
and a new val map. The alpha map is added by an element that maps the found triple
with the inner query node and the val map is added by variable bindings determined by
the found triple.

Table 1. Alpha map structure

No. Field name Description
1 triple triple id in the triple table
2 query_node process id of corresponding query node
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Table 2. Val map structure

No. Field name Description
1 variable string_id coded id of the variable string
2 value string_id coded id of the IRI or literal value

3.3 Other processes

There are several other processes that are necessary to execute QEM successfully.

Data server Each process of the data_server holds a chunk of triple data, and
multiple data server processes are invoked in running the b3s server of a distributed
configuration. A data server process dispatches storing and retrieving requests of held
triple data. It also accepts requests for producing streams of data that match specific
triple patterns. It uses a Mnesia table for storing triple data.

Streamer A data server streamer process is invoked by a data server process when
it receives a request for generating streams for a given triple pattern. The streamer re-
trieves matching triples from the data server’s triple table. After sending all stream data,
the streamer closes the stream and terminates itself.

Map between string and id Process string_id maintains a mapping table and
dispatches access operations for the table.

Translating all IRIs and literals into integer ids makes the triple tables smaller. How-
ever, the cost of processing the translation might create a bottleneck affecting the exe-
cution efficiency of distributed systems. One solution is to run multiple string_id
processes in different servers, but this would also increase the number of translate op-
erations for identifying the same strings between different string_id processes.

3.4 An Example

In this subsection, we describe a message stream flow using the example query shown
in Figure 2 in order to explain the conceptual design of the big3store query execution
mechanism.

SELECT * WHERE {
?c <hasArea> ?a .
?c <hasLatitude> ?l .
?c <hasInfration> ?i

}

Fig. 2. SPARQL query of q01a.
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Fig. 3. Query tree structure of query q01a.

A query tree can be executed by sending an {eval, Root, Parent} asynchronous mes-
sage to a query_tree process. The argument Root shows the root query node of a
query tree to be executed. The query_tree process sends an eval message to the root
node. The argument Parent shows a process that receives the result of the query. Figure
3 depicts the query tree structure of the example SPARQL query shown in Figure 2,
where the black and white circles show the triple pattern and join query nodes, respec-
tively. Query nodes are numbered N01, N02, ... in this figure for convenience. Query
node N01 is a root join query node that is connected to query nodes N02 and N05 by
outer and inner edges, respectively. Query node N02 is a join query node that is con-
nected to query nodes N03 and N04 by outer and inner edges, respectively. Query nodes
N03, N04, and N05 are triple pattern query nodes. Because query node N01 is the root
of the query tree, it receives an eval asynchronous message for starting the execution of
the query tree.

After receiving the initial eval message, the join query nodes propagate eval mes-
sages following outer edges. Figure 4 shows the messages sent by the processes for
executing the query tree of Figure 3. As in Figure 3, black and white circles are used for
representing the triple pattern and join query nodes. Each circle also represents an inde-
pendent process in this figure. Two gray circles are added to represent a data server and a
streamer processes. Edges drawn in solid lines show asynchronous messages and edges
drawn in dashed lines show synchronous messages or function calls. After query node
N01 receives an eval message, N01 sends another eval message to its outer query node
N02. Query node N02 then performs the same action to N03. Because N03 is a triple
pattern query node, it sends a {find_stream, TriplePattern, QueryNode} asynchronous
messages to the data server process. The argument TriplePattern is the triple pattern that
was set to N03. The argument QueryNode is used for specifying the caller of the mes-
sage. It is N03 in this example. When the data server process receives the find_stream
message, it invokes a new streamer process on the same physical server machine with
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Fig. 4. Message stream flow of the execution of q01a.

the data server. The streamer process repeatedly sends result asynchronous messages to
N03, each of which has a triple that matches the triple pattern of N03.

Each triple is represented in an alpha map entry in a corresponding result message.
When query node N03 receives a result message, N03 checks a triple in the message for
the selection condition. If the triple satisfies the condition, query node N03 sends the
result message to its parent query node N02. When query node N02 receives a result
message, N02 substitutes the triple pattern of N04 with val map variable bindings in the
message. N02 then sends a synchronous search message to the data server process for
retrieving triples that match the substituted N04 triple pattern. When query node N02
retrieves a matching triple from the data server, N02 modifies alpha and val maps in the
received message and sends the new result message to its parent query node N01. Note
that plural triples from the data server produce plural result messages from query node
N02. Query node N01 performs actions similar to N02 for retrieving triples that match
the triple pattern of N05. The answers for the query of Figure 2 are sent from query
node N01 as a stream of result messages, each of which includes a set of triples that is
a concrete solution of the query.

4 Related Work

In this section, we present some of the more relevant systems for querying RDF data,
including 3store, 4store, Virtuoso, and Hexastore. See the survey presented in [14] for
a more complete overview of RDF storage managers.

3store 3store [11] was originally used for Semantic Web applications, particularly for
storing the hyphen.info RDF dataset describing computer science research in the UK.
The final version of the database consisted of 5,000 classes and about 20 million triples.
3store was implemented on top of a MySQL database management system and included
simple inferential capabilities (e.g., class, sub-class, and sub-property queries) mainly
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implemented by means of MySQL queries. Hashing was used to translate URIs into the
internal form of representation.

The query engine of 3store used RDQL query language originally defined in the
frame of the Jena project. RDQL triple expressions are first translated into relational
calculus and constraints are added to relational calculus expressions that are then trans-
lated into SQL. Inference is implemented by a combination of forward and backward
chaining that computes the consequences of asserted data.

4store 4store [12] was designed and implemented to support a range of novel appli-
cations emerging from the Semantic Web. RDF databases were constructed from Web
pages including people-centric information, resulting in ontology with billions of RDF
triples. The requirements were to store and manage 15× 109 triples.

4store is designed to operate on clusters of low-cost servers. It is implemented in
ANSI C. It was estimated that the complete index for accessing quads would require
around 100 GB of RAM, which is why data was distributed to a cluster of 64-bit mul-
ticore x86 Linux servers, each storing a portion of RDF data. The architecture of the
cluster is a "Shared Nothing" type. Cluster nodes are divided into processing and stor-
age nodes. Data segments stored on different nodes are determined by a simple formula
that calculates the RID of the subject modulo number of segments. The benefit of such
design is parallel access to RDF triples distributed to nodes holding segments of RDF
data. Furthermore, segments can be replicated to distribute the total workload to the
nodes holding replicated RDF data. Communication between nodes is directed by pro-
cessing nodes via TCP/IP. There is no communication between data nodes.

The 4store query engine is based on relational algebra. The Primary source of opti-
mization is conventional ordering on the joins. However, they also use common subject
optimization and cardinality reduction. In spite of considerable work on query opti-
mization, 4store lacks complete query optimization as it is provided by relational query
optimizers.

Virtuoso Virtuoso [7, 8, 15] is a multi-model database management system based on
relational database technology. The approach of Virtuoso is to treat a triple store as a
table composed of four columns. The main concept of the approach to the manage-
ment of RDF data is to exploit existing relational techniques and to add functionality
to RDBMS in order to deal with features specific to RDF data. The most important
aspects considered by Virtuoso designers include extending SQL types with RDF data
types, dealing with unpredictable object sizes, providing efficient indexing, extending
relational statistics to cope with an RDF store based on a single table, and ensuring
efficient storage of RDF data.

Virtuoso integrates SPARQL into SQL. SPARQL queries are translated into SQL
during parsing. SPARQL has in this way all aggregation functions. SPARQL union
is translated directly into SQL and SPARQL optional is translated into left outer join.
Since RDF triples are stored in one quad table, relational statistics is not useful. Virtuoso
uses sampling during query translations to estimate the cost of alternative plans. Basic
RDF inference on TBox is done using query rewriting. For ABox reasoning, Virtuoso
expands the semantics of owl : same− as by transitive closure.
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Hexastore The Hexastore [21] approach to RDF storage system uses triples as the basis
for storing RDF data. The problems of existent triple stores pursued are the scalability of
RDF databases in a distributed environment and the complete implementation of query
processors including query optimization, persistent indexes, and other issues inherent
in database technology.

Six indexes are defined on top of a table with three columns, one for each combina-
tion of three columns. The index used for the implementation has three levels ordered
by a particular combination of SPO attributes. Each level is sorted in this way, which
enables the use of ordering for optimizations during query evaluation. The proposed in-
dex provides a natural representation of multi-valued properties and allows for the fast
implementation of merge-join, intersection, and union.

5 Conclusion and Future Work

The rough design of the big3store system and precise implementation of query execu-
tion module (QEM) were presented. A semantic distribution method of RDF data and
a distributed query execution method for RDF storage managers were presented. The
storage manager big3store converts SPARQL queries into query tree structures using
RDF algebra formalism. Nodes of those tree structures are represented by indepen-
dent query node processes that execute the query autonomously and in a highly parallel
manner while sending asynchronous messages to each other. The semantic data distri-
bution method decreases the number of inter-server messages during query executions
by using the semantic properties of RDF data sets.

This research is currently at the preliminary stage, and so far only the query exe-
cution module has been implemented and tested. While we are currently focusing on
the effective execution of SPARQL queries in distributed computational environments,
our future work will include the implementation of the minimum big3store system,
benchmarks using large-scale triple data, and the confirmation of the efficiency of the
proposed methods.
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Abstract. Automated generation of axioms from streaming data, such
as traffic and text, can result in very large ontologies that single machine
reasoners cannot handle. Reasoning with large ontologies requires dis-
tributed solutions. Scalable reasoning techniques for RDFS, OWL Horst
and OWL 2 RL now exist. For OWL 2 EL, several distributed reasoning
approaches have been tried, but are all perceived to be inefficient. We
analyze this perception. We analyze completion rule based distributed
approaches, using different characteristics, such as dependency among
the rules, implementation optimizations, how axioms and rules are dis-
tributed. We also present a distributed queue approach for the classifi-
cation of ontologies in description logic EL+ (fragment of OWL 2 EL).

1 Introduction

The rate at which data is generated is increasing at an alarming rate in this age
of Big Data. Data processing techniques should also scale up correspondingly.
This also holds true in the case of OWL ontologies and reasoning. Manually
constructed ontologies would most likely remain small or medium-sized, in the
order of several thousands or up to a few million axioms. Generating axioms
automatically from streaming data such as traffic [13] or text [7] can result in
very large ontologies. Also, in case of reasoning tasks such as classification, the
number of inferred axioms keep increasing until the reasoning task terminates.
In some cases the size of the result is 75 times that of the input axioms [24]. This
turns out to be problematic for current reasoners in case of very large ontologies.
A distributed approach to reasoning not only accommodates large ontologies but
also provides more processing power.

While some progress has been made regarding scalable reasoning over RDFS,
OWL Horst and OWL 2 RL [22, 23, 21, 20], applying similar techniques to OWL
2 EL turns out to be inefficient. In this paper, we investigate the reasons behind
it as well as analyze other distributed approaches to reasoning over ontologies
in description logic EL+, which is a fragment of OWL 2 EL. We also present
a distributed version of the reasoning algorithm used in CEL reasoner [5]. The
distributed approaches mentioned in [15] are explored in detail here.

Rest of the paper is as follows. Section 2 contains a brief description of EL+

and classification. In Section 3, three approaches to distributed reasoning are
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Normal Form Completion Rule

A1 u · · · uAn v B R1 If A1, . . . , An ∈ S(X), A1 u · · · uAn v B ∈ O, and B 6∈ S(X)
then S(X) := S(X) ∪ {B}

A v ∃r.B R2 If A ∈ S(X), A v ∃r.B ∈ O, and (X,B) 6∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

∃r.A v B R3 If (X,Y ) ∈ R(r), A ∈ S(Y ), ∃r.A v B ∈ O, and B 6∈ S(x)
then S(X) := S(X) ∪ {B}

r v s R4 If (X,Y ) ∈ R(r), r v s ∈ O, and (X,Y ) 6∈ R(s)
then R(s) := R(s) ∪ {(X,Y )}

r ◦ s v t R5 If (X,Y ) ∈ R(r), (Y,Z) ∈ R(s), r ◦ s v t ∈ O, (x, Z) 6∈ R(t)
then R(t) := R(t) ∪ {(X,Z)}

Table 1. Completion rules for classifying EL+ ontologies

described. Section 4 offers alternative evaluation strategies. In Section 5, some
possible future directions are mentioned and Section 6 contains some related
work. We conclude in Section 7.

2 Preliminaries

We briefly introduce the description logic EL+. Let the concept names be denoted
by NC , role names by NR and N>C denotes NC including >. Concepts in EL+

are formed according to the grammar

A ::= C | > | A uB | ∃r.B

where C ∈ N>C , r ∈ NR, and A,B over (possibly complex) concepts. An EL+

ontology is a finite set of general concept inclusions (GCIs) A v B and role
inclusions (RIs) r1 ◦ · · · ◦ rn v r, where A,B ∈ N>C , n is a positive integer and
r, r1, . . . , rn ∈ NR.

The reasoning task that we consider here is classification – the computation
of the complete subsumption hierarchy of all concept names occurring in the
ontology. Other reasoning tasks such as concept satisfiability can be reduced to
classification. Classification is computed using a set of completion rules shown
in Table 1. It requires the input ontology O to be in normal form, where all
concept inclusions have one of the forms

A v B | A1 u . . . uAn v B | A v ∃r.B | ∃r.A v B

and all role inclusions have the form r v s or r ◦ s v t. A,A1, . . . , An, B ∈ N>C
and r, s, t ∈ NR.

The transformation into normal form can be done in linear time [2], and the
process potentially introduces concept names not found in the original ontology.
The normalized ontology is a conservative extension of the original, in the sense
that every model of the original can be extended into one for the normalized
ontology. In the rest of the paper, we assume that all of the ontologies we deal
with are already in normal form.
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The classification rules make use of two mappings S and R, S : N>C 7→ 2N
>
C ,

R : NR 7→ 2(N
>
C×N

>
C ). Intuitively, B ∈ S(A) implies A v B, while (A,B) ∈ R(r)

implies A v ∃r.B. Before applying the rules, for each element X ∈N>C , S(X)
is initialized to contain {X,>}, and R(r), for each role name r, is initialized to
∅. The sets S(X) and R(r) are then extended by applying the completion rules
shown in Table 1. Here we consider two ways in which these rules are applied to
the axioms, which are described in later sections.

Classification of ontologies using the completion rules is guaranteed to ter-
minate in polynomial time relative to the size of the input ontology, and it is
also sound and complete. Proofs can be found in [2]. For further background on
description logics and how they relate to the Web Ontology Language OWL,
please see [3, 11].

In this paper, we consider only completion rule based distributed approaches
for classification.

We use the terms node and machine interchangeably throughout the paper.

3 Distributed Classification

We analyze three different distributed approaches to EL+ classification. Among
them two have been published previously.

3.1 Prologue

Before embarking on a parallelization effort, it will be useful to check how
amenable it is for parallelization. Note that we are using the term parallelization
to mean the following – group of processes co-operating with each other to ac-
complish a common goal. These processes could either be running on the same
machine or on different machines. Here, we are interested in the latter, in which
case, there is no shared memory.

Dependency among the completion rules of Table 1 is shown in Figure 1.
Every rule is dependent on one or more rules. So, in this case, applying rules to
axioms cannot be an embarrassingly parallel computation. When these rules are
applied in a distributed environment, some amount of communication is required
among the nodes handling the rules which slows down the system.

Contrary to this, in RDFS and OWL Horst, little or no dependency exists
among the rules and thus embarrassingly parallel computations are possible [23,
21]. As a result of this, in these cases, linear or sometimes better than linear
performance with respect increasing nodes was possible.

3.2 MapReduce Approach

Taking the lead from the application of MapReduce to RDFS and OWL Horst
reasoning, an attempt was made in [17, 24] to use it for EL+ reasoning.

MapReduce is a programming model for distributed processing of data on
clusters of machines [8]. MapReduce task consists of two main phases: map
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Fig. 1. Dependency among the rules is shown by a directed arrow. A → B indicates
that the input of A is dependent on the output of B.

and reduce. In map phase, a user-defined function receives a key-value pair and
outputs a set of key-value pairs. All the pairs sharing the same key are grouped
and passed to the reduce phase. A user-defined reduce function is set up to
process the grouped pairs. Completion of a task might involve several such map
and reduce cycles. The map and reduce functions can be represented as

Map : (k1, v1) 7→ list(k2, v2)

Reduce : (k2, list(v2)) 7→ list(v3)

The completion rules in Table 1 are slightly modified to suit the key-value
nature of MapReduce approach. The modified rules are given in Table 2. In
the map phase, preconditions of the rules are checked and in the reduce phase,
conclusion of the rules are computed. For each concept X ∈ N>C and r ∈ NR,
S(X) is initialized to {X,>} and R(r), P (X), Q(X) are initialized to ∅. Rules
R1, R3 and R5 from Table 1 cannot be dealt with using MapReduce approach,
since they have multiple join conditions, which is the reason to split them in the
modified rules.

The general strategy used in this approach is given in Algorithm 1. At the end
of each iteration, duplicates are removed from S,R, P,Q. Algorithm terminates
when there are no changes made by the application of all the rules.

From [24], the performance of this approach and comparison with other rea-
soners is given in Table 3. The experiments were run on a Hadoop cluster with
8 nodes. Each node has a 2-core, 3GHz processor with 2GB RAM. Although the
experiments were conducted on machines with less memory, the evaluation of
[17] on machines with more memory (16GB) and larger ontologies has similar
performance.

3.2.1 Analysis

1. Pros Aspects such as parallelization and fault tolerance are taken care of by
the framework.
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Normal Form Completion Rule Key

A1 uA2 v B R1-1 If A1 ∈ S(X) and A1 uA2 v B ∈ O A1

then P (X) := P (X) ∪ {(A2, B)}
(A,B) ∈ P (X) R1-2 If A ∈ S(X) and ((A,B) ∈ P (X) or A v B ∈ O) A

then S(X) := S(X) ∪ {B}
A v ∃r.B R2 If A ∈ S(X) and A v ∃r.B ∈ O A

then R(r) := R(r) ∪ {(X,B)}
∃r.A v B for A R3-1 If A ∈ S(X) and ∃r.A v B ∈ O A

then Q(X) := Q(X) ∪ {∃r.X v B}
∃r.A v B for r R3-2 If (X,Y ) ∈ R(r) and ∃r.Y v B ∈ Q(X) r (or Y )

then S(X) := S(X) ∪ {B}
r v s R4 If (X,Y ) ∈ R(r) and r v s ∈ O r

then R(s) := R(s) ∪ {(X,Y )}
r ◦ s v t R5 If (X,Z) ∈ R(r) and (Z, Y ) ∈ R(s) Z

then R(r ◦ s) := R(r ◦ s) ∪ {(X,Y )}
Table 2. Revised completion rules for EL+. The keys are used in the MapReduce
algorithm. Note that in R4, r is allowed to be compound, i.e., of the form s ◦ t.

2. Cons There are several disadvantages of this approach. a) Duplicates are
generated and an extra step is required to remove the duplicates. b) Since
there are dependencies among the rules (Figure 1), MapReduce approach
may not best suited. c) In each iteration, the algorithm needs to consider
only the newly generated data (compared to last iteration). It is difficult
to detect and filter axioms that generate redundant inferences. d) In every
iteration, axioms are again reassigned to the machines in the cluster. In
the case of RDFS reasoning, schema triples are loaded in-memory and this
assignment of schema triples to machines takes place only once. This is not
possible in the case of EL+ reasoning.

3. Axiom Distribution Axioms are distributed randomly.
4. Rule Distribution In each iteration, all the machines in the cluster, apply

the same rule on the local axioms.
5. Optimizations Rule R4 is taken care of in the reduce phase of rules R2 and

R5. So rule R4 need not be applied again.

3.3 Distributed Queue Approach

Compared to the fixpoint iteration method of rule application, it is claimed that
the queue based approach is efficient on a single machine [4]. In this section, we
describe a distributed implementation of the queue approach and verify whether
the claim also holds true in a distributed setting. First we briefly explain the
queue approach on a single machine from [4] and then describe the distributed
implementation of it.

For each concept in N>C , a queue is assigned. Instead of applying the rules
mechanically, in the queue approach, appropriate rules are triggered based on
the type of entries in the queue. The possible entries in the queue are of the
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S(X)← {X,>}, for each X ∈ N>C
R(r)← {}, for each r ∈ NR

P (X)← {}, for each X ∈ N>C
Q(X)← {}, for each X ∈ N>C
repeat

Old.S(X)← S(X);
Old.R(r)← R(r);
Old.P (X)← P (X);
Old.Q(X)← Q(X);
P (X) := P (X) ∪ apply R1-1;
S(X) := S(X) ∪ apply R1-2;
R(r) := R(r) ∪ apply R2;
Q(X) := Q(X) ∪ (apply R3-1);
S(X) := S(X) ∪ apply R3-2;
R(r) := R(r) ∪ apply R4;
R(r) := R(r) ∪ apply R5;

until ((Old.S(X) = S(X)) and (Old.R(r) = R(r)) and (Old.P (X) = P (X))
and (Old.Q(X) = Q(X)));

Algorithm 1: General strategy for applying rules in MapReduce approach

Ontology #Axioms ELK jCEL Pellet MR Approach

1-GALEN 90000 2.3 116.2 742.4 6552.5
2-GALEN 178000 5.5 243.7 OOM 11952.5
4-GALEN 352000 11.6 OOM OOM 19908.3
8-GALEN 703000 OOM OOM OOM 38268.7

Table 3. Classification time (in seconds) of MapReduce (MR) approach. OOM indi-
cates Out Of Memory.

form B1, . . . , Bn → B′ and ∃r.B with B1, . . . , B
′, B ∈ N>C and r ∈ NR. If n =

0, B1, . . . , Bn → B′ is simply written as B′. Ô is a mapping from a concept to
sets of queue entries as follows.

– if A1u . . .uAn v B ∈ O and Ai = A, then A1u . . .uAi−1uAi+1u . . .uAn →
B ∈ Ô(A)

– if A v ∃r.B ∈ O, then ∃r.B ∈ Ô(A)

– if ∃r.A v B ∈ O, then B ∈ Ô(∃r.A)

For each concept A ∈ N>C , queue(A) is initialized to Ô(A) ∪ Ô(>). For
each queue, an entry is fetched and Algorithm 2 is applied. The procedure in
Algorithm 3 is called by process(A,X) whenever a new pair of (A,B) is added to

R(r). Note that, for any concept A, Ô(A) does not change during the application
of the two procedures (process, process-new-edge); S(A), queue(A) and R(r)
keep changing.

In the distributed setup, axioms are represented as key-value pairs as shown
in Table 4. For axioms of the form A1 u . . . u An v B, for each Ai (key) in the
conjunct, (A1, . . . , Ai−1, Ai+1, . . . , An, B) is associated as its value.
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if X = B1, . . . , Bn → B′ and B′ /∈ S(A) then
if B1, . . . , Bn ∈ S(A) then

continue with X ← B′ ;

else
return;

if X is a concept name and X /∈ S(A) then
S(A)← S(A) ∪ {X};
queue(A) ← queue(A) ∪ Ô(X);
forall the concept names B and role names r with (B,A) ∈ R(r) do

queue(B) ← queue(B) ∪ Ô(∃r.X);

if X is an existential restriction ∃r.B and (A,B) /∈ R(r) then
process-new-edge(A, r,B);

Algorithm 2: process(A,X)

forall the role names s with r v∗Ô s do
R(s)← R(s) ∪ {(A,B)};
queue(A) ← queue(A) ∪

⋃
{B′|B′∈S(B)} Ô(∃s.B′);

forall the concept names A′ and role names t, u do
t ◦ s v u ∈ O and (A′, A) ∈ R(t) and (A′, B) /∈ R(u) do
process-new-edge(A′, u, B);

forall the concept names B′ and role names t, u do
s ◦ t v u ∈ O and (B,B′) ∈ R(t) and (A,B′) /∈ R(u) do
process-new-edge(A, u,B′);

Algorithm 3: process-new-edge(A, r,B)

Axioms are distributed across the machines in the cluster based on their
keys. A hash function, H maps a unique key, K, to a particular node, N , in the
cluster.

H : K 7→ N

For each concept A, care is taken to map Ô(A), queue(A) and S(A) to the
same node. This localizes the interaction (read/write) between these three sets,
which in turn improves the performance. In order not to mix up the keys among
these three sets, unique namespace is used along with the key. For example,
O : A,Q : A,S : A, for Ô(A), queue(A) and S(A) respectively, but, for the hash
function, A is used in all the three cases.

After the axioms are loaded, each machine applies Algorithm 2 to only the
queues local to it. In order to read/write to the non-local values, each machine
uses the hash function, H. Each machine acts as a reasoner and cooperates with
other machines to get the missing values and perform the classification task.

A single process called Termination Controller(TC), keeps track of the status
of computation across all the nodes in the cluster. TC receives either DONE or
NOT-DONE message from each machine. A double check termination strategy is
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Axiom Key Value

A v B A B
A1 u . . . uAn v B Ai (A1, . . . , Ai−1, Ai+1, . . . , An, B)

A v ∃r.B A (r,B)
∃r.A v B (r, A) B
r v s r s

r ◦ s v t r (s, t)
s (r, t)

Table 4. Key-Value pairs for axioms

msgCount ← 0;
currentState ← NO-CHECK;
on pid ? status-msg → {
if status-msg = DONE then

msgCount ← msgCount + 1;
if msgCount = TOTAL-NODES then

if currentState = NO-CHECK then
currentState ← SINGLE-CHECK-DONE;
broadcast(CHECK-AND-RESTART);

else if currentState = SINGLE-CHECK-DONE then
currentState ← DOUBLE-CHECK-DONE;
broadcast(TERMINATE);

else if status-msg = NOT-DONE then
msgCount ← 0;
currentState ← NO-CHECK;
pid ! CONTINUE-WORKING;

}
Algorithm 4: Termination Controller, TC

followed here. TC waits till it receives a DONE message from all the machines in
the cluster. It then asks all the nodes to check if any local queues are non-empty.
This is required because, after a node is done with OneIteration (Algorithm 5),
there is a possibility of other nodes inserting values in the queues of this node. If
this condition does indeed arise then a NOT-DONE message is sent to TC. TC
resets its state to NO-CHECK and implements the double check termination
strategy again. The pseudocode of TC is given in Algorithm 4. To simplify, TC
is single threaded and works on only one message at a time. Process named Job
Controller runs on each node of the cluster and implements the queue based
algorithm. This is shown in Algorithm 6.

This approach is implemented in Java and the key-value store used is Re-
dis1. Our system is called DQuEL and the source code is available at https:

//github.com/raghavam/DQuEL. We used a 13-node cluster with each node hav-

1 http://redis.io
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queues ← GetNonEmptyLocalQueues();
forall the queue A ∈ queues do

forall the entry X ∈ A do
process(A,X);

TC ! DONE;

Algorithm 5: OneIteration()

OneIteration();
on TC ? CHECK-AND-RESTART → {
queues ← GetNonEmptyLocalQueues();
if queues is ∅ then

TC ! DONE;

else
TC ! NOT-DONE;

} on TC ? CONTINUE-WORKING → OneIteration();
on TC ? TERMINATE → terminate-self;

Algorithm 6: Job Controller

ing two quad-core AMD Opteron 2300MHz processors and 12GB of heap size is
available to JVM. Timeout limit was set to 2 hours.

Not-Galen, GO, NCI, SNOMED CT and 2-SNOMED ontologies were used
for testing. The first three are obtained from http://lat.inf.tu-dresden.

de/~meng/toyont.html and SNOMED CT can be obtained from http://www.

ihtsdo.org/snomed-ct. 2-SNOMED is SNOMED replicated twice. The time
taken by some popular reasoners such as Pellet, jCEL and ELK on these ontolo-
gies is given in Table 5. Table 6 shows the classification times of DQuEL with
varying nodes.

3.3.1 Analysis Although the results are good for smaller ontologies, this ap-
proach turns out to be inefficient for larger ontologies such as SNOMED CT.
The following two factors contributes to the inefficiency. a) Batch processing of
axioms is not possible because each entry in the queue could be different from the
one processed before. It is a known fact that batch processing especially involv-
ing communication over networks improves the performance drastically. Batch

Ontology #Axioms Pellet jCEL ELK

Not-Galen 8,015 12.0 3.0 1.0
GO 28,897 5.0 5.0 2.0
NCI 46,870 6.0 7.0 3.0

SNOMED CT 1,038,481 1,845.0 327.0 24.0
2-SNOMED 2,076,962 OOM 687.0 64.0

Table 5. Classification time (in seconds) of Pellet, jCEL and ELK reasoners
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Ontology 1 node 7 nodes 13 nodes

Not-Galen 153.77 147.07 41.37
GO 165.94 147.28 43.12
NCI 205.62 55.52 30.21

SNOMED CT TimeOut TimeOut TimeOut
2-SNOMED TimeOut TimeOut TimeOut

Table 6. Classification time (in seconds) of DQuEL

processing has been used to the extent possible, but the approach described in
the next section is more amenable to that. b) Not all data required for the queue

operations is available locally. For example, data of the form Ô(∃r.B) might be
present on a different node.

1. Pros Good load balancing is possible since the hash function makes an at-
tempt to distribute axioms across the cluster equally.

2. Cons Large ontologies like SNOMED CT generate many (X,Y ) values which
makes rule R3 (Table 1) computation slow compared to other rules. This
problem is alleviated in the approach described next, by choosing r as the
key in R(r). This spreads R(r) across the cluster and enables more nodes to
work on it.

3. Axiom Distribution It is a random distribution of axioms.
4. Rule Distribution In each iteration, all the rules are applied by every node

in the cluster.
5. Optimizations R(r) sets involving role chains are duplicated as show in Table

4. This makes it easy to retrieve (X,Y ) pairs associated with either r or s
in r ◦ s v t.

3.4 Distributed Fixpoint Iteration Approach

In fixpoint iteration approach, the completion rules are applied on the axioms
iteratively until there are no changes to S(X), R(r). This idea is extended to
the distributed setting [16]. The completion rules from Table 2 and the general
strategy mentioned in Algorithm 1 are used here. Axioms are represented as
key-value pairs.

All the axioms in a normalized ontology fall into one of the normal form
categories mentioned in Table 1. This allows axioms to be split into disjoint
collections. Each such collection is assigned to a group of nodes in the cluster.
Only one rule can be applied on axioms of a particular normal form. So this
leads to a clear assignment of axioms and rules to nodes.

Architecture of this approach is shown in Figure 2. The number of nodes
per group need not be the same across all the groups. Higher number of nodes
are generally assigned to groups handling rules involving roles since they are
generally slower.

U(X) is used instead of S(X) in this approach. In the naive fixpoint iteration
approach, in order to apply a rule such as R1 from Table 1 on axioms of the form
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Fig. 2. Node assignment to rules and dependency among the completion rules. Each
oval is a collection of nodes (rectangles).

Ontology 7 nodes 9 nodes 12 nodes

Not-Galen 43.0 42.27 41.06
GO 46.20 49.39 51.83
NCI 275.0 168.96 157.36

SNOMED CT 1,610.00 1,335.81 865.89
2-SNOMED 3,238.19 2,687.75 1,699.73

Table 7. Classification time (in seconds) of DistEL

A1u . . .uAn v B, each S(X) needs to be checked for the presence of A1, . . . , An.
With U(X), it turns into set intersection of conjuncts, which are generally small
in number.

Termination is achieved with the help of barrier synchronization. At the end
of each iteration, every node broadcasts a status message indicating whether any
changes were made in this iteration and then waits for the other nodes to finish
its current iteration. After receiving the update messages from all the nodes, if
at least one node made an update then all the nodes continue with their next
iteration. Algorithm terminates when no updates are made.

This approach is implemented in Java and makes use of Redis as the key-
value store. The same cluster set up and ontologies as mentioned in the previous
section are used here. This system is named DistEL and is available at https://
github.com/raghavam/DistEL. The classification time of DistEL across several
nodes is given in Table 7.
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3.4.1 Analysis Although the runtimes of DistEL are high compared to ex-
isting reasoners, it is better than the other approaches described so far. With
more optimizations such as dynamic load balancing, the results can be further
improved.

MapReduce approach and the approach described here, use fixpoint iteration
for classification. But compared to MapReduce approach, an important advan-
tage is that nodes can communicate with each other. Since the completion rules
are interdependent, inter-node communication makes this approach efficient rel-
atively. Since a node deals with all axioms of the same type, batch processing can
be used here. Communications involving network and database can be improved
a lot with the help of batch processing.

1. Pros Axioms and rules are neatly divided across the cluster based on their
type.

2. Cons Improper load balancing.
3. Axiom Distribution Axioms are distributed based on their normal form type.
4. Rule Distribution Group of nodes in the cluster handle the same type of rule.

All the rules are applied in parallel across the cluster.
5. Optimizations a) Batch processing b) only the newly made changes in the

previous iteration are considered for the next iteration and c) for R(r) =
{(X,Y )}, instead of considering r as the key (as done in Queue approach),
(Y, r) is chosen as the key and value is X. Since distribution of set R(r) is
based on the key, this leads to a better spread of R(r) across the cluster.

4 Evaluation Strategy

Comparing the performance of single machine reasoners with distributed rea-
soners is unfair; not only due to the nature of the computation involved but
also due to the following reason. All things being equal, if the time taken on a
single machine is t then on n nodes, it takes p ∗ t/n where p is the overhead, p
≥ 1. In the case of super linear speedup, p < 1. But, as we have seen from the
results presented here, this reduction in runtime does not happen at all in the
case of distributed reasoners. But are all things equal? Considering the steps in
the algorithm in both the cases is the same, one main difference is the compu-
tations in case of single machine reasoners takes place in-memory whereas for
distributed approaches mentioned here either a database or a file system was
used. The performance varies vastly in these cases.

A simple comparison of speeds is shown in Table 8. Integers are read and
written to a HashMap in the case of RAM. For Redis, pipeline (batch operation)
read and write are used. The code used for this experiment is available at https:
//gist.github.com/raghavam/2be48a98cae31c418678. Admittedly, this is a
rather simple experiment, but it shows the difference in read/write speeds for
simple operations. For read operation, usage of RAM is 43 times faster than
Redis and 26 times faster than file. For write operation also, there is a similar
variation in performance. For random read and write operations, Redis performs
better than a file.
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Operation #Items RAM Redis File

Read 1,000,000 0.0861 3.719
Write 1,000,000 0.1833 4.688 0.2181

Table 8. Comparison of speed (in seconds) for simple read, write operations when
using RAM, Redis and File

A comparison should not be made between a distributed computation and a
single machine computation since it is not a like-for-like comparison. But, since
some sort of baseline is required, following two strategies can be considered.

1. Re-implement existing reasoners by making use of the storage system that
is used in the distributed model. For example, use Redis or a file in jCEL or
ELK.

2. Simulate distribution using existing reasoners by running a reasoner on each
node of the cluster. A messaging system can be used to facilitate communi-
cate and exchange of missing data on each node. But the performance in this
case depends on the axiom distribution. So care should be taken to follow
the same axiom distribution model in case of the distributed approach.

5 The Road Ahead

Although some progress has been made in distributed OWL 2 EL reasoning,
current results clearly indicate that more needs to be done. Apart from further
optimizations to the approaches presented here, following can be tried.

– Module based axiom distribution. For a given set of entities, a module in-
cludes all the axioms that are relevant to them [10]. If axioms are distributed
based on modules, then perhaps inter-node communication can be reduced.

– Axiom distribution based on graph partitioning. If a graph of an ontology
can be constructed then distribution of axioms based on vertex partitioning
reduces the dependencies among the axioms.

– Hadoop variants. There are several variants to the core MapReduce approach
such as Apache Spark2, Iterative MapReduce3, HaLoop4 which might be
more suitable than the core Hadoop’s MapReduce.

– Other distributed frameworks. Peer-to-peer techniques such as use of MPI
and alternative distributed frameworks such as Akka5 can be tried. As men-
tioned earlier, peer-to-peer networks offer more control over communication
between nodes when compared to MapReduce.

– Shared memory supercomputers. Since the completion rules are interdepen-
dent, may be it would be more efficient if shared memory, massively parallel
supercomputers are used. But the disadvantage in this case is that these are
specialized machines which are not commonly available.

2 http://spark.apache.org
3 http://www.iterativemapreduce.org
4 https://code.google.com/p/haloop
5 http://akka.io
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6 Related Work

Apart from the work presented here, other approaches to distributed reasoning
of OWL 2 EL ontologies have been tried. Distributed resolution technique was
applied to EL+ classification in [19]. A peer-to-peer distributed reasoning ap-
proach was presented in [6]. But, both of them do not provide any evaluation.
There is some work on parallelization of tableau algorithms related to various
description logics [1, 14].

Though not distributed, parallelization of OWL 2 EL classification has been
studied in [12, 18]. Classifying EL ontologies on a single machine using a database
instead of doing it in memory has been tried in [9].

7 Epilogue

It is possible to have very large ontologies if axioms are generated automatically
from streaming data or text. Reasoners should be capable of scaling up to these
large ontologies. But, existing reasoners are severely handicapped by their use
of only one machine. Scalable and distributed approaches to ontology reasoning
is required. We reviewed and analyzed three distributed approaches to OWL EL
ontology classification. Apart from this, we discussed some possible future direc-
tions and also evaluation strategies that can be followed to make the comparison
fair between distributed and single machine approaches.
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11. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2010)
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