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Abstract. Different kinds of self-* systems ranging from autonomous
self-organizing to hierarchical self-adaptive systems have been developed
in the past. However, today there are no clear technical criteria how to
classify distributed self-* systems within the resulting design spectrum.
In this paper, we provide such a classification by looking on runtime mod-
els and their coupling. As runtime models capture the shared knowledge
employed by feedback loops, at first, we provide an improved runtime
model categorization. With such a basis, we subsequently derive impact
relations describing the coupling of runtime models. Finally, we show that
the existence of complex impact relations can be employed to describe
the spectrum of self-* systems.

1 Introduction
There are different kinds of self-* systems ranging from autonomous self-organi-
zing to hierarchical self-adaptive systems (cf. [4]). Besides single feedback loops
controlling the adaptation of the core system, also multiple feedback loops real-
izing different adaptation concerns and distributed, collaborating feedback loops
are employed to achieve the desired self-* behavior for the whole system (cf. [2]).
However, today, there are no clear technical criteria how to classify distributed
self-* systems within the resulting design spectrum [9, 19, 21].

Runtime models are an abstract representation of the running software sys-
tem that represent the knowledge employed in the MAPE-K feedback loop ap-
proach [10], which is characteristic for self-* behavior (cf. [2]). Runtime Models
are causally connected to the running system [1]. Therefore, it seems to be a
good idea to consider runtime models as starting point, when looking for a clas-
sification of the design spectrum for distributed self-* systems.

In this paper, we provide a classification for distributed self-* system by
looking on runtime models and their coupling. As the runtime models capture
the shared knowledge and the coupling reflects the employed feedback loops,
we can derive the classification as follows: After discussing the state of the art
in the next Section 2, we provide an improved runtime model categorization
in Section 3. Subsequently, we derive several impact relations describing the
coupling of runtime models in Section 4 on basis of the introduced runtime model
categorization. Furthermore, we employ complex impact relations to characterize
the spectrum of distributed self-* systems in Section 5, where we outline typical
cases from literature. Finally, we conclude in Section 6.



2 State of the Art

In this section, we discuss related approaches that explicitly consider feedback
loop (activities) and runtime models as first class entities in the design and
execution for self-* systems.

There are several frameworks that support the handling of feedback loop ac-
tivities and the corresponding knowledge base. For the automotive domain, Zeller
et al. [21] presented a control architecture that handles hierarchically arranged
feedback loops, where each loop maintains an individual piece of knowledge
according to its adaptation purpose. Additionally, feedback loops on a higher
hierarchical layer have a unified, aggregated view on the whole knowledge of the
layer below. In this approach, the feedback loop and knowledge dependency are
rather fix and implicitly encoded in the formal model over the hierarchy.

In [9], the authors presented a formal approach called ActivFORMS, where
both, feedback loop activities and knowledge, can be represented with timed au-
tomata. Therefore, dependencies between activities and knowledge are encoded
in the signal handling of the time automata formalism and thus, are implicitly
available. Furthermore, the authors presented a runtime goal verification mech-
anism, which implies an explicit runtime model handling that is done by special
management components. Also other frameworks, as for example Rainbow [6],
introduce model handling mechanism providing access to runtime models and
trace dependencies to corresponding adaptation activities. However, the men-
tioned approaches do not explicitly model nor capture runtime model and adap-
tation activity dependencies as first class entities. As a consequence, the resulting
self-* systems have limitations concerning impact analysis. Such an analysis may
enable the tracing of goals and corresponding activities (timed automata) in [9]
or may visualize the control dependencies between feedback loops in hierarchical
systems as in [21].

The explicitly consideration of dependencies between feedback loops in self-
adaptive system has been discussed in [2, 4]. Based on this research, a pattern
catalog for decentralized feedback loops, which include a discussion about depen-
dencies between adaptation activities is presented in [19]. However, dependencies
between the knowledge (runtime models), possible access patterns to the knowl-
edge and the arising runtime model impact relations have not been considered.

We are aware of these limitations and presented the EUREMA modeling
language (cf. [17]), where we explicitly model dependencies between adaptation
activities and the access to runtime model using model management techniques
from the MDE. Furthermore, we described a first categorization of runtime model
in [17, 18] and derive requirements for runtime models in [16]. However, in this
paper we significantly extend our preliminary runtime model categorization, de-
scribe runtime model characteristics and define clear criteria to distinguish be-
tween different runtime model types. On basis of the extended runtime model
categorization, to the best of our knowledge, no existing approach successive
derive impact relations based on the effect propagation that arise by accessing
runtime models. Furthermore, we use the explicit modeled impact relations to
systematically classify the design spectrum of self-* systems.
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Fig. 1. Runtime model hierarchy (gray model types are from former work [17]).

3 Categorization of Runtime Models

In this section, we provide definitions and a categorization for runtime mod-
els that is used as foundation to derive different impact relations in the next
Section 4. We consider four main categories of runtime models as depicted in
Figure 1. Reflection Models describe aspects of interest from the running system
and system context on a higher level of abstraction. Adaptation Models contain
requirements as well as the configuration space of the adaptive system and are
mainly used by the analyze and plan activity as depicted in Figure 2. Causal

Connection Models are responsible to establish the causal connection to the run-
ning system and therefore primary used during the monitoring and executing
feedback loop activities as shown on the bottom of Figure 2. Finally, Collabora-

tion Models are important for the coordinated interaction of distributed feedback
loops. We use the runtime models definition from our former work in [7, p. 13]
and define each runtime model category of Figure 1 as follows:

Runtime Reflection Model: Runtime Reflection Models describe concerns
that are related to the running system in System Models as well as system con-
text in Context Models. System Models are directly causal connected and provide
reflected architectural and behavioral views of the system for the key points of
interest. The structural system parts are often modeled in form of component
diagrams as in [1, 6, 15], whereas behavioral system aspects are often modeled as
processes (e.g., business process diagrams) or automata [9]. As fine-grain classi-
fication of System Models, we distinguish between Local System Models and Shared

System Models. While runtime model manipulations in Local System Models cause
local system changes (direct causal connection), changes in the Shared System

Models affect runtime models in collaborating feedback loops (indirect causal
connection) as discussed for the IR–5 impact relation in Section 4.

Runtime Context Models describe the context of a system that is defined by [5]
as “any information that can be used to characterize the situation of an entity”.
According to this definition, we consider the adaptable system as the entity.
Additionally, we distinguish between system context and system environment.
The system context can be captured by the system, is a subset of the system
environment and maintained in runtime Local Context Models, whereas the system
environment is a superset of the system context that additionally contains all not
detectable parts of the system’s surroundings. As a consequence of the context



definition, Context Models and System Models are disjoint. Information in the Local

Context Models can be retrieved by the system itself (e.g., a monitor activity
senses and updates the model), whereas Shared Context Models capture additional
information about other systems that is retrieved during collaboration.

Runtime Adaptation Model: Adaptation Models describe the possible so-
lution space of the system by (1) declarative requirements and (2) potential
variants of the adaptable software system. (1) The overall system specification
are determined in Evaluation Models, which describe functional and non-functional
properties. As defined in [20, p. 27], the system specification consists of require-
ments and assumptions about the context. Therefore, we capture the system
specification in Requirement Models and Assumption Models accordingly. (2) Beside
the defined solution space of the system in the Evaluation Models, Change Models

describe possible solutions, where the system might adapt to. Variability Models

explicitly model the possible solution space (a subset of all valid solutions) sim-
ilar to software product lines. During the adaptation process, one configuration
can be chosen that will cause predefined effects on the system (e.g., exchange
of a component). In contrast, Modification Models implicitly model the possible
solution space (and thus a superset of all valid solutions) by defining all permit-
ted modifications of the Reflection Models. Due to the causal connection, applying
Change Models to System Models will enforce the desired change in the system.

Adaptation Engine

Adaptable Software

Sensors Effectors

 Monitor

 Analyze  Plan

 Execute

Change Model
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Reflection Model
ContextSystem

Evaluation Model
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Fig. 2. MAPE feedback loop using
different runtime model types.

Runtime Causal Connection Model:
Causal Connection Models establish the causal
connection to the running system. Monitor-

ing Models retrieve information from the run-
ning system and update the information in the
corresponding Reflection Model, whereas Execu-

tion Models propagate changes from the Re-

flection Model to the running system. There-
fore, Monitoring Models describe the mapping
of system-level observations to the abstrac-
tion level of the Reflection Models and Execu-

tion Models translate runtime model adapta-
tions to system adaptations. Usually, causal
connection models depend on implementation
specifics in the adaptable software and can be realized by MDE techniques such
as graph transformation (cf. [17]). Note: The causal connection is established
between runtime models from the adaptation engine to the adaptable software
as well as between different layers (if existing) inside the adaptation engine (cf.
IR–4 in Section 4). As a consequence, the sensors and effectors in Figure 2 are
realized by the monitoring and execution models.

Runtime Collaboration Model: Feedback loop interaction arises if mul-
tiple feedback loops are considered for different concerns such as reliability and
performance (cf. [10, 15]) or for distributed systems, where individual parts have
to interact with each other. Such aspects are modeled in Collaboration Models

that typically comprise interaction protocols describing the choreography



between feedback loops. Therefore, Collaboration Models establish and maintain a
connection between different feedback loops.

In summary, the runtime model categorization supports a clear description
of well-defined system concerns using distinct, loosely coupled runtime models
that are accessed and arranged around feedback loop activities as depicted in
Figure 2. The categorization enables the identification of dependencies between
runtime models and feedback loop activities as described in the next Section.

4 Impact Relations of Runtime Models
In this section, we identify five impact relations between runtime models. Impact
relations arise if different feedback loop activities access the same runtime model
over time, which leads to an indirect coupling over the shared knowledge and
potentially impacts independent running parts of the adaptation engine.

All impact relations are depicted in Figure 3, where runtime models are
modeled as rectangles labeled with the corresponding runtime model type. Fur-
thermore, feedback loop activities are modeled as ellipses and dependencies are
arrows between activities and runtime models. We distinguish for dependency
types, namely control flow between activities (gray arrows), impact relations
(black arrows), collaboration between feedback loop activities (arrow starting
with a ball), and model access operation (dashed arrows). In [17], we describe
how feedback loop activities modify and access runtime models via predefined
model operations that are creating, destroying, writing, reading and annotating. While
reading a runtime model has no side effect, other model operations will cause
a modification of the runtime model.1 We extend the set of runtime model op-
erations by a ref lect and affect model operation. Normally, the monitor activity
uses the reflect model operation for sensing information of interest from the lower
layer and storing it as abstract representation in the system runtime model of
the upper layer. As counterpart, the execute activity propagate changes in the
system runtime model via the affect model operation to the layer below. There-
fore, the reflect/affect operations work in the same way as the sensors/effectors
in Figure 2 and are realized by the runtime Causal Connection Models (cf. Sec-
tion 3). While IR–1 and IR–2 describe impact relations inside a feedback loop,
the impact relations IR–3, IR–4, and IR–5 arise between multiple feedback loops.

IR–1 Intra-Runtime-Model: We can identify two versions (I, II) for a
Intra-Runtime-Model impact relation (cf. upper left example in Figure 3). (I) A
runtime model is accessed by an activity twice via a (1) read model operation first
and (2) modify model operation afterwards. (II) A runtime model is accessed by
two successive activities within one feedback loop, where the former activity (1)
modifies and the following activity (2) reads the runtime model. The Intra-Runtime-

Model impact relation typically arise for the (I) variant, if one activity updates
the runtime model with information as for example during the monitoring or
after an analysis step. The (II) variant arises if activities in the feedback loop
successively use annotated information in the runtime model as it is normally
the case for the planning activity after the analysis of the system model finished.

1For the rest of this paper, it is sufficient that we distinguish between read (r) and modify
(c,d,w,a) model operations. Modifying a runtime model includes the reading of it.
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Fig. 3. Impact relations between runtime models.

IR–2 Inter-Runtime-Model: While IR–1 considers impact relations with-
in the same runtime model, Inter-Runtime-Model impact relations determine the
coupling between different runtime models (cf. upper middle example in Fig-
ure 3) and are characterized by: (1) At least one read access by an activity on
an arbitrary runtime model type, followed by (2) a modify model operation on a
reflection model by the same activity. Additionally, there must be at least two dif-
ferent runtime models (otherwise it is a IR–1) and the modified model is always
a Reflection Model. As an example for a IR–2 impact relation, a monitor activity
reads a causal connection model, senses information from the running software
system and annotates the information in the corresponding system model.

IR–3 Inter-Feedback-Loop: Normally, multiple feedback loops are used
for handling different adaptation concerns of the system. However, even if the
feedback loops are conceptually disjunct, an indirect coupling is possible over the
available runtime models. Therefore, the feedback loops may indirectly influence
each other over the coupled knowledge base. The Inter-Feedback-Loop impact re-
lation explicitly identifies the coupling over shared runtime models. We define
an Inter-Feedback-Loop impact relation by three characteristic runtime model ac-
cesses (cf. middle left example in Figure 3). (1) At least one read access by an
activity on an arbitrary runtime model to gather required knowledge. After the
activity perform its task, it (2) modifies the Reflection Model that is (3) read after-
wards by another activity. The both activities must be independent (e.g., there
is no control flow in between), otherwise it is a combination of an IR–1 and IR–2.



IR–4 Layered-Feedback-Loop: While an IR–3 describes the impact rela-
tion between feedback loops on the same layer, the Layered-Feedback-Loop impact
relation considers dependencies between hierarchies of feedback loops. With the
help of the reflect and affect model operations, we can define a sensing (variant
(a)) and effecting (variant (b)) Layered-Feedback-Loop impact relation as follows
(cf. upper right example in Figure 3): (1a) There is at least one read access of
an arbitrary activity from the lower layer. Additionally, a monitor activity in
the upper layer must (2a) reflect the accessed runtime model of step (1a) from
the lower layer. Finally, the reflected information become available for activities
in the upper layer by (3a) modifying the corresponding reflection model. The ef-
fecting Layered-Feedback-Loop impact relation variant (b) is analog to the sensing
variant but in the other direction (from the upper layer to the lower layer) and
using the affect model operation in step (2b).

IR–5 Collaboration-Feedback-Loop: The Collaboration-Feedback-Loop im-
pact relation identifies distributed runtime model dependencies in collaborating
feedback loops. In a collaboration, feedback loops must coordinate each other
(e.g., by a communication protocol) and maintain their own (local) runtime
models. Although this impact relation implies the most indirect propagation of
runtime model change effects due to the distribution aspect, we can determine
it very precisely by means of the runtime model types access of the activities
within the feedback loops. Therefore, this impact relation significantly distin-
guishes from IR–3. A Collaboration-Feedback-Loop impact relation arise for the
following access characteristics (cf. example on the bottom in Figure 3): The
feedback loop activity, which want to share knowledge (sender), (1) modifies an
arbitrary runtime model. On basis of the updated knowledge, the sender per-
forms its task including the defined coordination2 and sends the knowledge to
the other feedback loop activities (receivers) accordingly. The knowledge is saved
into the runtime model of the receivers, which can be (2) read afterwards by the
activity. Furthermore, all activities participating at the collaboration are not
coupled via the control flow, otherwise it is an IR–1 impact relation. Addition-
ally, we consider only direct (explicit) collaborations over the Collaboration Model.
Due to the lack of a global, unified knowledge in distributed systems, influencing
system parts over the context (e.g., by setting marks in the real environment)
that is independently sensed by another system and therefore may influence the
behavior, are not considered.

In summary, we can use the five presented impact relations for further effect
propagation analysis. For doing so, we combine the impact relations IR–3, IR–4,
and IR–5 with the impact relations IR–1 and IR–2 to transitively describe the
influence of runtime model manipulations. For example, combining IR–3 and
IR–2 may cause an effect propagation from the modified reflection model in the
IR–3 relation to a modification of another system model via the IR–2 relation

2Activities participating in the collaboration must know the choreography of the joint
interaction that is described in the Collaboration Model. However, the adaptation engine
is responsible for the physical transmission of the data that is not further considered
in this paper.



(cf. IR–3 + IR–2 in Figure 3). As a consequence, we are able to investigate the
transitive closure for all possible effect propagations in the system that is used
in the next section to classify distributed self-* systems.

5 Classification of Distributed Self-* Systems
In this section, we describe the spectrum for self-* systems ranging from self-/
context-aware systems over hierarchical self-adaptive systems to self-organizing
distributed systems. On basis of the overview and categorization of several self-*
properties provided by Salehie et al. [14, pp. 3-7], we discuss five variants of
self-* system properties, namely, primitive, adaptive, layered, hierarchical, and
distributed. A hierarchy of these properties is depicted in Figure 4.

Primitive Capabilities: Systems with one layer have, in the most cases,
only the runtime model impact relations IR–1 and IR–2. Depending on the
accessed runtime model category within the impact relation, such system can
have different primitive capabilities [13, 14] as for example self-awareness (read

model operation on the runtime System Model), context-awareness (read on the
runtime Context Model) and requirement-awareness (read on the runtime Evaluation

Model). Therefore, we can clearly identify the IR–1 or IR–2 impact relation that
corresponds to the primitive *-awareness capability.

Adaptive Property: Systems with two layers are able to separate the do-
main logic and the adaptation logic as proposed in [10] and depicted in Figure 2.
Beside the primitive capabilities of such systems, they have an adaptation engine
on the higher layer, which usually consists of one single feedback loop that has
IR–4 impact relations for sensing and effecting the adaptable software at the
lower layer. Typically, such systems mostly realize one adaptation concern such
as self-configuration, self-healing or self-optimizing and therefore, are character-
ized as adaptive systems. In the same way, we transitively derive impact relations
for the description of propagation effects, we can combine the IR–4 characteris-
tic of adaptive systems with other impact relations (e.g., IR–2). Therefore, the
occurrence of different impact relations define clearly the system type as for ex-
ample an IR–4 and an additional IR–2 relation type with a modify on a System

Model consequently describes a self-adaptive system.
Layered Property: An increasing number of adaptation concerns, realized

in separated feedback loops, might go hand in hand with a growing number of
adaptation layers ensuring a proper system design as proposed in the reference
architecture for self-adaptive systems [12]. This leads to an accumulated number
of IR–4 impact relations between feedback loops for each layer, where each layer
explicitly reflects/affects the layer below. The impact relation graph for the IR–4
impact relations (transitive closure) goes hand in hand with the layer structure.
Other impact relation as for example IR–3 occur if additional feedback loops are
used on the same layer. Examples for a layered systems are described in [3, 8].

Hierarchical Property: On basis of the impact relations IR–3 and IR–4,
we conceptually distinguish between hierarchical controlled systems and layered
adaptation. In general, hierarchies allow a decomposition of adaptation concerns
in different abstraction levels. The difference between hierarchical control and
layered adaptation is the impact relation type. Typically, hierarchical controller
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are designed to interact with each other to well defined in-/output interfaces,
whereas this idea can be transfered to feedback loop interaction as in [21]. How-
ever, hierarchical systems are characterized by a predominantly use of IR–3
impact relations that hierarchically couples the involved feedback loops. Conse-
quently, hierarchical systems often interact via a predefined interface semantic
instead of the reflect/affect model operations (cf. IR–3 and IR–4 in Section 4).

Distributed Property: Another direction of handling an increasing number
of adaptation concerns are agent-based and self-organizing systems. Typically,
each system part (e.g., an agent) is very simple structured with one or two
layers and maintains its own local context. Such systems achieve higher self-*
properties due to collaboration. In many cases, the collaborations are not fix and
may change arbitrary often depending on the degree of autonomy. For example,
agents may form distinct groups realizing a special adaptation concern. As a
consequence, a high number of IR–5 impact relations as well as a low number of
IR–3, IR–4 impact relations are a key indicator for self-organizing systems. An
example for increasing the reliability of a self-organizing system using a variable
number of software agents is described in [11].

In reality, we find several combinations of layered, hierarchical and dis-
tributed aspects between feedback loops that opens a large variety of systems.
However, the impact relations describe the coupled knowledge between feedback
loops and therefore the possible effect propagation in the system as well as allow
a clear classification of self-* systems.

6 Conclusion

In this paper, we presented an approach to classify distributed self-* systems
variants according to the occurrence of complex impact relations between run-
time models. A combination of the discussed five basic impact relations allows
the description of multilevel effect propagations over a coupled shared knowl-
edge base. The impact relations are derived on basis of an improved runtime
model categorization, where each runtime model type is clearly characterized.
Furthermore, we can precisely assign primitive *-awareness properties to con-
crete accesses to a special runtime model type.

As next steps, we want to use the impact analysis to realize distributed self-*
systems with the help of a model management approach that handles all runtime
models, synchronizes the access to the models via multiple, distributed feedback
loops activities and maintains different runtime model versions.
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