
A classi�er based on a decision tree with verifying cuts

Jan G. Bazan1, Stanislawa Bazan-Socha2, Sylwia Buregwa-Czuma1,
Lukasz Dydo1, Wojciech Rzasa1, and Andrzej Skowron3

1 Interdisciplinary Centre for Computational Modelling, University of Rzeszow
Pigonia 1, 35-310 Rzeszow, Poland

2 II Department of Internal Medicine, Jagiellonian University Medical College
Skawinska 8, 31-066 Krakow, Poland

3 Institute of Mathematics, The University of Warsaw
Banacha 2, 02-097 Warsaw, Poland

Abstract. This article introduces a new method of a decision tree construction. Such deci-
sion tree is constructed with the usage of additional cuts that are used for a veri�cation of
cuts in tree nodes during the classi�cation of objects. The presented approach allows the use
of additional knowledge contained in the attributes which could be eliminated using greedy
methods. The paper includes the results of experiments that have been performed on data
obtained from biomedical database and machine learning repositories. In order to evaluate
the presented method, we compared its outcomes with the results of classi�cation using a
local discretization decision tree, well known from literature. The results of comparison of
the two approaches show that making decisions is more adequate through the employment
of several attributes simultaneously. Our new method allowed us to achieve better quality of
classi�cation then the existing method.

Keywords: rough sets, discretization, concept approximation, classi�ers.

1 Introduction

One of the most popular method for classi�ers construction is based on learning rules from
examples (see e.g. [3,6,7,15]). Unfortunately, the decision rules constructed in this way may often
be inappropriate to classify unseen cases. For instance, if we have a decision table where the number
of values is high for some attributes, then there is a very low chance that a new object is recognized
by rules generated directly from this table, because the attribute value vector of a new object will
not match any of these rules. Therefore for decision tables with such numeric attributes some
discretization strategies are applied to obtain a higher quality classi�ers. In this paper we consider
the supervised discretization, i.e. the discretization methods that use in their action the values of
decision attribute for training cases. There are many methods of supervised discretization, which
are based on various heuristics. We use an approach based on the creation of the so-called decision
tree of the local discretization (see, e.g., [4,6,13]). It is a binary tree, created by multiple binary
partitions of the set into two groups of objects (e.g., cases, states, processes, patients, observations,
vehicles) with the value of the selected attribute. The decision tree of local discretization can be
used not only for discretization but also can be treated as a classi�er (see Section 1.1).

However, there are serious doubts as to the validity of this approach of classi�er construction.
Therefore, we propose a new method of decision tree construction with the usage of additional
cuts making it possible to verify cuts in tree nodes during classifying of objects (see Section 2).
To illustrate the method and to verify the e�ectiveness of presented classi�ers, we have performed
several experiments on the data sets obtained from Kent Ridge Biomedical Dataset, UC Irvine
Machine Learning repository and the website of The Elements of Statistical Learning book (see
Section 3).

1.1 Classic discretization tree

In this paper we consider the supervised discretization based on the creation of the so-called
decision tree of the local discretization (see, e.g., [4]). It is a binary tree, created by multiple
binary partitions of the set into two groups of objects (e.g., patients) with the value of the selected



attribute. Because this method is well known from literature (see, e.g., [6,13]), in this paper we call
this method as the classic method.

The method of choosing an attribute and its value (for numeric attributes often called the cut),
that we use in the partition, is a key element of the discussed local discretization tree construction
method and should involve the analysis of decision attribute values for training objects. Thus, one
of the most important concepts presented in the strategy is a binary partition of the object set
based on the attribute and its value. Formally, a cut is a pair (a, v) that are de�ned for a given
decision table A = (U,A, d) in Pawlak's sense (see, e.g., [15]), where a ∈ A (A is a set of attributes
or columns in the data set) and v is the value of the attribute a that de�nes the partition of a set
of attribute's values into two subsets. For numeric attributes, a cut (a, v) de�nes a partition of a
set of objects into two subsets, the �rst set is a set of objects for which the a attribute value is less
than v, and the second set of objects for which the a attribute value is greater than or equal to v.
Instead, for symbolic attributes the �rst one is a set of objects for which the value of the attribute
a is equal to v, and the second set is a set of objects for which the a attribute value is di�erent
from v.

Moreover, any cut (a, v) de�nes two templates, where by a template we understand a description
of some set of objects. In case of numerical attributes, the �rst template de�ned by a cut (a, v)
is described by a formula T(a,v) = (a(u) < v) and the second pattern de�ned by a cut (a, v) by
formula ¬T(a,v) = (a(u) ≥ v). In case of symbolic attributes, the �rst template de�ned by a cut
(a, v) is designated by a formula T(a,v) = (a(u) = v) and the second pattern de�ned by a cut (a, v)
by ¬T(a,v) = (a(u) 6= v).

As a measure of the binary partition quality, for example, the number of pairs of objects
distinguishable by partition and having di�erent values of the decision attribute can be used. For
example, if a partition (a, v) divides objects into two sets of sizes M and N , and the �rst of these
collections have M0 and M1 objects from the class C0 and C1 respectively, and in the second one
we have N0 and N1 objects from the decision class C0 and C1, then the number of pairs of objects
dicerned by the partition is given by: N1 ·M0 +M1 ·N0. If we determine the value of this measure
for all possible cuts, then we can greedily choose one of the cuts and divide the entire set of objects
into two parts on its basis. Of course, this approach can be easily generalized to the case of more
than two decision classes.

It should be noted that this measure of the quality of the binary partition of objects set can
be calculated for the given cut in time O(n), where n is the number of objects in decision table
(see, e.g., [6]). But determining the optimal cut requires the calculation of quality measures for all
potential cuts. For this purpose it is necessary to check all potential cuts, including all conditional
attributes in a speci�c order. This can be done using various methods. One of such methods for
numerical attributes �rstly sorts the objects of the given attribute for which we seek the optimal
partition. This allows to determine the optimal cut in a linear manner.

Sorting a collection of objects results in the fact that the calculation of the optimal partition is
done in time O(n · log n ·m), where n is the number of objects, and m is the number of conditional
attributes. That is the method we have implemented in our own computational library RS-lib.

The quality of cuts may be computed for any subset of a given set of objects. In the local
strategy of discretization, after �nding the best cut and dividing the objects set into two subsets
of objects (matching both templates mentioned above for a given cut), this procedure is repeated
for each objects set separately until a stop condition holds.

At the beginning of the procedure we have the whole set of objects at the root of the tree.
Then, we recursively apply the same splitting procedure to the emerging parts that we assign to
tree nodes at higher and higher levels. Stop condition of partition is designed so that the given part
is not divided (becomes a tree leaf) if it contains only objects from one decision class (optionally
the objects from the given class constitute a certain percentage, which is treated as a parameter of
the method) or the considered cut does not have any e�ect, i.e., there are no new pairs of objects
from di�erent decision classes separated by the cut.

In this paper, we assume that the partition stops when all objects from the current set of objects
belong to the same decision class. Hence, the local strategy can be realized by using decision tree

(see Figure 1).
The decision tree computed during local discretization can be treated as a classi�er for the

concept C represented by decision attribute from a given decision table A. Let u be a new object



���
a, c

�
�
�	

@
@
@R

�
�
�
� A

A
A
A �

�
�
� A

A
A
A

?

a(u) ≥ ca(u) < c

u

Left Right

Fig. 1. The decision tree used in local discretization

and A(T ) be a subtable containing all objects matching the template T de�ned by the cut from
the current node of a given decision tree (at the beginning of an algorithm run T is the template
de�ned by the cut from the root). We classify object u starting from the root of the tree as follows:

Algorithm Classi�cation by decision tree (see [6])
Step 1 If u matches template T found for A

then: go to subtree related to A(T )
else: go to subtree related to A(¬T ).

Step 2 If u is at the leaf of the tree then go to 3
else: repeat 1-2 substituting A(T )
(or A(¬T )) for A.

Step 3 Classify u using the decision value attached to the leaf

A simple method for constructing the tree described above can be con�gured in many ways.
For example, one can change the cut quality, which may also be made by introducing the domain
knowledge. This often leads to the improvement of the classi�er performance (see [4]).

The quality of a given cut computed as a number of object pairs discerned by this cut and
belonging to di�erent decision classes was used in [5] and the classi�er constructed with usage of
this method we call here as the RS-C classi�er.

n=33
YES: 18
NO: 15

n=16
YES: 13
NO: 3

n=17
YES: 5
NO: 12

n=3
YES: -
NO: 3

n=13
YES: 13
NO: -

n=11
YES: -

NO: 11

n=6
YES: 5
NO: 1

n=5
YES: 5
NO: -

n=1
YES: -
NO: 1

Fig. 2. An exemplary RS-C classi�er



Figure 2 presents an exemplary RS-C classi�er for the problem of forecasting coronary stenosis
presence on the basis of medical data set (see [4]). Note that the above decision tree can be treated
directly as a classi�er, as test objects can be classi�ed by stating to which leaf of the tree they
belong. This is possible because, thanks to the designated partitions, one can trace membership of
an object in the path from the root to the leaf, and then classify the object to the decision class
whose objects dominate in the leaf.

Sample application of the tree is classi�cation of real life objects. For example, for a patient
with maximal ULF, i.e. power in ultra low frequency equal to 112 ms2 and maximal VLF (very
low frequency) equal 256, we follow from the root of the tree, down to the right subtree, as the
patient suits the template MAX_ULF < 248. Then, in the next step we decide again to go to
the right subtree, which consists of one node, called leaf, where we stop. The �tting path indicates
that the coronary arteries of that patient are not signi�cantly narrowed by atherosclerosis. For a
man with maximal ULF equal to 605 and standard deviation of VLF equal 509.6, we anticipate
the atherosclerotic coronary arteries stenosis presence.

2 Decision tree with verifying cuts

When applying the approach described in the previous sections to the construction of classi�ers
for the case of data with a large number of attributes, there are serious doubts as to the validity
of this approach. The point is that the method chooses only one split with the best quality of
the established measure, at the given step of searching for optimal binary partitions. In other
words, just one from among perhaps many partitions with high quality is chosen, while the others
are ignored. Obviously, in the next step, the subsequent optimal binary split is selected, but not
for the entire input set of objects, only for each previously obtained part separately. Such an
approach is often e�ective leading to e�cient classi�ers, if the number of attributes is small and
the attributes carry diverse information (e.g., in terms of a diverse positive area with respect to
decision attribute). However, data with a large number of attributes can contain a lot of attributes
that bear similar but signi�cantly di�erent information about objects. These attributes will be here
called additional or redundant attributes. The domain experts (such as medical doctors) who in
their daily work observe the redundancy of attributes, realize that and use it, e.g., making diagnosis
more secure through the use of several attributes simultaneously. Meanwhile, the above-mentioned
greedy method, out of the plurality of redundant attributes selects only one, eliminating others.
However, in practice, the classi�cation of the test objects may reveal the object that for some
reason should not be classi�ed according to the partition speci�ed by the greedy algorithm (e.g.,
an outlier, from the point of view of an attribute selected by the greedy algorithm in the current
node of the decision tree)

Therefore, the possibility of the object classi�cation by greedily designated binary partition
would require a con�rmation by other attributes, which in the above method is not done. As a
consequence a situation may occur where, e.g., for the microarray data with very many attributes
and few objects the method �nds only a few partitions (on several attributes), that are su�cient
to create a tree allowing us for an unambiguous classi�cation of objects from the training sample.
This situation is very di�cult to accept for the domain experts who are not able to come to terms
with such a large reduction of the knowledge contained in the attributes and not using the rejected
redundant attributes when creating the tree.

Serious doubts arise also from a statistical point of view. Typically, a set of objects is too
small to call it representative. Therefore, the disposal of the information contained in the rejected
attributes may lead to over�tting of the constructed tree to the objects from the training sample.

Some might say that the problem could be solved by a method calculating greedily in one step
k-partitions, which at given stage of the algorithm best distinguish pairs of objects in terms of
the �xed criterion (for one or more attributes). Unfortunately, no such algorithm is known with
the time complexity of less than a square one (with regard to the number of objects). Such an
algorithm would have to optimize k at a given stage of its operation, examining di�erent subsets
of potential partitions, which would increase its complexity. Due to e�ciency, in the work we are
interested in the complexity of the algorithms of the order at most n · log n with regard to the
number of objects n.



The basic idea described in this paper lies in the fact that at a given stage of searching for
partitions of a set of attributes, after determining the optimal binary partition of a set of objects,
the family of k-binary verifying partitions is determined (for other attributes than the attributes
used in the optimal partition), which as similar as possible to the optimal partition, distinguish
between pairs of objects of di�erent decision classes.

The idea behind it is as follows. As discussed above, the optimal partition is a tool to classify
partially the test object, i.e., it provides information on where the test object should be sent to
classify: to the right subtree or to the left one. Each partition of the family of verifying k-partitions
divides objects from the training table like the optimal partition. Thus, if a test object to be
classi�ed will be submitted by the optimal partition to the left tree, there is a presumption that it
should be directed similary by the verifying partition. If so, this increases our con�dence that the
optimal partition correctly classi�ed the test object (as it is possible in a given node).

However, if it is not so, i.e., for instance, the optimal partition directs the test object to the left
tree, and the verifying partition to the right, then there may be uncertainty about the performance
of our classi�er. Therefore, in this situation, a caution is recommended in planning further classi�er
actions. This precaution in the case of our method is revealed by the fact that the object is oriented
to the classi�cation by both the left and right subtree. After receiving the results of the classi�cation,
the possible con�ict between the received decisions is resolved. Of course, there may be more then
one verifying partition, and therefore the methodology outlined above must take this into account.

Another issue is the question of how verifying partitions interfere with the formation of the tree
for a training table. In the classical method of creating a tree (see Section 1.1), on a given stage of
the tree construction, the optimal partition of a set of objects into two disjoint sets is determined,
for which subtrees are separately created in subsequent stages. However, in the present method, the
split of a set of objects may not be a partition. On the one hand, as before, the optimal partition
divides a set of training objects into two disjoint sets, but there may be a number of objects that
match the pattern de�ned on the basis of the optimal partition, but does not match any of the
patterns de�ned for verifying partitions. Similarly, there may be objects that do not match the
pattern de�ned on the basis of the optimal partition, but match any of the patterns de�ned for
verifying partitions.

One can tell about such objects that already at the stage of the tree construction, it is doubtful
that the pattern based on the determined optimal partition is appropriate to classify this type of
objects. Therefore, when creating a tree, the objects will be included into both sets of objects,
the one intended to create a left subtree, as well as the set of objects intended to create a right
subtree. This corresponds to the intuition that learning to classify this type of object is somehow
postponed and transferred to both subtrees, where for their classi�cation new partitions will be
counted (perhaps better suited to these objects than optimal partition counted in the current tree
node).

Below is presented the algorithm for construction of a decision tree, which formalizes the above
considerations. Due to the fact that the algorithm uses verifying binary partitions, the decision
tree produced by this algorithm will be called V-decision tree.

Assume that a decision table A = (U,A, d) and a parameter k belonging to natural numbers
appear at the input of the algorithm.

Algorithm V-decision tree construction

Step 1 Find the optimal binary partition p in the table A
Step 2 Find a collection of binary partitions p1, ..., pk in the table A which verify the partition

p, such that Dis(p,pi)
Dis(p) > t, where Dis(p) is a number of pairs of objects from

di�erent decision classes discerned by partition p, whilst Dis(p, pi) is a number of pairs
of objects from di�erent decision classes discerned by both partitions p and partition pi
(for i = 1, ..., k) and t is a �xed threshold (t was equal 0.9 in our experiments).

Step 3 Split the table A into two subtables A(Tp) and A(¬Tp) such that A(Tp) contains
objects matching a pattern Tp, and A(¬Tp) contains objects matching a pattern ¬Tp.

Step 4 Assign Al = A(Tp) and Ar = A(¬Tp).
Step 5 Determine all objects in the table A, which match the pattern Tp and

do not match a pattern Tpi
(for i ∈ {1, ..., k}) or match the pattern ¬Tp and do not

match a pattern ¬Tpi
(for i ∈ {1, ..., k}), and attach these objects both



to the table Al and Ar (if they are not there yet)
Step 6 If the tables Al and Ar satisfy the stop condition, then �nish tree construction

else repeat steps 1-4 for all subtables which do not satisfy the stop condition.

The stop condition mentioned in the above algorithm is the same as in the algorithm discussed
in Subsection 1.1. Note that the only element of the above algorithm, which would increase the
order of magnitude in complexity of computing time compared to the classical algorithm of Section
1.1 is step 2, in which the collection of k binary partitions verifying the partition p is computed. We
show that this step can be accomplished in time O(n · log n ·m), where n is the number of objects
and m the number of conditional attributes and therefore does not increase the computational time
complexity of the algorithm in relation to the algorithm of Section 1.1.

It's not hard to see that for symbolic attributes, which typically have a small number of values,
the determination of the best veri�cation split can be done in time O(n · l), where l is the number of
symbolic attribute values. Somewhat more di�cult situation occurs when the veri�cation partition
for numerical attribute is calculated. Below we present the algorithm for selection of veri�cation
partition for the designated earlier binary partition p, assuming that the veri�cation split is de-
termined by a numerical attribute. For ease of discussion, assume that there are only two decision
classes C0 and C1 in the data. This approach can of course be easily generalized to the case of
more than two classes of decision-making.

Algorithm Selection of verifying cut

Step 1 Sort the values of the numerical attribute a
Step 2 Browsing the a attribute values from the smallest to the largest

determine for each appearing cut c the following numbers and place them
in a memory about cuts M :

L(a, c, C0) - number of objects from decision class C0 with values of attribute a
smaller than c and at the same time matching the pattern Tp,
L(a, c, C1) - number of objects from decision class C1 with values of attribute a
smaller than c and at the same time matching the pattern Tp.

Step 3 Browsing the a attribute values from the highest to the lowest
determine for each appearing cut c the following numbers and place them
in a memory of information about cuts M :

H(a, c, C0) - number of objects from decision class C0 with values of attribute a
greater than or equal to c and at the same time matching the pattern ¬Tp.
H(a, c, C1) - number of objects from decision class C1 with values of attribute a
greater than or equal to c and at the same time matching the pattern ¬Tp.

Step 4 Reviewing the information memory about cuts M , for each cut c, using information
about the cutting from the memory M , determine the optimum cutting such that
together with partition p distinguishes the largest number of pairs of objects from
di�erent decision classes, and for each cut c calculate the number of such pairs
by formula: L(a, c, C0) ·H(a, c, C1) + L(a, c, C1) ·H(a, c, C0).

Assuming that the memory about cuts M is accessible in constant time, the above algorithm
runs in time O(n · log n), where n is the number of objects (due to the sorting of objects on the
basis of the a attribute).

Now we provide the algorithm for an object classi�cation, using a V-tree with verifying parti-
tions. Suppose we classify the object u at a node where the optimal cut c and the family of verifying
cuts c1, ..., ck were found. Let T denote the pattern for c, and T1, ..., Tk the patterns for c1, ...,
ck. The classi�cation is performed according to the following algorithm.

Algorithm Classi�cation by V-decision tree

Step 1 If a node satis�es the stop condition, return the decision �xed in the tree node and terminate
Step 2 Assign k1: = the number of patterns from the collection T1, ..., Tk,

to which the object u �ts
Step 3 Assign k2 = k − k1



Step 4 If object u matches the pattern T and k1 = k, then send it for classi�cation
by the subtree constructed for the table A(T ), to obtain the value of the decision d1, and return d1
otherwise

if the object u does not match the pattern T, and k2 = k, then send u for classi�cation
by subtree designed for a table A(¬T ), to obtain the value of the decision d2, and return d2
otherwise

classify object u by node A(T ) to obtain the value of the decision d1.
classify object u by node A(¬T ) to obtain the value of the decision d2.
If d1 = d2 then return d1.
otherwise

if k1 > k2 return d1
otherwise return d2.

The classi�er constructed with the use of V-decision tree will be called here the RS-V classi�er.
Note that the above algorithm to classify the object in the node utilizes a single tree only when
all verifying splits classify the object just as a main partition p. In other cases, the classi�cation
is done by both subtrees. Then the following two cases are considered. The �rst case refers to the
situation when the two subtrees returned the same decision value. Then the value of the node is
returned as the decision. The second case refers to a situation where one of the subtrees returned
one decision value, and the second subtree the other one. Then that node returns a decision coming
from the subtree, which is associated with a greater number of such verifying patterns that classify
a test object for this tree.

3 Experiments and results

To verify the quality of classi�ers based on verifying cuts, we have implemented the algorithms
from the library RS-lib, which is an extension of the RSES-lib library forming the kernel of the
RSES system [7].

The experiments have been performed on the data sets obtained from Kent Ridge Biomedical
Dataset ([12]), UC Irvine (UCI) Machine Learning repository (see [22]) and website of The Elements
of Statistical Learning book (Statweb)(see [9]).

From the �rst source there comes 6 collections which cover the microarray experiments in lung
cancer [11]), lymphoma ([1]), ALL-AML leukemia ([10]), colon tumors ([2]), ovarian cancers ([18])
and prostate tumors ([19]). The experiments were conducted on the merged original training and
testing data sets.

Table 1. Experimental data set details

Microarray data Objects Attributes Classes

Colon 62 2000 2
Leukemia 72 7129 2
Lymphoma 47 4026 2
Lung cancer 181 12533 2
Ovarian cancer 253 15154 2
Prostate 136 12600 2

UCI and Statweb data Objects Attributes Classes

biodeg 1055 41 2
CHD 462 9 2
Parkinson 185 23 2
spam 4601 58 2

The next sets of data derived from UCI (the �rst two) and Statweb are related to such topics
as: Parkinson disease, the biodegradation of molecules, coronary heart disease (CHD) and spam
e-mail. Table 1, shows the summary of the characteristics of the data sets.

The aim of conducted experiments was to check the quality of the classi�cation algorithms
described in this paper. Here we present the experimental results of presented methods. For testing
quality of classi�ers we applied 10 fold cross-validation (CV) technique. In this metod, a data set is
divided into ten equinumerous subsets (folds). In each test, nine folds of data are used for training
and the remaining one for testing. The procedure is repeated 10 times. The �nal result of the
algorithm is the average of the 10 trials.



As a measure of classi�cation success (or failure) we use the following parameters well known
from literature: the accuracy (ACC) and the coverage (COV).

In Table 2 we give the results of experiments in applying presented classi�cation methods to
chosen data.

Table 2. Average ACC and COV of data sets with classi�cation algorithms based on 10 fold CV

RS-C classi�er RS-V classi�er
Method Accuracy Coverage Accuracy Coverage

Colon 0.712 1 0.773 1

Leukemia 0.830 1 0.907 1

Lymphoma 0.802 0.938 0.890 1

Lung cancer 0.920 1 0.926 1

Ovarian cancer 0.979 1 0.988 0.999

Prostate 0.794 1 0.796 1

biodeg 0.810 1 0.814 1

CHD 0.630 1 0.647 1

Parkinson 0.887 1 0.888 1

spam 0.893 1 0.896 1

4 Conclusion

In the paper we presented the new method of a decision tree building which makes use of the
plurality of redundant attributes. The method simulates the behavior of domain experts in decision
making, e.g. doctors who increase the certainty of making diagnosis through the use of several
attributes simultaneously. The assesement of the approach was conducted using ten datasets. The
novelty of the paper is important because the experimental results show that the employment of
the knowledge contained in the redundant attributes increases the quality of the classi�ers. For
all datasets the accuracy of the proposed classi�er was better compared to the classical method,
from an insigni�cant increase (0.1%) to almost 9%. We observed that better results (ACC increase
of 6.1%, 7.7% and 8.8%) were achieved for microarray data (for half of the data sets) which are
characterized by a large number of attributes and a small number of objects.

The conducted experiments constitute the initial steps of investigating of the new method. We
expect that the method may be used in various �elds. We plan further experimental work involving
the improvement of the method, e.g. the optimization of its parameters.

Acknowledgement

This work was partially supported by the Polish National Science Centre grant DEC-2013/09/B/
ST6/01568 and by the Centre for Innovation and Transfer of Natural Sciences and Engineering
Knowledge of University of Rzeszów, Poland.

References

1. Alizadeh, A., Eisen, M., Davis, R., Ma, C. et. al.: Distinct types of di�use large b-cell lymphoma
identi�ed by gene expression pro�ling. Nature 403, 503�511 (2000)

2. Alon, U. et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. PNAS 96, 6745�6750 (1999)

3. Bazan, J.G.: Hierarchical classi�ers for complex spatio-temporal concepts. Transactions on Rough Sets,
IX, LNCS 5390, 2008, pp. 474�750.



4. Bazan, J.G., Bazan-Socha, S., Buregwa-Czuma, S., Pardel, P.W., Sokolowska, B.: Predicting the pres-
ence of serious coronary artery disease based on 24 hour Holter ECG monitoring. In: M. Ganzha, L.
Maciaszek, M. Paprzycki (eds.), Proceedings of the Federated Conference on Computer Science and

Information Systems, 2012, pp. 279-286, IEEE Xplore - digital library.
5. Bazan, J.G., Bazan-Socha, S., Buregwa-Czuma, S., Pardel, P.W., Sokolowska, B.: Prediction of coro-

nary arteriosclerosis in stable coronary heart disease, Proceedings of the Fourteen Conference of In-
formation Processing and Management of Uncertainty in Knowledge-Based Systems, 2012, Springer-
Verlag, Communications in Computer and Information Science, vol. 298, part 9, Springer, 2012, pp.
550-559.

6. Bazan, J. G., Nguyen, H. S., Nguyen, S. H., Synak, P., Wróblewski, J.: Rough set algorithms in
classi�cation problems. In: L. Polkowski, T. Y. Lin, S. Tsumoto (eds.), �Rough Set Methods and
Applications: New Developments in Knowledge Discovery in Information Systems,� Studies in Fuzziness

and Soft Computing, Springer-Verlag/Physica-Verlag, vol. 56, 2000, pp. 49�88.
7. Bazan, J. G., Szczuka, M.: The Rough Set Exploration System. Transactions on Rough Sets, III, LNCS

3400, 2005, pp. 37�56.
8. Doherty, P., �ukaszewicz, W., Skowron, A., Szaªas, A.: Knowledge Engineering: A Rough Set Approach.

Springer, Heidelberg, Germany, 2006.
9. The Elements of Statistical Learning repository,

http://statweb.stanford.edu/ tibs/ElemStatLearn/datasets/

10. Golub, T., Slonim, D., Tamayo, P. et al.: Molecular classi�cation of cancer: Class discovery and class
prediction by gene expression monitoring. Science 286, 531�537 (1999)

11. Gordon, G., Jensen, R., Hsiao, L., Gullans, S. et al.: Translation of microarray data into clinically
relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer
Research 62, 4963�4967 (2002)

12. Kent Ridge Biomedical Dataset repository, http://datam.i2r.a-star.edu.sg/datasets/krbd/
13. Nguyen, H. S.: Approximate Boolean Reasoning: Foundations and Applications in Data Mining, Trans-

actions on Rough Sets, V, LNCS 4100, 2006, pp. 334�506.
14. Nguyen, Hung, S., Skowron, A., Stepaniuk, J.: Granular computing: A rough set approach. In Com-

putational Intelligence, 17 (3):514�544, 2001.
15. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences, 177, 2007, pp. 3�27.
16. Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, John Wiley &

Sons, The Atrium, Southern Gate, Chichester, England. 2008.
17. Peters, J. F.: Classi�cation of objects by means of features. In: D. Fogel, J. Mendel, X. Yao, T. Omori

(Eds.), Proc. 1st IEEE Symp. Foundations of Computational Intelligence, (FOCI'2007), Honolulu,
Hawaii, 2007, pp. 1�8.

18. Petricoin, E., Ardekani, A., Hitt, B., Levine, P. et al.: Use of proteomic patterns in serum to identify
ovarian cancer. The Lancet 359, 572�577 (2002)

19. Singh, D. et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203�209
(2002)

20. Skowron, A.: Toward intelligent systems: Calculi of information granules. In T. Terano, T. Nishida,
A. Namatame, S. Tsumoto, Y. Ohsawa, and T. Washio, editors, New Frontiers in Arti�cial Intelligence,

Joint JSAI 2001 Workshop Post-Proceedings, volume 2253 of Lecture Notes in Arti�cial Intelligence,
pages 251�260, Matsue, Japan, May 20�25 2001. Springer-Verlag.

21. Skowron, A.: Towards granular multi-agent systems. In Sankar K. Pal and Ashish Ghosh, editors, Soft
Computing Approach to Pattern Recognition and Image Processing, pages 215�234. World Scienti�c,
2002.

22. UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml/


