
Pushing Complexity Down the Stack

Gregory Todd Williams1 and Kjetil Kjernsmo2

1 greg@evilfunhouse.com
2 University of Oslo, Department of Informatics, Postboks 1080 Blindern, N-0316

Oslo, Norway kjetil@kjernsmo.net

Abstract. We believe that there is great potential for performance im-
provements in making high-level query features visible to low-level data
sources. In our work in the PerlRDF and SPARQLKit systems, we have
tried to apply this thinking while maintaining flexibility and extensibil-
ity. We discuss two major approaches we have taken – growing low-level
APIs to handle more complex query operations, and allowing low-level
frameworks to participate in query planning – and briefly examine some
benefits and challenges to their use.

1 Introduction

Commonly, APIs to triple stores have made it necessary to break down more
complex (e.g. SPARQL) queries into individual triple patterns, which are then
evaluated against the triple store. This causes many problems: It is hard to use
any optimizations on the triple store level, to use any statistics available for
index scan efficiency or join order optimization, hard to implement experimen-
tal extensions to query languages, and hard to exploit special features of triple
stores. Some systems provide an alternative to using these APIs by allowing the
triple store to evaluate the entire query. Between these two extremes, we pro-
pose to make high-level query features visible to low-level data sources, allowing
planning- and evaluation-time customization of the query answering process. We
discuss approaches we have implemented in the SPARQLKit1 project and the
new PerlRDF2 Attean3 framework, and the challenges we see in using them in
the future.

2 Increasing API Capabilities

In the PerlRDF system, we define data stores (either triple or quad stores) at the
most fundamental level as objects implementing a method to match triple/quad
patterns (along with some other utility methods). However, many of the stores
we support are capable of more complex data matching operations, and are very
often able to perform these operations more efficiently than the generic system

1 https://github.com/kasei/SPARQLKit
2 http://www.perlrdf.org/, also packaged and available in Debian and Ubuntu
3 https://github.com/kasei/attean

ISWC 2014 Developers Workshop Copyright held by the authors 80

2

routines. For this reason, our API has been extended over time to support more
and more complex matching operations. These operations include:

1. Match triple/quad pattern
The fundamental matching operation supported by all data store implemen-
tations.

2. Match BGP pattern
This allows stores to implement the matching of multiple triple/quad pat-
terns at once, returning a multiset of solutions (mapping variable names to
RDF terms).

3. Match BGP pattern with simple filter
This operation extends BGP matching with support for filtering intermediate
results, leveraging existing data indexing and/or knowledge of the store-
internal data layout and representation.

4. Match full SPARQL query
This allows stores to produce results to entire queries at once, capturing the
full range of operations including pattern matching, graph operations, and
solution modifiers.

Data store classes may indicate their conformance to one or more of these op-
erations, allowing the query planner to choose the best available. This has allowed
store implementations flexibility in choosing a balance between complexity and
performance. For example, our relational database store implements APIs 1 and
2 (allowing triple pattern joins to be handled entirely within the database), while
the SPARQL Protocol store providing access to a remote SPARQL endpoint im-
plements APIs 1–4, simply forwarding full query string across the network.

This sort of pushing down of query operators can be seen in a limited form
as far back as System R[1] where filtering expression “search arguments” could
be attached to data access operations, allowing only data satisfying the expres-
sion to be returned. In Semantic Web systems, the OpenRDF Sesame[2] SAIL
API provides a general mechanism for handling this sort of optimization with
the SailConnection evaluate method. SAIL implementations that override this
method are passed a query representation and must return corresponding query
results. In this way, implementations may optimize queries in any way they see
fit, but they will also be responsible for the evaluating the entire query, which
is a situation we have set out to improve upon.

3 Delegating Query Planning

In implementing the SPARQLKit project, and in designing the next generation
PerlRDF API, we take a more flexible approach by simply delegating planning
decisions to the underlying data stores. To do this, we rely on the trait systems[3]
(also known as roles or protocols) of the Perl/Moose and Objective-C languages
to define a QueryPlanner trait as requiring the single method:

plan : Algebra 7→ Option[Set[Plan]]

ISWC 2014 Developers Workshop Copyright held by the authors 81

3

Any data source conforming to this trait may participate in the query planning
process, as described in Algorithm 1. (Here we show the planning process for
a graph store composed of discrete triple store implementations, but the same
approach can be used for quad stores.)

Algorithm 1: Delegating Query Planner, dqP lanner

Input: graphStore, a collection mapping graph names to triple store objects
Input: graph, the active graph
Input: algebra, a SPARQL algebra expression
Output: plans, a set of query plans for executing algebra

1 if graphStore[graph] conforms to the QueryPlanner trait then
2 p← store[graph].plan(algebra) ;
3 if p = Some(plans) then
4 return prunePlans(plans)
5

6 return BuiltInPlanner(store, graph, algebra)

It is worth noting that due to the composability of traits, triple stores con-
forming to the QueryPlanner trait do not need to rely on inheritance to provide
a default behavior. In traditional object-oriented systems (such as the Sesame
SAIL API discussed in section 2), optimizing triple store planners are often mod-
eled as inheriting from a system-provided base class which provide the default
planning routines. In a trait system, the query planner is able to test each triple
store for trait conformance and conditionally call the store’s planner, defaulting
to the system planning routines. Freeing the planning classes from this unnec-
essary inheritance allows more flexibility in design and implementation both
triple stores and optimizing planners, and shows one of the major benefits to
implementors of leveraging a trait system.

A triple store that conforms to the QueryPlanner trait may authoritatively
return custom query plans for any part of the query algebra it wishes. Alterna-
tively, the triple store may decline the request for planning by returning None.
For example, the photo library triple store4 optimizes matching triple patterns
of the form { ?s a foaf:Image } by directly returning the set of known images
(as opposed to using the more general triple pattern matching mechanism).

However, the structure of the query algebra may not be in a form the backing
store can directly use. Separately, the photo library store can optimize matching
of both a geographic metadata BGP such as
{ ?image dcterms:spatial [geo:lat ?lat ; geo:long ?long] } and a
depiction BGP such as { ?image foaf:depicts ?person }. The store cannot
directly optimize a BGP query combining all of these triple patterns:

4 https://github.com/kasei/GTWApertureTripleStore

ISWC 2014 Developers Workshop Copyright held by the authors 82

4

?image foaf:depicts ?person ;

dcterms:spatial [geo:lat ?lat ; geo:long ?long]

To produce an optimized plan for this BGP the store must synthesize one
by joining an optimized sub-plan with a system-generated plan for the remain-
ing triple pattern(s). In this case, the store might choose to first produce an
optimized geographic sub-plan, and request the system generate a plan for the
remaining depiction triple pattern. The system planner will immediately try to
determine if the store can also optimize the depiction triple pattern (which it
can in this case). A representation of the final resulting plan would be:

Join(

PhotoStore_GeographicQuery(?image, ?lat, ?long),

PhotoStore_DepictionQuery(?image, ?person)

)

Furthermore, our approach would simplify extensions to SPARQL greatly.
For example, all optimizations done in e.g. the stSPARQL extension [4] could be
implemented and encapsulated in a trait, and the rest of the query evaluation
could be left to the default implementation, which would not have to be modified.

Information integration systems such as Garlic[5, 6] and HERMES[7] have
previously explored this sort of pushing down complexity of query planning
(and cost estimation) to heterogeneous data providers. We draw heavily on this
work, and find that it pairs naturally and to great effect with a trait system.
The generality of the RDF data model, extensibility of SPARQL, and flexibility
of traits allow a wide range of data sources and query features to be captured by
a trait-based planning system. As a result, our systems can be widely applicable
without requiring data source schema modeling and other bookkeeping tasks
often required by information integration systems.

4 Challenges

We see several challenges to using the approaches described above in a well-
designed SPARQL system. The accretion of more and more complex API meth-
ods (as described in section 2) over nearly a decade is clearly not sustainable.
While there are historical architectural reasons why we did not implement a fully
general system like Sesame SAIL’s evaluate, we believe such generality is the
correct approach. However, we see value in performing this sort of store-specific
optimization at planning time (as with our delegating planner) rather than dur-
ing query execution. This provides flexibility to the planning system, allowing
further planning, rewriting, and optimization to occur after the custom plan is
produced.

The delegating planner method is still somewhat brittle with respect to the
exact structure of the query algebra. Specific queries may not be as easy to
decompose in a planning store as the synthesized join example in section 3. For

ISWC 2014 Developers Workshop Copyright held by the authors 83

5

example, even for a store that can produce optimized plans for certain filters
and triple patterns, planning may not succeed if unrelated operations appear
between them:

Filter(?o > 10, Extend(?z ← ?o + 1, BGP(?s ?p ?o)))

If the triple store can only optimize BGPs with an optional enclosing filter,
this query would not be optimized even though it is semantically equivalent to
one in which the filter and BGP operations are adjacent (and therefore available
for optimization):

Extend(?z ← ?o + 1, Filter(?o > 10, BGP(?s ?p ?o)))

Without relying on the query planner to exhaustively test equivalent query
plans, a more flexible system is needed to allow recognizing query structures
that are well-suited for store-specific optimization.

Finally, custom query plans produced by stores should ideally work with
the query planner’s cost model to allow the system to compare the relative
costs of otherwise opaque custom plans. We don’t currently have a good system
for allowing this, and instead trust that store-produced plans will always beat
system-produced ones (and that all equivalent store-produced plans are equally
efficient). In the long run, we believe having an extensible cost model (likely
by requiring that query plan implementations conform to an Auditable trait,
allowing cost information to be accessed) is important for a system that allows
custom query plans.

Acknowledgements We thank Toby Inkster, Chris Prather, and Shawn M.
Moore for their assistance in applying trait-based programming techniques to the
design of the next generation PerlRDF system (and indirectly the SPARQLKit
project).

References

1. Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., Eswaran, K.P., Gray, J.N.,
Griffiths, P.P., King, W.F., Lorie, R.A., McJones, P.R., Mehl, J.W., Putzolu, G.R.,
Traiger, I.L., Wade, B.W., Watson, V.: System R: Relational approach to database
management. ACM Transactions on Database Systems (TODS) 1(2) (1976) 97–137

2. Broekstra, J., Kampman, A., Harmelen, F.: Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. Proceedings of the 1st International
Semantic Web Conference (ISWC) (2002) 54–68

3. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: Composable units of
behaviour. In Cardelli, L., ed.: ECOOP 2003 – Object-Oriented Programming.
Volume 2743 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2003) 248–274

4. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A semantic geospa-
tial dbms. In Cudr-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J.,
Hauswirth, M., Parreira, J., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E.,
eds.: The Semantic Web ISWC 2012. Volume 7649 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2012) 295–311

ISWC 2014 Developers Workshop Copyright held by the authors 84

6

5. Roth, M.T., Schwarz, P.M.: Don’t scrap it, wrap it! a wrapper architecture for
legacy data sources. In: VLDB. (1997) 25–29

6. Roth, M.T., Ozcan, F., Haas, L.M.: Cost models do matter: Providing cost infor-
mation for diverse data sources in a federated system. In: VLDB. (1999) 599–610

7. Adali, S., Candan, K., Papakonstantinou, Y., Subrahmanian, V.: Query caching and
optimization in distributed mediator systems. In: Proceedings of the ACM Sigmod
Conference. (1996)

ISWC 2014 Developers Workshop Copyright held by the authors 85

