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ABSTRACT
This paper describes the temporal music emotion recogni-
tion system developed at the University of Aizu for the Emo-
tion in Music task of the MediaEval 2014 benchmark evalua-
tion campaign. The arousal-valence trajectory prediction is
cast as a time series filtering task and is modeled by a state-
space models. These models include standard linear model
(Kalman filter) as well as novel non-linear, non-parametric
Gaussian Processes based dynamic system. The music sig-
nal was parametrized using standard features extracted with
the Marsyas toolkit. Based on the preliminary results ob-
tained from small random validation set, clear advantage of
any feature or model could not be observed.

1. INTRODUCTION
Gaussian Processes (GPs) [4] are becoming more and more

popular in the Machine Learning community for their ability
to learn highly non-linear mappings between two continuous
data spaces. Previously, we have successfully applied GPs
for static music emotion recognition [3]. Dynamic or contin-
uous emotion estimation is more difficult task and there are
several approaches to solve it. The simplest one is to assume
that for a relatively short period of time emotion is constant
and apply static emotion recognition methods. A better ap-
proach is to consider emotion trajectory as a time varying
process and try to track it or use time series modeling tech-
niques. In [5], authors use Kalman filters to model emotion
evolution in time for each of four data partitions. For eval-
uation, KL divergence between the predicted and reference
A-V points distributions is measured assuming ”perfect” test
samples partitioning. Our approach is similar since we also
use data partitioning, however, we apply model selection
method. In addition, we present novel dynamic music emo-
tion model based on GPs. The task and the database used
in this evaluation are described in detail in the Emotion in
Music overview paper [1].

2. STATE-SPACE MODELS
State-space models (SSM) are widely used in time series

analysis, prediction, and modeling. They consist of latent
state variable xt ∈ Re and observable measurement variable
yt ∈ Rd which are related as follows:

xt = f(xt−1) + vt−1 (1)

yt = g(xt) + wt (2)
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where f() and g() are unknown functions governing tempo-
ral state dynamics and state-to-measurement mapping re-
spectively. System and observation noises vt and wt are as-
sumed to be independent. Probabilistically, a SSM can also
be defined using two distributions: p(xt|xt−1) and p(yt|xt).
For a sequence of T measurements, the filtering task is to
approximate p(xt|y1:t), while approximating p(xt|y1:T ) is
the goal of the Rauch-Tung-Striebel (RTS) smoothing.

For continuous music emotion recognition, xt would rep-
resent the unknown A-V vector and yt would correspond
to feature vector(s). SSM learning in our case is simplified
since the state A-V labels are given for the training and f()
and g() can be learned independently.

2.1 Kalman filter
The Kalman filter is a linear SSM where f(x) = Ax

and f(x) = Bx with A and B being unknown parame-
ters, and v and w are zero mean Gaussian noises. Thus,
both p(xt|xt−1) and p(yt|xt) become Gaussians and simple
analytic solution for the filtering and smoothing tasks can
be obtained.

2.2 Gaussian Process dynamic system
When f() and g() are modeled by GPs, we get a Gaussian

Process dynamic system. Such SSMs have been recently pro-
posed, but lack efficient and commonly adopted algorithms
for learning and inference. Availability of A-V values for
training, however, makes the learning task easy since each
target dimension of f() and g() can be learned independently
using GP regression training algorithm. For the inference,
however, there is no straightforward solution. One can al-
ways opt for Monte Carlo sampling algorithms, but they are
notoriously slow. We used the solution proposed in [2]. It
is based on analytic moment matching to derive Gaussian
approximations to the filtering and smoothing distributions.

3. EXPERIMENTS
The development dataset was randomly split into training

and validation sets having 600 and 144 clips each. Full cross-
validation scenario was not adopted due to time constraints.

3.1 Feature extraction
Features were extracted from the audio signal which was

first downsampled to 22050 kHz. Using the Marsyas toolkit
we obtained features such as mfcc, spfe including zero-crossing
rate, spectral flux, centroid, and rolloff, and spectral crest
factor scf. All feature vectors were calculated from 512 sam-
ples frames with no overlap. First order statistics were cal-
culated for windows of 1 sec. with 0.5 sec. overlap. Thus,



Table 1: Kalman filter and linear RTS smoother
AROUSAL results. 144 clips validation set.

Features KF RTS
Corr.Coef. RMSE Corr.Coef. RMSE

Single model
mfcc 0.2062 0.2894 0.1070 0.3008
spfe 0.1976 0.2860 0.0998 0.3109

mfcc+spfe 0.2326 0.2378 0.0894 0.2291
mfcc+scf 0.1171 0.2288 0.1611 0.2188
baseline 0.2791 0.3631 0.1898 0.4027

Multiple models
mfcc 0.1698 0.1384 0.0991 0.1284
spfe 0.0957 0.1874 0.0292 0.1772

mfcc+spfe 0.2022 0.1290 0.1246 0.1277
mfcc+scf 0.0059 0.1613 0.0253 0.1615
baseline 0.0212 0.2276 0.0236 0.2259

for the last 30 seconds of each clip there were 61 feature vec-
tors. In addition to these features, we also used the features
from the MediaEval2014 baseline system [1].

3.2 Data clustering
In a way similar to [5], we clustered all training clips into

four clusters based on their static A-V values. Separate
SSMs were trained from each cluster’s data. During the
test, the trajectory obtained from the model which showed
the best match, i.e. the highest likelihood, was taken as the
prediction result.

4. RESULTS
In order to see the effect of data clustering, we also eval-

uated linear system trained on all 600 clips. Tables 1 and 2
show the average correlation coefficient as well as the aver-
age RMS error with respect to different features for Arousal
and Valence respectively. As can be seen, clustered mul-
tiple models show lower correlation, but smaller RMSE. It
is possible that the clustering has reduced the amount of
training for each model resulting in less accurate parameter
estimation. Table 3 shows results of the GP based system
evaluation with multiple models. Single model was not used
due to prohibitive memory requirements. Compared to the
corresponding multiple model results of the linear system,
only Valence shows some improvement.

Using the official test set consisting of 1000 clips we were
able to evaluate only the Kalman filter base system due to
time limitations. Results using the baseline features as well
as couple of Marsyas feature sets are presented in Table 4.

5. CONCLUSIONS
We presented two state-space model based dynamic music

emotion recognition systems - one linear and one based on
Gaussian Processes. The preliminary results did not show
clear advantage of any system or feature set. This is proba-
bly due to the small size of the validation set. More detailed
experiments involving more data are planned for the future.
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