
Resource Planning for SPARQL Query Execution on
Data Sharing Platforms

Stefan Hagedorn1, Katja Hose2, Kai-Uwe Sattler1, and Jürgen Umbrich3

1 Ilmenau University of Technology, Germany
2 Aalborg University, Denmark

3 Vienna University of Economy and Business, Austria

Abstract. To increase performance, data sharing platforms often make use of
clusters of nodes where certain tasks can be executed in parallel. Resource plan-
ning and especially deciding how many processors should be chosen to exploit
parallel processing is complex in such a setup as increasing the number of proces-
sors does not always improve runtime due to communication overhead. Instead,
there is usually an optimum number of processors for which using more or fewer
processors leads to less efficient runtimes. In this paper, we present a cost model
based on widely used statistics (VoiD) and show how to compute the optimum
number of processors that should be used to evaluate a particular SPARQL query
over a particular configuration and RDF dataset. Our first experiments show the
general applicability of our approach but also how shortcomings in the used statis-
tics limit the potential of optimization.

1 Introduction
In recent years, we have witnessed the growing interest and necessity of enabling large-
scale solutions for SPARQL query processing. In particular, the current trend of emerg-
ing platforms for sharing (Linked) Open Data aims at enabling convenient access to
large numbers of datasets and huge amounts of data. One widely known system is the
Datahub4, a service provided by the Open Knowledge Foundation. Fujitsu published
a single point of entry to the Linked Open Data Cloud5 with the aim of hosting most
datasets (as the license allows it) in the same format and in one place. Such a platform
can be seen as a catalog component in a dataspace [4,18] with the main purpose to in-
ventorize available datasets and their meta information. However, such platforms do not
yet provide processing capabilities over the registered datasets and it is left to the users
to provide additional services such as querying and analytics. Similar to [8], we believe
that the next generation of such Linked Data catalogs will provide services to trans-
form, integrate, query, and analyze data across all hosted datasets, considering access
policies and restrictions. Those services will be able to exploit that such platforms are
(i) typically deployed on a distributed (cloud) infrastructure with multiple processors
and (ii) with multiple datasets available.

Advanced query functionalities will be a core service to enable users to explore and
analyze the data. However, different privacy restrictions and licenses pose a big chal-
lenge on centralized and distributed query processing approaches. As such, it is very
likely that those platforms keep datasets in separate partitions. While the research for

4 http://datahub.io/
5 http://lod4all.net/

http://datahub.io/
http://lod4all.net/

Linked Data query processing mainly focused on single-node systems, cluster-based
systems, and federated query approaches, not much attention was given to the multi-
processor and multi-dataset setup. Although cluster-based systems use multiple proces-
sors, the data is considered as one big dataset and the original partitioning into multiple
datasets does no longer exist – and in federated query approaches, the processors cannot
be allocated that flexibly, e.g., it is not really possible to assign two processors to the
same dataset to speed up processing a single query by using parallelization.

The challenges for the multi-node multi-dataset SPARQL query execution setup are
to compute the optimal number of processors for a given number of datasets and queries
as well as exploiting the partitioning of data. Queries that can be highly parallelized and
do not require cross-dataset joins benefit from multiple allocated processors, whereas
the query costs for other queries might increase with additional processors due to ad-
ditional communication costs. Hence, given a data sharing platform with N available
processors and M data partitions, the problem is to find the optimal processor allocation
per dataset for a given query. The crucial component of this optimization problem is an
appropriate cost model to estimate the query evaluation costs for a given configuration.

In this paper, we therefore investigate this problem and present a cost model that
estimates query execution costs for different numbers of allocated processors and in
doing so allows to find the optimum number of processors for a given query. Although
we focus on the processor allocation problem, we want to emphasize that this cost
model is also the foundation for workload-driven partition design. Accurate statistics
are a crucial component of any cost model. Instead of proposing yet another standard
for statistics, we focus on the widely used VoiD [2] statistics that many data sources
already provide. Our experiments show the general applicability of our approach but
also how shortcomings in the statistics limit the potential of optimization.

2 Background and Related Work
Hosting datasets and providing services on top of these datasets on a data sharing plat-
form for many users results in a large volume of data as well as a high query load.
In order to handle this load the data management layer of such a platform is typically
implemented by a database cluster where the individual nodes store datasets or parti-
tions of them. From a query processing perspective this represents a case of distributed
query processing. Possible strategies range from federated to parallel query processing.
In federated query processing usually a single instance of a query processor decom-
poses a given query into subqueries which are sent to the source nodes for evaluating.
This allows to exploit multiple processing nodes and parallelism but only at the gran-
ularity of entire datasets. Examples of such processors for SPARQL are described e.g.
in [16,7,1]. In contrast, parallel query processing for database clusters aims at exploiting
not only the availability of multiple processing nodes but also the way the data is parti-
tioned and placed on the nodes. This allows to implement different forms of parallelism
(inter-query vs. intra-query and within a query inter-operator vs. intra-operator). How-
ever, this requires more control over the data placement. Examples of such cluster-based
query systems for SPARQL are Virtuoso Cluster, Bigdata6, and 4store [9]. Furthermore,
MapReduce-based evaluation of SPARQL or more general graph-based queries can be
seen as another example of cluster-based parallel processing [15,10].

6 http://www.systap.com/bigdata.htm

http://www.systap.com/bigdata.htm

Apart from appropriate partitioning techniques, query execution and optimization
strategies exploiting these partitioning, a particular important task is resource plan-
ning and provisioning for queries for at least two reasons. First, even with high-speed
networking interfaces data transfer between nodes is still more expensive than lo-
cal memory/disk access. Thus, adding an additional processing node to a query pays
off only if the amount of processable work is large enough. Second, keeping many
nodes busy may block or delay other queries. Furthermore, if the data sharing plat-
form runs on a hosted or on-demand computing infrastructure a waste of resources or
over-provisioning should be avoided.

Earlier approaches on query resource allocation dealt only with the problem of al-
locating processors for multi-join queries [3], other works take also multi-dimensional
resources (CPU, memory, etc.) into account [6]. More recent approaches like [5] go
beyond predefined cost models which work only for operators known in advance by
introducing a training phase using machine learning techniques.

3 Query strategies
The motivation of this work is to evaluate a multi-processor query execution strategy
against alternatives that are using multiple processors and/or multiple partitions.

We assume a data sharing platform consists of several physical nodes with disks and
processors to store the data(sets). Similar to any distributed platform, we assume that
nodes can be used to access data and retrieve information based on basic index lookups.
As such, given a query and a multi node data sharing platform with N processors and
M dataset partitions, there are four scenarios how the query can be evaluated:

The single node scenario (1×1) classically assumes that we have one processor and
one dataset. Note, this case is straightforward and we won’t consider it in the following.
The multi-processor shared-disk scenario (N × 1) uses several processors to evaluate a
given query over one dataset. The coordinated scenario (1×M) evaluates a given query
over several datasets using one processor. Eventually, a query is evaluated with multiple
processors over several datasets in the multi-processor shared-nothing scenario (N ×
M).

Query operators We assume that each node can retrieve the data for an atomic
SPARQL triple query pattern and consider only simple query operators. Other oper-
ations like filters, grouping or aggregations are not in the scope for this work and are
left for future efforts.

– The scan operation retrieves all relevant statements matching a certain triple pat-
tern. We distinguish between a full table scan and an index lookup (e.g., based on
an subject value index).

– The union operation combines the results of two or more scan operations for the
same query pattern.

– The join operation combines the results of two different query patterns. We distin-
guish between local and distributed joins. The former joins two triple patterns on
the same processor whereas the latter performs a join over two remote datasets.

Query shapes We target our analysis on the following three fundamental query shapes:
– The evaluation of a single triple pattern. This query also serves as a baseline since

all other queries are a combination of triple patterns

– The evaluation of a two triple patterns with the join variable at the same position.
Such queries are also called star-shaped queries if the join variable is at the subject
or object position

– The evaluation of two or more triple patterns that form a chain/path, that is, two
triple patterns do not share the same join variable position. Such queries are also
called path-shaped queries

3.1 Evaluation strategies
Next, we need to decide on an evaluation strategy for a given a query and a processor-to-
dataset configuration. For all these strategies, we assume the existence of a coordinator
that will receive the query results from the processors. Further, we assume the availabil-
ity of an sophisticated index to perform index scans and lookups over a subset of the
actual dataset or over two or more datasets. The former is referred to as a dynamic split
of a datasets, and the latter is referred to as a dynamic merge of datasets.

Lookup Strategy: Our evaluation strategy for a lookup query is as follows:
1 × M : The processor evaluates the query sequentially on all M datasets by per-

forming index scans and returns the union of all results.
N × 1: We perform a dynamic partitioning and split the dataset into N parts. Af-

terwards, we have N processors that we can use to evaluate the query over N partitions
in parallel. This can be considered a special case of the N ×M setup where N = M ,
since the one partition is split into N dynamic ones.

N ×M : In case N = M , we can use one processor to execute the query over each
partition in parallel and union the results afterwards. As the processor that was assigned
to the largest partition will determine response time, we can decide to dynamically
partition the datasets to create equal sized partitions per processor. In case N > M (i.e.,
more processors than partitions), we will therefore split bigger datasets into smaller
partitions until we can assign one processor to each partition and have it evaluate the
query in parallel. In case N < M (fewer processors than partitions), we merge the M
datasets into bigger partitions so that eventually there is one processor per dataset –
alternatively this can be assigning multiple partitions to one processor.

In all cases, after the query is executed at each processor, the results are transferred
to the coordinator, i.e., a central instance that does query optimization, assigns tasks
to processors, receives the (partial) results from the processors, combines (union) the
received results, and outputs them to the user.

Join Strategy: For join queries the evaluation strategies are slightly more complex
and the coordinator plays an even more important role. In addition, the costs of ex-
ecuting a join are determined based on what join algorithms the underlying system
implements [14], e.g., merge joins, hash joins, etc.

1×M : The processor evaluates the query sequentially on all M datasets by evalu-
ating both involved triple patterns on all the datasets and combining their results using
an appropriate join implementation – as multiple datasets are involved and we cannot
rely on any sorting order, this will be most likely a hash join.

N × 1: Just as for lookup queries, we perform a dynamic partitioning and split
the dataset into N parts. This will accelerate the processing of the two involved triple
patterns because they can be evaluated in parallel now. However, computing the join
efficiently becomes more challenging as in principle we could use pipelining in com-
bination with a symmetric hash join [12] on one of the processors that receives partial

results from the others. To abstract from available implementations, we can alternatively
assume that we apply a coordinator join, i.e., a join variant that many existing systems
apply and that lets the coordinator compute the join result based on the partial results
received from and computed by the involved processors.

N × M : In case N = M , we can use the procedure described for the N × 1
case after splitting up the data into N partitions. However, there is a special case: if
the partitions have been created in a way that evaluating the join over each partition in
separate and union these join results produces all results, then we do not need to use a
coordinator join (instead we can treat this as multiple independent 1×1 cases); we hence
transfer less data between processors and can therefore be more efficient. Creating such
a partitioning is usually too expensive on-the-fly, and we therefore do not consider it for
the N × 1 case. Hence, some queries can be evaluated very efficiently with local joins
as an alternative to the coordinator join that we use for all other cases. In case N > M ,
similar to the N × 1 case, the query optimizer needs to estimate if the gain of splitting
up a partition outweighs the potential loss of not being able to apply a local join. This
means that when splitting up a partition into equal sized parts and assigning them to
different processors, it is no longer possible to apply a local join. But if the dataset is
big, then the gain of parallel processing outweighs the costs of the more expensive join
algorithm. In case N < M , the query optimizer can assign multiple datasets to one
processor. Hence, some of the processors might be assigned only one partition, which
corresponds to the 1 × 1 case while other processors are assigned multiple partitions
which corresponds to the 1×M case – both can be handled as explained above.

4 Statistics and cost estimation
Applying the standard steps of query planning, the query is first parsed and normal-
ized, and then transformed into an internal representation, e.g., a query operator tree.
The optimizer then uses the query plan and available statistics to find an optimal query
execution plan including join algorithms, processor allocation and how results are com-
bined. The optimizer uses the statistics to estimate the costs, e.g., in terms of runtime, of
multiple alternative query execution plans and chooses the cheapest one for execution.
Finally, the chosen query execution plan is executed so that the result is available and
can be output to the user or application that issued the query.

The correct estimation of the costs for a query evaluation strategy depends on the
granularity of the available statistics for the data. Such statistics are typically cardinality
and selectivity values/estimations for atomic query patterns. More complex statistics
can contain information about correlation [13] or precomputed joins result sizes.

In this work, we assume that statistics are available in the form of VoiD descrip-
tions [2], which are widely used to describe metadata about RDF datasets7 and also fre-
quently exploited as input for cardinality-based query optimizations [7]. These statistics
can logically be divided into three parts: dataset statistics, property partition, and class
partition. The dataset statistics describe standard statistics about the complete dataset
similar to statistics in relational database systems, e.g., the total number of triples
(void:triples, ct), the total number of distinct subjects (void:distinctSubjects, cs) and
objects (void:distinctObjects, co). The property partition contains equivalents of these
values for each property individually that occurs in the dataset (cpp,t, cpp,s, cpp,o), e.g.,
cpp,t denotes the number of triples in the dataset with property p. And the class partition

7 http://www.w3.org/TR/void/

http://www.w3.org/TR/void/

states for each class how many entities of the class occur in the dataset (void:entities
ccc,e). The VoiD standard defines more pieces of information but we restrict our discus-
sion to the ones that are relevant for our cost model.

Based on the information that we can obtain from the VoiD statistics, we can es-
timate cardinalities of triple patterns that we encounter as parts of SPARQL queries.
Table 1 lists the formulas for all eight possible permutations of variables in triple pat-
terns in general. Whenever a predicate is given in the triple pattern, we can make use
of property partition statistics, which allows for a better estimation than relying on the
dataset statistics only. The table also lists estimations for the special case that the predi-
cate corresponds to rdf:type, for which we can also make use of the statistics in the
class partition.

triple pattern result cardinality (card)
?s ?p ?o ct

subjA ?p ?o ct
cs

?s predA ?o cppredA,t

?s ?p objA ct
co

subjA predA ?o
cppredA,t

cppredA,s

subjA ?p objA ct
cs·co

?s predA objA
cppredA,t

cppredA,o

triple pattern result cardinality (card)
subjA predA objA

cppredA,t

cppredA,s·cppredA,o

?s rdf:type ?o cprdf :type,t

subjA rdf:type ?o
cprdf :type,t
cprdf :type,s

?s rdf:type objA ccobjA,e

subjA rdf:type objA
cprdf :type,t

cprdf :type,s·cprdf :type,o
,

or 0 if no classPartition

for objA in statistics

Table 1. Cardinality estimates for triple patterns

A join is an operation that combines the results of multiple triple patterns. The
join can be highly selective, in which case the cardinality of the join result will be
smaller than the sum over the cardinalities of the input triple pattern results. On the
other hand, the join can also have low selectivity, in which case the result cardinality
can be greater than the sum of the input cardinalities. Cardinality estimation over joins
without additional join statistics is therefore very difficult and its precision very much
depends on the characteristics of the data it is applied on. Table 2 sketches the formulas
we use to estimate the cardinality of joins based on the cardinalities of the triple patterns
that provide the input to the join. These formulas are based on estimates that have been
developed in the context of relational database systems [17].

4.1 Cost model
Based on the estimation of cardinalities that we have discussed above and the descrip-
tion of the evaluation strategies in Section 3.1, we can now define a cost model that
estimates the costs of executing a query. Again, we will make use of standard tech-
niques known from distributed database systems and apply them to the SPARQL use
case [7]. To compute the costs of executing a query, we use the following parameters:
tCPU (time for a CPU cycle), tIO (time for a IO operation), tt (time for transferring
one triple), and tm (time for transferring a message, i.e., message overhead). Each of
these parameters is configuration-specific and needs to be measured on the systems that
we want to estimate costs for. For simplicity, our formulas assume that each of the in-
volved processors and communication connections have the same characteristics – in
cloud setups this is a valid assumption. The formulas are still applicable in the broader
use case of distributed and federated architectures but should be extended to consider
communication delays and processor characteristics for each involved processor/node

type pattern cardinality card(join, partition)

subject – subject ?s predA ?o . ?s predB ?o2
card(pat1)·card(pat2)

max(cppredA,s,cppredB,s)

?s predA objA . ?s predB objB
card(pat1)·card(pat2)

max(cppredA,s·cppredA,o,cppredB,s·cppredB,o)

?s predA ?o . ?s predB objB
card(pat1)·card(pat2)

max(cppredA,s,cppredB,s·cppredB,o)

?s predA objA . ?s predB ?o2
card(pat1)·card(pat2)

max(cppredA,s·cppredA,o,cppredB,s)

?s rdf:type ?o . ?s predB ?o2
card(pat1)·card(pat2)

max(cprdf :type,s,cppredB,s)

?s predA ?o . ?s rdf:type ?o2
card(pat1)·card(pat2)

max(cppredA,s,cprdf :type,s)

?s rdf:type ?o . ?s rdf:type ?o2
card(pat1)·card(pat2)

cprdf :type,s

?s rdf:type objA . ?s predB objB
card(pat1)·card(pat2)

max(ccobjA,e,cppredB,s·cppredB,o)

?s predA objA . ?s rdf:type objB
card(pat1)·card(pat2)

max(cppredA,s·cppredA,o,ccobjB,e)

?s rdf:type objA . ?s rdf:type objB
card(pat1)·card(pat2)
max(ccobjA,e,ccobjB,e)

?s rdf:type ?o . ?s predB objB
card(pat1)·card(pat2)

max(cprdf :type,s,cppredB,s·cppredB,o)

?s predA ?o . ?s rdf:type objB
card(pat1)·card(pat2)

max(cppredA,s,ccobjB,e)

?s rdf:type ?o . ?s rdf:type objB
card(pat1)·card(pat2)

max(cprdf :type,s,ccobjB,e)

?s rdf:type objA . ?s predB ?o2
card(pat1)·card(pat2)

max(ccobjA,e,cppredB,s)

?s predA objA . ?s rdf:type ?o2
card(pat1)·card(pat2)

max(cppredA,s,cprdf :type,s)

?s rdf:type objA . ?s rdf:type ?o2
card(pat1)·card(pat2)

max(ccobjA,e,cprdf :type,s)

object – subject ?s predA ?o . ?o predB ?o2
card(pat1)·card(pat2)

max(cppredA,o,cppredB,s)

.

subject – object ?s predA ?o . ?s2 predB ?s
card(pat1)·card(pat2)

max(cppredA,s,cppredB,o)

.

object – object ?s predA ?o . ?s2 predB ?o
card(pat1)·card(pat2)

max(cppredA,o,cppredB,o)

.

Table 2. Cardinality estimates for specific join patterns, with pat1 and pat2 representing triple
patterns whose results serve as input to the join

individually. Whereas tCPU and tIO determine the processing time (TP), tt and tm de-
scribe the transfer time (TT) which is the most important cost factor in multi-processor
environments. In a multi-processor environment, we are mainly interested in response
time, i.e., the time from issuing a query until the results are available, and not in pro-
cessing time, i.e., the sum of all times that the processors altogether spend on evaluating
the query. Hence, in the following we will focus on response time TR, which consid-
ers processing time and transfer time and is determined by the slowest processor in a
multi-processor environment, i.e., the maximum over the processing and transfer times
of all involved processors determines response time.

In the following discussion, we focus on estimating the costs for join queries. The
formulas can be simplified to the simpler case of a lookup for a single triple pattern
and extended to cover the case of multiple joins. It is a well-known problem, however,
that the accuracy of cardinality estimates degrades quickly with the number of joins in a
query [11]. For ease of representation, we will refer to a dataset as partition (partition).

Single processor We assume that the processor has to read each tuple in the partition.
For the 1×M strategy (1 processor and M partitions), we further assume that the pro-
cessor evaluates the query sequentially on the M partitions and is instructed to do so
by the coordinator. The special case of M = 1 corresponds to the 1 × 1 strategy. As
efficient in-memory execution strategies are usually available and execution costs are
typically dominated by I/O and communication costs, query optimizers in parallel/dis-
tributed database systems often neglect CPU costs. If we also assume that an index is
available to access the triples matching triple pattern p1 and triple pattern p2 that serve
as input to the join, we can use an index lookup and obtain for the processing cost:

T 1×M
P =

M∑
i=1

(card(p1, partitioni) + card(p2, partitioni)) · tIO

As we have only one processor that accesses all the data, we can assume that the pro-
cessor can also evaluate the join locally. Hence, we can estimate transfer time as:

T 1×M
T = 2 · tm +

M∑
i=1

card(join, partition) · tt

The total response time corresponds to
T 1×M
R = T 1×M

P + T 1×M
T (1)

Multiple processors Estimations for the strategies with multiple processors need to
consider the different (distributed) join implementations and distinguish how the op-
timizer makes use of the N available processors, i.e., whether all of them are used to
read the partitions or if some of them are used to accelerate join processing by applying
pipelining. As mentioned earlier, we abstract from available implementations (as each
of them would entail a slightly different cost formula) and instead assume coordinator
join or local joins.
N × 1 For the N × 1 strategy (N processors and 1 partition), we additionally need
to consider the costs of dynamically partitioning a partition. For simplicity, we assume
that we can efficiently split up a big partition into equal-sized partitions (partitioni) in
constant time tsplit.

Based on these assumptions and the fact that the slowest processor determines the
overall response time, we would need to compute response time and therefore also
processing and transfer time for each processor independently.

However, in contrast to the simpler cases, we do not have statistics for the parti-
tions created by the split. Hence, we use the available statistics for the original dataset
(partition) and the uniformity assumption. We obtain:

TNi,N×1
P =

card(p1, partition) + card(p2, partition)

N
· tIO = TN×1

P

Using multiple processors means that the coordinator needs to send queries to the pro-
cessors and after their execution, the partial results matching both triple patterns needs
to be sent to the coordinator, which will then compute the join (coordinator join). Note
that we need to collect all partial results of all triple patterns to compute the join cor-
rectly as some answers might rely on the combination of data from different partitions.
Hence, as transfer time for processor Ni, we obtain:

TNi,N×1
T = 2 · tm +

card(p1, partition) + card(p2, partition)

N
· tt = TN×1

T

As response time is determined by the slowest processor, we need to compute:
TNi,N×1
R = tsplit + max

i=1..N
(TNi,N×1

P + TNi,N×1
T)

Because of the uniformity assumption and the assumption that the costs for the efficient
split itself can be neglected, we obtain:

TN×1
R = TN×1

P + TN×1
T (2)

N × M For the N × M case, we can basically reuse the formulas for the above
mentioned cases. We will also make the very same simplifying assumptions. However,
we need to distinguish between several special cases. Let us begin with the case where
N = M and each processor Ni is assigned exactly one of the partitions Mi. In that case
the processors compute the answers to the triple patterns locally and send the partial
results to the coordinator who computes the final join result (coordinator join) – again
this guarantees that the join result is complete. This special case corresponds to running
multiple 1 × 1 cases in parallel, which is similar to the N × 1 case (Equation 2) but
as we have statistics for each partition in separate, we can make better estimations for
TN=M
RC

(C representing the coordinator join). To keep the notation simple, we assume
that partitioni is assigned to processor i and obtain:

TNi,N=M
RC

= max
i=1..N

((card(p1, partitioni) + card(p2, partitioni)) · tIO+
2 · tm + (card(p1, partitioni) + card(p2, partitioni)) · tt)

(3)

As discussed in Section 3.1, it is sometimes possible to decide, based on information
about the native partitioning of the data (input data set characteristics), that a local join
over each partition in separate leads to the correct and complete result. For example,
if we are looking for persons that were born and that died in the same city and the
data was originally partitioned based on cities, then combinations with other partitions
cannot lead to additional join results.

So, when a local join is possible, we can have each processor compute the join
directly over the partition assigned to it – this corresponds to multiple parallel 1 × 1

cases with local joins. Hence, processing time TNi,N=M
PL

(L stands for local join) is
estimated as for the coordinator join above. Transfer time, however, is based on the join
cardinality for the local join and not on the cardinality of the two triple patterns as it is
the case for the coordinator join. Hence, for each processor we obtain:

TNi,N=M
PL

= TNi,N=M
P = (card(p1, partitioni) + card(p2, partitioni)) · tIO

TNi,N=M
TL

= 2 · tm + card(join, partitioni) · tt
Processing time in consideration of parallel execution over multiple processors with
each processor being assigned exactly one partition for the local join case is then esti-
mated as:

TN=M
RL

= maxi=1..N ((card(p1, partitioni) + card(p2, partitioni)) · tIO+
2 · tm + card(join, partitioni) · tt)

All other cases of N × M , such as N < M and N > M , can be derived based on
these considerations as well. For each query execution plan that we want to estimate
response time for, we first need to identify if for the query local joins are possible in
general based on the native partitioning of the data. Then, if multiple processors have
been assigned to the same partition, we can make use of the estimation formulas in
Equation 2 – note that even if a local join would be possible on a partition in general,
this is no longer possible if multiple processors are assigned to the same partition.

If one or multiple partitions have been assigned to the same processor and a local
join was possible in the native partitioning of the assigned partitions, then we can use
the estimation formulas of Equation 1. If the local join was not possible, then we have
to compute a coordinator join instead.

In general, a particular query execution plan in the N × M case corresponds to a
mixed case. For instance, assuming that a local join is possible in the native partitioning

and the optimizer assigned 2 processors to the first partition and 1 processor to the
second partition, then the 2 processors will have to rely on a coordinator join whereas
the third processor can do the local join directly. As this is a simple combination of the
above equations, we omit the respective formula in this paper.

5 Evaluation
For our experiments, we used a subset of DBPedia (version 3.8)8. We focused on in-
formation about countries, cities, and persons associated with these cities and grouped
them by their continents to obtain a partitioning. The resulting dataset consists of 90344
persons, 6546 cities, 102 countries, and a total of 232598 statements.

We conducted experiments with 3, 5, and 7 partitions. We used SPARQL
CONSTRUCT query to group information about countries, cities, and persons into ten
groups representing parts of the world such as e.g., USA, Europe, east Asian countries,
or Mexico. For the 3 partitions scenario, we grouped the 10 datasets into three parts of
roughly equal size (e.g. , one partition with United States, one with Europe, east Asian
countries, middle eastern countries, Mexico, and countries in South America and one
partition with Africa, Oceania, south Asian countries, and northern American coun-
tries). Respectively, we performed similar distributions for the 5 and 7 partitions case.
For our experiments we use 10 Fuseki9 instances with Jena TDB, each running in their
own virtual machine in a fully virtualized environment. In each partitioning scenario,
we executed tests that used one up to ten Fuseki processors and distributed the partitions
to the active processors. If split or merge operations were necessary, they were applied
manually so that the resulting datasets are of approximately equal size.

Queries Our test set consists of 21 queries. The first 9 queries are simple triple pattern
lookups with different selectivity. The rest of the queries contain one join, i.e., they have
two triple patterns. There are 7 queries with a star join (queries 10 – 16) and 5 with a
path join (queries 17 – 21). With our initial partitioning, for three of these queries the
join has to be performed on the coordinator.

For each possible allocation of processors to partitions (1 × N ... 10 × N , with
N = 3, 5, or 7) the queries were repeated several times to get reliable results.

The query coordinator is written in Java and uses HTTP GET requests to send the
queries to the processors. The implementation follows the requirements introduced in
section 3.1. The input values for our cost model were determined by practical experi-
ments. The values are as follows (in ms): tm = 1.617, tt = 0.004523, and tIO = 0.374

5.1 Results
In the first experiments we evaluated the total execution time for a given query com-
pared to the estimated cost calculated with our model.

Figure 1(a) shows the results for two lookup queries: lookup query 1 on three (l13)
and lookup query 2 on five (l25) partitions. In this case we can observe that for query
l13 our cost model works well. Whereas for query l25 the real execution times are far
less than our model estimated.

In Figure 1(c) we show the results for two star shape queries s15 and s23 and in
Figure 1(d) the results for two path shape queries p17 and p25. In both cases our model
does not work very well. However, for query p25 the values for both estimated and

8 http://wiki.dbpedia.org/Downloads
9 http://jena.apache.org/documentation/serving_data/

http://wiki.dbpedia.org/Downloads
http://jena.apache.org/documentation/serving_data/

(a) Lookup queries (b) Cost difference between real and estimated
optimal processor allocation

(c) Star queries (d) Path queries
Fig. 1. Illustration of estimated vs. real costs

real costs show the same trend. Also, one can see the switch from the local join to
coordinator join. Up to five processors, a local join was used. When six processors are
involved, at least one partition has to be split and we have to switch to a coordinator
join for these partitions. This results in higher communication costs.

In a second set of experiments we evaluated our cost model and try to predict the
optimal number of processors for a given query using the available VoiD statistics of the
partitions. We computed the set of optimal processor allocation based on the estimated
costs and real measured costs. Cost values were rounded up to milliseconds.

We compared the total costs for the real against the estimated optimal processor al-
location for our three partitioning scenarios (cf. Figure 1(b)). We can see that especially
for lookup queries (1 – 9) our cost estimation for the optimal processor allocation is
almost identical to the real costs. However, for most join queries the estimated optimal
costs differ from the real costs significantly. This happens because our estimation is
based upon the VoiD statistics, which do not contain detailed information about certain
predicates, but rather overall statistics for distinct objects, etc. This information alone
is not enough to estimate join cardinalities for a given pattern.

6 Conclusion
Open Data hosting and sharing platforms tend to offer more and more services in ad-
dition to basic upload/download and catalog functionality. Typically, this requires to
exploit cluster database technologies for using multiple processing and storage nodes.
In this context, an important problem of query planning and execution is the allocation
and provisioning of resources such as CPUs, memory, disk space etc.

In this paper, we have addressed this problem by presenting a cost model taking
partitioning of datasets as well as the usage of intra-query parallelism into account.
Using this cost model we have evaluated several fundamental SPARQL query execution
strategies. Overall, our obtained results show that this cost model helps to determine the
optimal number of processors while using only standard VoiD statistics. While our first
experiments show the general applicability of our approach, we can clearly observe
that for cross dataset joins the VoiD statistics are not fine grained enough to accurately
predict the resulting join cardinalities. In addition, our experiments verified the need
for dynamic aggregation or partitioning of statistics in the cases of dynamic splits or
merges. As such, in future work we will primarily focus on using more detailed statistics
as input for our cost model (e.g. characteristic sets, QTree). In addition, we will start to
look into extending our cost model for other SPARQL operators such as FILTER and
OPTIONAL.

References
1. M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAPSID: An Adaptive

Query Processing Engine for SPARQL Endpoints. In ISWC, pages 18–34, 2011.
2. K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. Describing linked datasets. In

LDOW, 2009.
3. M.-S. Chen, P. Yu, and K.-L. Wu. Scheduling and processor allocation for parallel execution

of multijoin queries. In ICDE, pages 58–67, 1992.
4. M. J. Franklin, A. Y. Halevy, and D. Maier. From databases to dataspaces: a new abstraction

for information management. SIGMOD Record, 34(4):27–33, 2005.
5. A. Ganapathi, H. A. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. I. Jordan, and D. A. Patterson.

Predicting multiple metrics for queries: Better decisions enabled by machine learning. In
ICDE, pages 592–603, 2009.

6. M. N. Garofalakis and Y. E. Ioannidis. Parallel query scheduling and optimization with time-
and space-shared resources. In VLDB, pages 296–305, 1997.

7. O. Görlitz and S. Staab. SPLENDID: SPARQL Endpoint Federation Exploiting VOID De-
scriptions. In COLD, 2011.

8. S. Hagedorn and K.-U. Sattler. LODHub - A Platform for Sharing and Integrated Processing
of Linked Open Data. In DESWeb, 2014.

9. S. Harris, N. Lamb, and N. Shadbolt. 4store: The design and implementation of a clustered
RDF store. In SSWS, pages 94–109, 2009.

10. J. Huang, D. J. Abadi, and K. Ren. Scalable sparql querying of large rdf graphs. PVLDB,
4(11):1123–1134, 2011.

11. Y. E. Ioannidis and S. Christodoulakis. On the Propagation of Errors in the Size of Join
Results. In SIGMOD, pages 268–277, 1991.

12. G. Ladwig and T. Tran. Linked data query processing strategies. In ISWC, pages 453–469,
2010.

13. T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality estimation for RDF
queries with multiple joins. In ICDE, pages 984–994, 2011.

14. T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. PVLDB, 1(1):647–
659, 2008.

15. A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen. PigSPARQL: mapping SPARQL to Pig
Latin. In SWIM, page 4, 2011.

16. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization Tech-
niques for Federated Query Processing on Linked Data. In ISWC, pages 601–616, 2011.

17. A. N. Swami and K. B. Schiefer. On the Estimation of Join Result Sizes. In EDBT, pages
287–300, 1994.

18. J. Umbrich, M. Karnstedt, J. X. Parreira, A. Polleres, and M. Hauswirth. Linked Data and
Live Querying for Enabling Support Platforms for Web Dataspaces. In DESWeb, pages 23–
28, 2012.

	Resource Planning for SPARQL Query Execution on Data Sharing Platforms

