
Distributed Termination Detection
by Counting Agent ⋆

N. O. Garanina, E. V. Bodin

A.P. Ershov Institute of Informatics Systems,
Lavrent’ev av., 6, Novosibirsk 630090, Russia,

{garanina,bodin}@iis.nsk.su

Abstract. The detection of termination of a distributed computation
is an important problem in distributed systems. A distributed computa-
tion is said to terminate when all its processes are passive and there is no
unprocessed message in the communication channels. We suggest a new
algorithm for the distributed termination detection (DTD) problem. Our
algorithm exploits a special agent that accumulates knowledge about the
activities of basic system processes, and can decide about system termi-
nation. This approach combines the benefits of both message-counting
and credit/recovery DTD-algorithms. We prove correctness of this algo-
rithm and introduce some significant modifications.

1 Introduction

The problem of detecting the termination of a distributed computation is well
studied. The termination state of a distributed system is defined as the state
in which there are no unprocessed messages in the system and all processes are
waiting. Several distributed termination detection algorithms have been devised
which differ from each other by various parameters, such as distributed network
topology, communication channel types, fault tolerance, and more. Paper [8] pro-
vides a representative taxonomy of DTD-algorithms. We use that classification
to describe some properties of termination detection algorithm.

Our proposed algorithm is similar to the message-counting algorithms, as
e.g. [7, 9, 10], and to credit/recovery algorithms, in particular [11, 12]. In these
message-counting algorithms, a special agent scans other processes for informa-
tion about messages sent and received by the processes. In our case, an agent
uses control messages sent by the basic processes to collect information about
their current and potential activities. To some extent, our DTD-algorithm is
inverse to the credit/recovery algorithms, in that all processes credit a single
debtor –viz., the collector process– by sending it positive values representing
their activity, and successively withdraw funds from it by sending negative val-
ues representing their termination. The key advantages of our algorithm is not to

⋆ The research has been supported by Siberian Branch of Russian Academy of Science
(Integration Grant n.15/10 “Mathematical and Methodological Aspects of Intellec-
tual Information Systems”).

require a traversal of the process network as in message-counting algorithms, nor
to know the number of processes and manipulate real numbers as in traditional
credit/recovery algorithms. Every active processes divides its credit for processes
in communication, then passive processes return their part of the credit.

A simplified version of the protocol we present in this paper has first appeared
in [3] in the context of termination detection for the multi-agent algorithm for
ontology population based on the semantic analysis of unstructured data. In
that work, basic information and rule agents perform a semantic analysis of
input data, and the controller agent determines the moment when such basic
agents cannot proceed processing any further.

The rest of the paper is organized as follows. Section 2 describes the base
algorithm for the termination detection problem. Then Section 3 proves the basic
properties of the algorithm, including its correctness. Section 4 presents some
immediate modifications and generalisation of the basic algorithm. Finally, we
conclude in Section 5 with a discussion of future research.

2 The Base Activity Balance Algorithm

For the base Activity Balance algorithm (AB-algorithm), we define a distributed
system AB as a set of n basic processes pi (i ∈ [1..n]) and the controller process
C: AB = {p1, . . . , pn, C}. Basic processes are connected by reliable commu-
nication channels for messages. Such channels can be unidirectional or duplex.
Besides every basic process is connected with the controller by a duplex channel.
Messages are transmitted instantly and stored in channels until they are read.
We assume no shared memory and clock between processes.

The basic processes p1, . . . , pn execute the basic computation. The messages
they exchange in the basic computation are called basic messages. We consider a
process active if it is processing its basic computation. Otherwise, the process is
passive. Initially, each process in the system is either active or passive. Without
loss of generality we assume that every basic process is active at the beginning.
Only an active basic process may send a basic message to another basic process.
A passive process can only become active if it receives a basic message. We say
that a distributed system terminates if and only if every basic process is passive
and every basic process’ communication channel is empty.

In addition to its basic computation, each basic process executes additional
actions used for determining system termination. These actions have no effect on
the basic computation. In our base AB-algorithm, the extra actions involve only
sending to the controller agent control messages relating their activity status.
In general, control messages may contain any information. They are sent and
received by both active and passive processes, and do not affect their active or
passive status.

We only consider terminating basic processes, i.e., processes that do not
run forever. This is equivalent to assert that the actions of every basic process
between passive periods decreases some function with values in a well-founded
set. Without loss of generality, we can select such function to depend the number

of basic messages over time. For example, it can be the sum of unread messages
in the system at any given moment in time. We assume that the each process’
basic computation is organized in three successive blocks: reading messages from
the input (one at the time), processing messages, and sending messages (several
simultaneously). The system’s computation is kickstarted by start messages sent
between basic processes. For simplicity we assume that each basic process can
send start messages. We also assume that Mp(t), the number of basic messages
sent by the basic process p at its local time t, is a strictly decreasing function.

Let us now describe the protocols followed by the basic processes and by the
controller. In the pseudo-code which follows, get mess(set) denotes the func-
tion that removes an element from set and returns it. Also, we use C to indicate
the controller. Variable status will be used to record the activity status of a
basic process, viz., active or passive, integer t to mark of time of sending each
messages. Finally, mess indicates a generic message from another process, and
Input a process’ set of incoming messages. Informally, the computation proceeds
as follows. At the outset, a basic process sends some start messages to other
basic processes. Before this, it informs the controller of the number of potential
activities its messages have triggered in other processes, and changes its status
to active. After sending off the initial messages, it sets its status to passive.
Importantly, it informs the controller about such change of state. Then, the
becomes passive, and sits waiting for incoming messages. On reception of some
message (viz., Input ̸= ∅), it handles them by performing some computation, and
terminates the iteration by sending off some messages resulting from the com-
putation to other basic processes. Again, it must inform the controller about the
potential activities it is triggering with such messages, and of its newly acquired
passive status, and increases its local time t ready for the successive iteration.
This is expressed formally below in the pseudocode for a generic basic process
p.

Protocol of processes.
p::

C: Controller;

status: {active,passive};
t: integer;

mess: message;

Input: set of incoming messages;

begin

1. send(Mp(0) + 1) to C;

2. status = active;

3. send Mp(0) messages to processes;

4. t = 1;

5. status = passive;

6. send(-1) to C;

7. while(true){
8. if(Input ̸= ∅) then {

9. mess = get mess(Input);
10. if(mess = STOP) then break;

11. status = active;

12. handle(mess);

13. send(Mp(t)) to C;

14. send Mp(t) messages to processes;

15. t = t + 1;

16. status = passive;

17. send(-1) to C;

18. } }
end.

The main role of the controller is to keep track of other process’ activities.
It does so sequentially, using variable Act. At the beginning, it waits the first
message from some basic process as a signal that the system is launched. Then
it repeated sums activities until the sum is found equal to zero and there are
no more messages waiting to processes in the input queue. At that point, the
system has terminated, and the controller informs all basic processes of that.

Protocol of agent-controller C.
C ::

Act: integer;

Input: set of integer;

begin

1. Act = 0;

2. while(Input = ∅) { }
3. while(true){
4. if(Input ̸= ∅) then Act = Act + get mess(Input);
5. if(Input = ∅ and Act = 0) then break;

6. }
7. send STOP to all;

end.

If we then let an instance of protocol p for the basic process pi be denoted
as p i, the AB-algorithm for the distributed system AB can be presented as
follows:

AB::

begin

parallel {p 1} ...{p n} {C}
end.

where the parallel operator means that all execution flows (threads) in the set
of braces run in parallel.

3 Features and Correctness of the AB-algorithm

In this section we describe some of the characteristics of the base AB-algorithm.
We use the property classification introduced in [8], which assumes the following
categories for DTD-algorithms.

1. Type of algorithm – For example, a wave algorithm is a popular type
of DTD algorithm.

2. Necessary network topology – For those algorithms where it is nec-
essary to exploit the underlying topology of the network in order to
detect termination correctly.

3. Algorithm symmetry – An algorithm is symmetric if each process
runs an identical algorithm.

4. Process knowledge – For example, a process that requires informa-
tion about the network in order to perform its duty, has special
knowledge.

5. Communication protocol – Each algorithm assumes either synchro-
nous or asynchronous communication.

6. Message arrival – Each algorithm assumes either first-in first-out
(FIFO) message channels or no restrictions on the relative order of
message delivery.

7. Message optimality – If an algorithm, in its worst case, uses the
number of messages which researchers have proven to be a lower
bound on the number of messages necessary to detect termination,
it is considered message optimal.

8. Fault tolerance – If a system can detect termination when there are
portions of the system that do not work as expected, it is considered
fault tolerant.

Proposition 1.
The base AB-algorithm has the following features:

1. the algorithm has the message-counting and credit/recovery type;
2. the basic network topology has no restrictions, apart that every process must

be connected to the controller by duplex channels;
3. the algorithm is asymmetric;
4. no process needs special knowledge but the controller;
5. the communication protocol is synchronous;
6. there is no restriction on message arrival;
7. the algorithm is message optimal;
8. the algorithm is not fault tolerant.

Sketch of the Proof.
(1) Type of the algorithm. Our algorithm has the message-counting type be-
cause the controller calculates the activity balance using the number of messages
sent, as well as direct information about the activity of each process. The algo-
rithm has the credit/recovery type too, because of an inversion of credit/recovery

course: the controller as a single debtor and all other processes as its creditors.

(2) Necessary network topology. The controller agent must definitely be con-
nected with each processes by a duplex channel in order for it to be informed
about their activity. Yet, there is no requirement for a special network topology
of the basic processes.

(3) Algorithm symmetry. The AB-algorithm is asymmetric, because there is a
special controller agent whose actions differ from others.

(4) Process knowledge. In our algorithm every process has just to know the
controller, and vice versa; no other information is necessary for detecting termi-
nation.

(5) Communication protocol. Communication in the base algorithm must be
synchronous. This means that messages are transmitted instantly and stored in
channels until the are read.

(6) Message arrival. Message channels for processes in our algorithm need not
be FIFO or of any other specific type, because the controller detects termination
when its channel is empty.

(7) Message optimality. The AB-algorithm is message optimal because the num-
ber of input messages that every basic process handles is larger than the number
of messages sent to the controller.

(8) Fault tolerance. Our algorithm is not fault tolerant: faulty processes may not
send timely and correct information about their activity. �

The correctness of the AB-algorithm is proved by the following proposition.

Proposition 2. If the distributed system AB terminates, then the controller
determines the termination moment correctly.

Sketch of the proof.
The proof of the proposition follows from the fact that the value of variable Act
becomes 0 with the empty input channel no earlier than the termination moment.
Let active(t) be the number of active processes and Input(t) be the sum of all
values in the Input channel at instant t. For every global time moment t it holds
that Input(t)+Act ≥ active(t). This is because (1) each basic processes increases
Act after its local termination, when it sends to the controller the number of the
potential activities it triggered (lines 1,13); and (2) it decreases Act when it
informs the controller about its passive status (lines 6,17). �

We have also verified this system using the model checking tool SPIN [5]. We
use the SPIN input language Promela for the above protocols, and expressed the
correctness property for the controller in linear time temporal logic as follows.

G(Act = 0 ∧ Input = ∅ →
∧

p∈AB

p.status = passive)

DTD-algorithms can be considered as knowledge-based programs [1]. In such
programs process agents could act depending on their knowledge about world.

In particulary, our controller has to inform other processes about system termi-
nation only if it knows that the system stops. This knowledge property of the
controller can be formulated as: if the controller detects the termination moment,
then it knows exactly that every process is passive. This property is expressible
in the logic of knowledge and time [1] as

G(Act = 0 ∧ Input = ∅ → KC(
∧

p∈AB

p.status = passive)).

This property could be verified by the knowledge model checking tools MCK[2] or
VerICS [6]. Note, that the basic processes know that the system has terminated
only after receiving the STOP message from the controller.

4 Modifications of the Base AB-Algorithm

In this section we suggest and analyze several modifications extensions of our
base AB-algorithm, directly suggested by the classification from [8] we referred
to and used in the previous section.

(1) Necessary network topology.
The basic network has no restriction on topology, but for the detection of ter-
mination every process has to be connected with the controller by a duplex
channel. In order to drop the requirement of global connection with the con-
troller, the basic network must provide a spanning tree of duplex channels for
the exchange of messages between basic processes and the controller. Changes of
network topology, which keep possibility of every process to communicate with
the controller, do not affect correctness of the algorithm, but message optimality
may be different, because some processes can be loaded with another’s messages
for the controller.

(2) Algorithm symmetry.
The AB-algorithm can be made symmetric by equipping every process with the
logic to perform the controller actions. In this case, processes have to inform
all network processes about their activity besides sending the basic messages.
This has of course a big effect on network traffic, the number of messages grows,
and the algorithm ceases to be message-optimal. This variant of the algorithm
remains correct, that can be proved easily by induction on number of processes.

(3) Communication protocol.
We assume in the base algorithm that messages are transmitted instantly and
stored in channels until they are read. Let us consider the asynchronous case,
where messages are transmitted with a finite, yet indeterminate delay. If channels
are of FIFO-type, then the base algorithm is still correct for the prior reasons,
and requires no revision. If however the channels are not FIFO, then an addi-
tional control is required of each basic processes to detect termination.

In order to deal with this, let us add to every process a counter MSent which
will be used to count the number of messages it sent. Now local time t is used for

counting a process’ transitions to the passive status. The processes can receive
STOP and CONTROL messages from the controller. The controller sends CONTROL
message when it finds that there is no activity of other processes and no messages
in its input channel. It suggests that system terminates but it is not sure because
for the message delays some processes may not read messages for them. For this
reason it has to control the number of messages in the system using information
from other processes. In fact, the number (MSent-t) which each process p sends
to the controller after receiving the CONTROL request, is nothing but the difference
between the numbers of messages that p sent and handled at time t. If the
controller finds that for each process p all the messages sent have been handled,
i.e., the control sum of (MSent-t) from every p is zero, then it decides that the
system has terminated. It is obvious that if this control sum is equal to zero then
there are no messages transferred in the system. This fact and correctness of the
base algorithm imply correctness of this asynchronous variant of AB-algorithm.
With a little modification to our base algorithm, such a control sum is sufficient
to detect termination. As before, the controller uses an activity counter Act
to handle the calculations of the control sum efficiently. This is not strictly
necessary, but it simplifies the protocol significantly. The modified version of our
base AB-algorithm is described below.

Protocol of processes.
p::

C: Controller;

status: {active,passive};
t, MSent: integer;

mess: message;

Input: set of incoming messages;

begin

1. send(Mp(0) + 1) to C;

2. status = active;

3. send Mp(0) messages to processes;

4. t = 1;

5. status = passive;

6. send(-1) to C;

7. while(true){
8. if(Input ̸= ∅) then {
9. mess = get mess(Input);
10. if(mess = STOP) then break;

11. if(mess = CONTROL) then send(MSent - t) to C;

12. if(mess from OtherProcess) {
13. status = active;

14. handle(mess);

15. send(Mp(t)) to C;

16. send Mp(t) messages to processes;

17. MSent = MSent + Mp(t);

18. t = t + 1;

19. status = passive;

20. send(-1) to C; }
21. } }
end.

For simplicity we allocate a special channel Contmessages for the control
sums from the basic processes. The controller must know the number of network
processes in order to wait for all messages on this channel. The protocol of the
controller is below, where n is the number of processes in the network.

Protocol of agent-controller C.
C ::

Act, ContSum, i: integer;

Input, Contmessages: set of integer;

begin

1. Act = 0;

2. while(Input = ∅) { }
3. while(true){
4. if(Input ̸= ∅) then Act = Act + get mess(Input);
5. if(Input = ∅ and Act = 0) then {
7. ContSum = 0;

8. clear(Contmessages);
9. send CONTROL to all;

10. while(Input = ∅ and |Contmessages| < n) { }
11. if(Input = ∅) then

12. for(i=0; i < n; i=i+1)

13. ContSum = ContSum + get mess(Contmessages);
14. if(Input = ∅ and ContSum = 0) then break; } }
15. send STOP to all;

end.

(4) Dynamics.
The basic system can be dynamic, i.e., basic processes can appear and disap-
pear whilst the termination detection protocol is running. In this case, the base
AB-algorithm remains correct under the assumption that a basic processes can
disappear only when it is in passive state, its set of input messages is empty,
and sending messages to disappeared processes is forbidden. The reason for the
correctness is that if a disappearing process satisfies these conditions then its
extinction does not affect activity of other process and counting this activity.

(5) Hierarchical networks.
In a hierarchical network every basic subprocess sending messages communicates
to the controller by itself. A basic process is passive if and only if all its subpro-
cesses are passive. It is obvious that the base algorithm remains correct due to
autonomy of subprocess communication with the controller.

We remark that the AB-algorithm remains correct with respect to any com-
bination of the above extensions, except for the combination of non-FIFO asyn-
chronous communication and dynamics. This combination fails because in non-
FIFO asynchronous mode the controller has to know the number of system
processes.

5 Conclusion

We have presented a new Activity Balance algorithm for the distributed ter-
mination detection problem. We have proved the algorithm’s correctness and
illustrated some of its properties. We analyzed and investigate several signif-
icant extensions to the algorithm, with the exception of the extensions to a
fault-tolerant algorithm, which we leave for future work. In the future, we also
plan to verify knowledge properties of the AB-algorithm and its extensions us-
ing model checking tools for logics of knowledge in multi-agent systems. This
research is part of the study of DTD-algorithms in the context of reasoning
about knowledge.

Acknowledgements: I would like to thank my colleague Igor Anureev, as
well as Vladimiro Sassone for help and discussions.

References

1. Fagin R., Halpern J.Y., Moses Y., Vardi M.Y. Reasoning about Knowledge.
— London: MIT Press, 1995. — 477 p.

2. Gammie P., van der Meyden R. MCK: Model Checking the Logic of Knowledge
// Proc. of 16th International Conference, CAV 2004, Boston, MA, USA, July 13-
17, 2004. LNCS Vol. 3114, 2004, pp 479-483.

3. Garanina N., Sidorova E., Bodin E. A Multi-agent Approach to Unstruc-
tured Data Analysis Based on Domain-specific Onthology // Proc. of the 22nd
International Workshop on Concurrency, Specification and Programming, War-
saw, Poland, September 25-27, 2013. CEUR Workshop Proceedings, Vol-1032, P.
122-132

4. Huang, S. Detecting termination of distributed computations by external agents.
// In: IEEE Nineth International Conference on Distributed Computer Systems,
pp. 79-84.

5. Holzmann G. J. The Spin Model Checker: Primer and Reference Manual.//
Addison Wesley Pub, 2003. P. 608

6. Kacprzak M., Nabialek W., Niewiadomski A., Penczek W., Plrola A.,
Szreter M., Wozna B., Zbrzezny A. VerICS 2007 - a Model Checker for
Knowledge and Real-Time // Fundam. Inform. 85(1-4): 313-328 (2008)

7. Kumar, D. A class of termination detection algorithms for distributed computa-
tions // Proc. of the Fifth Conference on Foundations of Software Technology and
Theoretical Computer Science. LNCS, Vol. 206, 1985, pp 73-100.

8. Matocha J., Camp T. A taxonomy of distributed termination detection algo-
rithms // The Journal of Systems and Software, 1998, Vol. 43, P. 207-221

9. Mattern, F. Algorithms for distributed temination detection.// Distributed Com-
puting 2 (4), 161-175.

10. Mattern, F. Experience with a new distributed termination detection algorithm.
// In: Proceedings of the Second International Workshop on Distributed Algo-
rithms, pp. 127-143.

11. Mattern, F. Global quiescence detection based on credit distribution and recovery
// Inform. Process. Lett. 30 (4), 1989, P. 195-200.

12. Rokusawa, K., Iciyoshi, N., Chikayama, T., Nakashima, H. An effcient
termination detection and abortion algorithm for distributed processing systems //
In: Proceedings of the International Conference on Parallel Processing, pp. 18-22.

