
Music Emotion Tracking with Continuous Conditional
Neural Fields and Relative Representation

Vaiva Imbrasaitė
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ABSTRACT
This working notes paper introduces the system proposed
by the Rainbow group for the MediaEval Emotion in Music
2014 task. The task is concerned with predicting dynamic
emotion labels for an excerpt of a song and for our approach
we use Continuous Conditional Neural Fields and relative
feature representation both of which have been developed
or adapted by our group.

1. INTRODUCTION
The Emotion in Music task is concerned with providing

dynamic arousal and valence labels and is described in the
paper by Aljanaki et al.[1].

The use of relative feature representation has already been
introduced to the field of dynamic music annotation and
tested on MoodSwings dataset [4] by Imbrasaitė et al.[2].
They have shown substantial improvement over using stan-
dard feature representation with the standard Support Vec-
tor Regression (SVR) approach as well as comparable per-
formance to more complicated machine learning techniques
such as Continuous Conditional Random Fields.

Continuous Conditional Neural Fields (CCNF) have also
been used for dynamic music annotation by Imbrasaitė et
al.[3]. In our experiments we have achieved results that
clearly outperformed SVR when using standard feature rep-
resentation and produced similar results to using relative
feature representation. It was suspected that the short ex-
tracts (only 15s) and little variation in emotion were the
main reasons why the model was not able to achieve better
results. In this paper we are applying the same techniques
to a dataset that improves on both accounts with a hope of
clearer results.

2. METHOD

2.1 Feature extraction and representation
In our system we used two feature sets. Both feature

sets were extracted by OpenSMILE using a standard set of
features. As CCNF can suffer when dealing with a large
feature vector and fail to converge, we used a limited set of
statistical descriptors extracted from the features limiting
the total number of features to 150.

The first feature set was used as is, in the standard fea-
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ture representation. For the second feature set we used a
post-processing step to transform it into the relative feature
representation—we calculated the average for each feature
over each song and for each feature in each feature vector
we used the average and the difference between the average
and the actual feature to represent it. We thus doubled the
size of the feature vector to 300. Relative feature represen-
tation is based on the idea of expectation in music. In the
past we have shown [2] that using this feature representa-
tion can lead to substantially better results, improving the
correlation coefficient by over 10% for both axes.

2.2 CCNF
Our CCNF model consists of a undirected graphical model

that can model the conditional probability of a continuous
valued vector y (for example emotion in valence space) de-
pending on continuous x (in this case, audio features).

In our discussion we will use the following notation: x =
{x1,x2, . . . ,xn} is a set of observed input variables, X is a
matrix where the ith column represents xi,
y = {y1, y2, . . . , yn} is a set of output variables that we wish
to predict, xi ∈ Rm and yi ∈ R (patch expert response), n
is the length of the sequence of interest.

Our model for a particular set of observations is a condi-
tional probability distribution with the probability density
function:

P (y|x) =
exp(Ψ)∫∞

−∞ exp(Ψ)dy
(1)

We define two types of features in our model: vertex fea-
tures fk and edge features gk. Our potential function is
defined as:

Ψ =
∑
i

K1∑
k=1

αkfk(yi,xi,θk) +
∑
i,j

K2∑
k=1

βkgk(yi, yj) (2)

We constrain αk > 0 and βk > 0, while Θ is unconstrained.
The model parameters α = {α1, α2, . . . αK1},
Θ = {θ1,θ2, . . .θK1}, and β = {β1, β2, . . . βK2} are learned
and used for inference during testing

The vertex features fk represent the mapping from the xi

to yi through a one layer neural network, where θk is the
weight vector for a particular neuron k.

fk(yi,xi,θk) = −(yi − h(θk,xi))
2 (3)

h(θ,xi) =
1

1 + e−θT xi
(4)



Table 1: Results for both the SVR and the CCNF models, using both the standard and the relative feature
representation techniques

Arousal Valence
rho range RMSE range rho range RMSE range

Baseline 0.18 +/-0.36 0.27 +/-0.12 0.11 +/-0.34 0.19 +/-0.11
Basic SVR 0.129 +/-0.325 0.146 +/-0.062 0.073 +/-0.267 0.100 +/-0.055

Basic CCNF 0.116 +/-0.632 0.139 +/-0.068 0.063 +/-0.593 0.102 +/-0.064
Relative SVR 0.148 +/-0.326 0.147 +/-0.064 0.074 +/-0.290 0.099 +/-0.062

Relative CCNF 0.181 +/-0.604 0.118 +/-0.069 0.066 +/-0.530 0.098 +/-0.062

The number of vertex features K1 is determined experi-
mentally during cross-validation, and in our experiments we
tried K1 = {5, 10, 20, 30}.

The edge features gk represent the similarities between
observations yi and yj . This is also affected by the neighbor-
hood measure S(k), which allows us to control the existence
of such connections.

gk(yi, yj) = −1

2
S

(k)
i,j (yi − yj)2. (5)

In our linear chain CCNF model, gk enforces smoothness
between neighboring nodes. We define a single edge feature,
i.e. K2 = 1. We define S(1) to be 1 only when the two nodes
i and j are neighbors in a chain, otherwise it is 0.

2.2.1 Learning and Inference
We are given training data {x(q),y(q)}Mq=1 of M song sam-

ples, together with their corresponding dimensional contin-
uous emotion labels. The dimensions are trained separately,
but all the parameters (α, β and Θ) for each dimension are
optimised jointly.

We convert the Eq.(1) into multivariate Gaussian form.
It helps with the derivation of the partial derivatives of log-
likelihood, and with the inference.

For learning we can use the constrained limited memory
Broyden-Fletcher-Goldfarb-Shanno algorithm for finding lo-
cally optimal model parameters. We use the standard Mat-
lab implementation of the algorithm. In order to make the
optimisation both more accurate and faster we used the par-
tial derivatives of the logP (y|x), which are straightforward
to derive and are similar to those of CCRF [2].

A more thorough description of the model as well as the
code to reproduce the results can be found at
http://www.cl.cam.ac.uk/research/rainbow/projects/ccnf/

3. RESULTS
In order to get a better understanding of where CCNF

stands in terms of performance, we decided to compare it
to another standard approach used in the field. We used
Support Vector Regression (SVR) model with the Radial
Basis Function kernel in the same way we used CCNF—we
trained a model for each axis, using 2-fold cross-validation
to pick the best parameters for training. The experimental
design was identical to the one used in our previous paper [3],
which makes the results comparable not only to the baseline
method in this challenge, but also between several datasets.

There are several interesting trends visible from the results
(see Table 1). First of all, CCNF combined with the rela-
tive feature representation clearly outperforms all the other
methods for the arousal axis, as well as the baseline method.

Secondly, the spread for correlation for CCNF model is twice
as big as the one for SVR, while there is little difference be-
tween the spread for RMSE for the different methods. In
fact, there is little difference in performance between the
different methods and the different representations used for
the valence axis.

4. FURTHER INSIGHTS
We found it interesting to compare the results achieved

with this dataset to those achieved with the MoodSwings
dataset. This shows how much of an impact the dataset has
on the performance and even the ranking of different meth-
ods. In our previous work CCNF clearly outperformed SVR
with the standard feature representation, while the results
with the relative feature representation were comparable be-
tween the two models. With this dataset, we would have to
draw very different conclusions—with the standard repre-
sentation the results were comparable, if not better for SVR,
while there was a clear difference between the two when us-
ing the relative feature representation for the arousal axis,
with CCNF clearly outperforming SVR. This maybe due to
the fact that there are more training (and testing) samples
in this dataset, the extracts are longer and, possibly, better
suited to the task.

The valence axis is still proving problematic. The fact that
quite heavyweight techniques are not able to outperform
simple models with small feature vectors seems to be in-
dicating that we are approaching the problem from a wrong
angle. Improving results for the valence axis should be the
top priority for our future work.
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