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ABSTRACT
The primary system we submitted was composed of 11 sub-
systems as the required run. 3 subsystems are based on
Acoustic Keyword Spotting (AKWS) and 8 on Dynamic
Time Warping (DTW). The AKWS systems were based
only on phoneme posteriors while the DTW subsystems were
based on both phoneme posteriors and Bottle-Neck features
(BN) as input. The underlying phoneme posterior estima-
tors / bottle-neck feature extractors were both in-language
(Czech) and out-of-language (other 4 languages). We also
performed experiments on T1/T2/T3 types of query, system
calibration and fusion based on binary logistic regression.

1. MOTIVATION
In comparison to last year [7], we decided to use lower

number of systems in parallel. Our goal was to further in-
vestigate the sensitivity of particular approaches to the lan-
guage / channel mismatch in the query and utterance data.
Also, coping with different types of queries was challenging
this year [1]. Similarly to last year, we used systems al-
ready available at BUT (so-called Atomic Systems). This
led to several inconsistencies — for example, feature extrac-
tion and sizes of the Artificial Neural Networks (ANN).

2. ATOMIC SYSTEMS
All our subsystems use ANN to estimate 1) per-frame

phone-state probabilities (so-called posterior-grams) 2) bottle-
neck (BN) features. The subsystems based on DTW use the
BN features for calculating distances between query and test
segment frames. The subsystems based on AKWS use the
phone-state posteriors as HMM output probabilities. We re-
use ANNs, which were trained for different projects as acous-
tic models for phone or LVCSR recognizers: 3× SpeechDat

(Czech, Hungarian and Russian; monolingual LCRC sys-
tems [5]) for phone posterior-grams and 4× GlobalPhone

(Czech, Portuguese, Russian, Spanish; monolingual stacked-
bottleneck systems [3]) for BN features.

We prefer the SpeechDat posterior-grams to GlobalPhone
posterior-grams in AKWS due to significantly lower accu-
racy of“GlobalPhone posterior-grams”. For DTW approach,
we prefer the GlobalPhone bottle-necks to GlobalPhone
posterior-grams also due to significant accuracy deteriora-
tion. We have observed even larger deterioration when the
GlobalPhone ANNs were adapted on the SWS2013 data in
unsupervised manner (as we performed last year with pos-
itive impact on accuracy). This holds both for posteriors
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and BNs.
We ended with 3 atomic AKWS systems based on Speech-

Dat posteriors and 7 atomic DTW systems based on Glob-
alPhone bottle-necks.

3. ACOUSTIC KEYWORD SPOTTING
The AKWS systems follow [6]. We build an HMM for each

query. For each frame, the detection score is calculated as
the log-likelihood ratio between 1) staying in a background
HMM (free phoneme loop) and 2) escaping from it through
the query HMM. For standard keyword spotting tasks (in-
language task and textual input), the query model is built
using a pronunciation dictionary. In SWS task, however, we
need to generate the phoneme sequence for each of the query
acoustic examples – query-to-text step. This is achieved
by decoding each example using free phoneme loop. We
removed all silence labels (if present).

4. DYNAMIC TIME WARPING
In our implementation, we follow the standard query-by-

example recipe – sub-sequence DTW. Single DTW is run
for each combination of query and test segment, where the
query is allowed to start at any frame of the test segment.
When selecting the locally optimal path in the standard
DTW algorithm, transition from the smallest accumulated
distance is chosen. In our implementation, we compare the
accumulated distances (including the current local distance)
normalized by the corresponding path lengths on-the-fly.
This is to avoid the preference for shorter paths. As the
distance metric, we used the Pearson product moment cor-
relation distance.

We applied Speech Activity Detection (SAD) to drop out
the silence frames in queries (see our last year’s work [7]).
We also tried to apply the SAD on utterances, but obtained
only tiny improvement therefore SAD was not used. The
Hungarian SpeechDat phoneme recognizer was used as the
SAD.

4.1 Fusion
We were inspired by GTTS [4] (concatenation of feature

vectors going into DTW) and CUHK [8] (averaging of dis-
tance matrices). Finally, we found both of these methods
comparable, so we followed the feature vector concatena-
tion approach. We concatenate the Czech, Portuguese, Rus-
sian, and Spanish GlobalPhone BN features and made a new
Atomic DTW system – the eight system.

5. SCORE POST-PROCESSING



Approach sideinfo eval minCnxe eval RT dev minCnxe dev RT
p-bigfusion QU 0.465(0.310/0.461/0.673) 0.086 0.461(0.309/0.513/0.624) 0.082
g-bigfusionnoside 0.464(0.323/0.470/0.660) 0.086 0.486(0.333/0.554/0.624) 0.082
g-best single QU LID 0.528(0.374/0.546/0.714) 0.010 0.533(0.376/0.600/0.675) 0.010
g-LID 0.926(0.897/0.946/0.920) 1e−6 0.929(0.896/0.961/0.901) 1e−6

AKWS-cz QU LID 0.648(0.519/0.645/0.848) - 0.641(0.500/0.680/0.824) -
AKWS-T3-cz QU LID 0.674(0.597/0.694/0.756) - 0.673(0.581/0.742/0.718) -

Table 1: Results for the approaches in minimum Cnxe with per query type (T1/T2/T3). RT - real-time factor for search step
(per second of query). The indexing step RT is 1.03 for both bigfusion systems, 0.18 for g-best single, and 0.04 for g-LID. The
highest memory consumption (high level water mark) is 450MB with DTW systems. The experiments were run on a hybrid
cluster with average CPU Intel(R) Xeon(R) CPU X5670 @ 3GHz.

For both DTW and AKWS systems, the local maxima
of frame-by-frame detection scores are selected as candidate
detections. For overlapping detections, only the best scor-
ing ones are preserved. We applied m-norm (developed in
SWS2013 [7]) to normalize (calibrate) the scores for each
query to allow for a single common threshold maximizing
the Cnxe metric.

As the task was document retrieval rather than keyword
spotting this year, only one score per query–utterance pair
without timing was requested. That is why we find and
return the best particular score from a set of detections of a
query in an utterance.

6. CALIBRATION
The post-processed scores were calibrated to respect the

Cnxe scoring metric using binary logistic regression.
We attached a side info to each score (query–utterance

pair). The side-info consists of: number of phonemes, log of
number of phonemes, number of speech frames, log of num-
ber of speech frames, average log-posterior of speech frames
taken from SAD and optionally the LID i-vector score. The
side-info was generated for queries and utterances so the fi-
nal “feature vector” for calibration consists of: 1 detection
score (query–utterance pair), 5 query side-info, 5 utterance
side-info. Parameters (11 linear scales and 1 additive con-
stant) were trained on development set. We denoted this 10
side-info parameters as QU.

The language identification system is a state-of-the-art
system based on i-vectors [2]. As acoustic features, we used
Shifted Delta Cepstra. Gaussian mixture model with 2048
Gaussians serves as Universal Background Model for 600
dimensional, gender-independent, i-vector extractor. Our
goal here was to calculate distance (Pearson product mo-
ment correlation distance) between particular query and ut-
terance i-vectors. This distance should provide us similarity
measure on the level of language (as Czech queries do not
exist in Basque utterances for example) and was used also
as side-info (denoted as LID).

7. FUSION
Finally, we applied fusion on the level of calibrated sys-

tems using the binary logistic regression again. We took all
11 systems (3 AKWS, 7 DTW, 1 fused DTW) and found
the best linear combination of them.

8. CONCLUSION
We tried to approach the T2 and T3 queries to improve

accuracy of our system. However, we ended up with con-
clusion that slight improvement accuracy of T2 / T3 queries
largely degrades accuracy of T1 queries. This leads to overall
score degradation. Our conclusion here was, that it does not
make sense to cover T2 queries by a special approach (search
algorithm), as these queries are covered enough by“softness”
of standard DTW algorithm. We found tiny improvement
of 0.4% on T2 while we got overall 1% Cnxe deterioration.
This T2 improvement was observed with AKWS approach
when we allowed the last phoneme to be any phoneme.

To improve accuracy of T3 queries, we split queries longer
than 7 phonemes in the middle. Then, we searched for
these two particular sub-queries independently. Finally, we

merged the sub-query results by forbidding sub-queries over-
lap longer than 10 frames. Results of this experiment are
in table 1. System AKWS-cz is reference system where we
search for T3 in the same way as for T1. We implement the
above mentioned split to sub-queries in system AKWS-T3-
cz. We got improvement 9% on T3 but overall deterioration
is 2.4% of Cnxe on eval queries.

We built a QbE system making use of phoneme poste-
riors and bottlenecks as input features. We found DTW
superior to AKWS event in cross channel environment (this
year data set). Our conclusion on different types of query
is, that it does not make sense to aim at T2 queries due to
tiny 0.4% improvement on the T2 but significant 1% deteri-
oration on overall score. The same holds for T3, where the
improvement is significant (9%) but overall deterioration is
(2.4%). The T3 queries need more investigation to overcome
the overall deterioration.
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