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ABSTRACT

Twitter functions both as a social network and an informa-
tion network, where users follow other users to make social
connections as well as to receive information. Both pop-
ularity and similarity are important factors that drive the
growth of the Twitter network. In this paper, we propose
two approaches to exploiting both popularity and similarity
for link recommendation. The first approach employs the
rank aggregation technique to combine rankings generated
by popularity-based and similarity-based recommendation
algorithms. The second approach adapts the collaborative
filtering algorithms to incorporate popularity in addition to
similarity. The empirical evaluation results on real-world
datasets confirm that combining popularity and similarity
improves the recommendation performance.

Categories and Subject Descriptors

H.3.5 [Online Information Services]: Web-based services
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1. INTRODUCTION
Twitter is a popular on-line platform for social network-

ing and information sharing. Twitter users can follow other
users to receive messages, or tweets, from them. However,
given the limited attention and time, most users would like
to follow only the most relevant users. Due to the huge
number of users in Twitter, recommendation algorithms are
needed to help users automatically discover new interesting
users to follow.

Many existing link recommendation algorithms for so-
cial networks are developed with focus on the link struc-
ture [5]. The simplest example is to recommend the most
popular users with the largest number of connections. Other
common algorithms first weigh each link by some impor-
tance score, and rank the nodes according to the sum of
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importance scores of their links, e.g., the PageRank algo-
rithm [7]. Twitter provides the user recommendation ser-
vice called WTF (“Who To Follow”) [2], which was built
on SALSA (Stochastic Approach for Link-Structure Anal-
ysis) [4], a random-walk algorithm similar to PageRank.
We generally refer to those algorithms as “popularity” or
“weighted popularity” based algorithms.

Yet, unlike other social networks such as Facebook, be-
sides to establish social connections, many Twitter users fol-
low other users to receive information interesting to them.
Hence, it is promising to exploit the similarity between Twit-
ter users for recommendation, i.e., to recommend other users
similar to the followees already followed by the follower, or
to recommend other users who are similar to the follower.
In [3], the authors proposed a content-based algorithm that
match user interests by directly analyzing the texts of user
tweets. In [6], the authors proposed a collaborative filtering
algorithm using the matrix factorization technique to learn
latent user interests from the user feedbacks, e.g., to follow
a user or not.

Indeed, a recent study has shown that popularity and sim-
ilarity are the two important factors that drive the growth
of a variety of networks including the Internet and social
networks [8]. In this paper, we compare various popularity-
based algorithms and similarity-based algorithms for Twit-
ter user recommendation, and propose two approaches to ex-
ploiting both popularity and similarity. The first approach
is to employ rank aggregation techniques [1]; the second ap-
proach is to adapt the collaborative filtering algorithms to
incorporate popularity in addition to similarity.

2. POPULARITY VERSUS SIMILARITY
In this section, we describe various popularity-based algo-

rithms and similarity-based algorithms.

2.1 Problem Description
To recommend new users for the follower to follow, the

recommendation algorithm generates a personalized ranked
list of users. However, due to the huge number of users in
Twitter, it is too costly to compute a ranking of network-
wide users for making personalized recommendations to each
follower. Many algorithms instead recommend users from
the local network that centers around the follower [2]. The
empirical study in [10] revealed that 90% of new links in
Twitter-like microblogging networks go to users two hops
away from the follower, i.e., followees of the follower’s fol-
lowees.

As such, in the rest of this paper, we focus on recommend-



ing users from 2-hop users for the follower. We denote the
follower whom to recommend users for as source s, the set
of its initial followees as F1, and the set of all followees of F1

as F2. We also denote F+(s) as the subset of F2 that source
s follows as network grows. The recommendation problem
is essentially to compute a ranked list of users from F2 for
source s.

2.2 Recommendation Algorithms

2.2.1 Popularity-based algorithms

For the popularity based or weighted popularity based al-
gorithms, we consider Adamic-Adar score [5] and SALSA [4].
Adamic-Adar score is a simple and effective measure for link
recommendation. We adopt it for Twitter user recommen-
dation, and compute the score for a 2-hop user u ∈ F2 of
source s as

AA(s, u) =
∑

z∈P(u)∩F1

1

|R(z)|
, (1)

where P(u) denotes the set of followers of user u, and R(z)
denotes the set of followees of user z.

In the SALSA algorithm, we construct a bipartite graph
G by assigning F1 as “hubs” and F2 as “authorities”. The
algorithm performs two distinct forward-backward random
walks starting from the “authorities” side or the “hubs” side.
The scores for the authorities and hubs are related as

ai =
∑

{k|(k,i)∈G}

hk

|R(k)|
, hk =

∑

{i|(k,i)∈G}

ai

|P(i)|
(2)

where ai and hk denote the scores of authority node i and
hub node k, respectively, and (k, i) denotes an edge in bi-
partite graph G. The users in F2 (“authorities”) are ranked
by the authority scores.

2.2.2 Similarity-based algorithms

For the similarity-based algorithms, we focus on the col-
laborative filtering recommendation algorithms using the
observed follower-followee relationship between users as im-
plicit feedback, including the neighborhood method and the
MF-BPR (Matrix Factorization with Bayesian Personalized
Ranking) method [9]. The basic principle is to recommend
to source s the followees of the F1 users who share similar
interests with source s. Using the terms of traditional user-
item recommender systems, the set of “users” corresponds
to U = {s} ∪ F1, and the set of “items” corresponds to F2.
Moreover, the established follower-followee relationships be-
tween U and F2 are considered as observed implicit feed-
back on “items” in F2 from “users” in U . The collaborative
filtering approach exploits the collective implicit feedbacks
to generate recommendations.

In the neighborhood method, we compute the similarity
between source s and other users u ∈ F1 using Jaccard’s
coefficient as

J(s, u) =
|F+(u) ∩ F+(s)|

|F+(u) ∪ F+(s)|
(3)

where F+(u) denotes the subset of F2 followed by user u.
The score on user i ∈ F2 is predicted as

R(s, i) =
∑

u∈F1

J(s, u)R(u, i), (4)

where R(u, i) = 1 if u follows i and R(u, i) = 0 otherwise.
The MF-BPR method learns a model for correctly ranking

pairs of users in F2. It is assumed that if user u follows user
i but not user j, ∀i, j ∈ F2, then user u prefers user i over
j. We represent such relationship as (u, i, j). The training
data is created as D = {(u, i, j)|i ∈ F+(u), j ∈ F2\F

+(u)}.
We associate each user u with a K-dimensional latent vector
wu, and each i ∈ F2 with a K-dimensional latent vector vi.
Let W and V represent the collections of all wu and all vi,
respectively. The probability that user u prefers i over j is
defined as

P (i >u j|W,V ) =
1

1 + e−(X(u,i)−X(u,j))
, (5)

where X(u, i) = 〈wu,vi〉, and 〈, 〉 indicates the dot product.
We further introduce a normal distribution N (0, λ−1IK) as
the prior distribution for each wu and vi, where λ > 0
and IK is a K ×K identity matrix. The latent vectors are
learnt by maximizing the posterior probability, which can
be formulated as

max
W,V

log
∏

(u,i,j)∈D

P (i >u j|W,V )P (W )P (V ). (6)

We apply the stochastic gradient-descent algorithm with
bootstrap sampling as in [9] to solve this optimization prob-
lem. The latent vectors are updated for triple (u, i, j) ∈ D
with learning rate µ as follows

wu ← wu + µ

(

vi − vj

1 + eX(u,i)−X(u,j)
− 2λwu

)

, (7)

vi ← vi + µ

(

wu

1 + eX(u,i)−X(u,j)
− 2λvi

)

, (8)

vj ← vj + µ

(

−wu

1 + eX(u,i)−X(u,j)
− 2λvj

)

. (9)

To recommend users for source s, we compute X(s, i), ∀i ∈
F2, and rank the users in descending order of X(s, i).

3. PROPOSED LINK RECOMMENDATION
We propose two approaches to exploiting both popular-

ity and similarity: rank aggregation and popularity-biased
collaborative filtering. The rank aggregation approach com-
bines the recommendation results of the popularity-based al-
gorithm and the similarity-based algorithm, while each indi-
vidual algorithm generates recommendations independently.
It is worth noting that the scores predicted by different rec-
ommendation algorithms can be very different in both the
range and the form, which are not suitable for aggregation,
and hence we only consider order-based rank aggregation
that combines the rankings which can be easily derived by
sorting users by the predicted scores.

The popularity-biased collaborative filtering approach di-
rectly adapts the original collaborative filtering algorithms
to incorporate popularity in addition to similarity. We intro-
duce two specific cases of the neighborhood algorithm and
the MF-BPR algorithm.

3.1 Rank Aggregation
Rank aggregation combines several ranking lists to gener-

ate a“consensus”ranking. It has been widely applied in Web
search and document retrieval, e.g., meta-search engines and
multi-criteria search. There are various rank aggregation al-
gorithms such as Borda’s method, median rank aggregation,



and Markov chain methods. We choose the Markov chain
method for its superior performance. In particular, we focus
on the MC3 method among the four Markov chain methods
proposed in [1].

Suppose we have two ranked lists of users denoted by
τ1 and τ2, which are generated using the popularity-based
algorithm and the similarity-based algorithm, respectively.
The Markov chain rank aggregation method assigns a unique
state to each of the users, and specifies the transition ma-
trix as follows: If the current state is user i, randomly pick
a ranking list τ with probabilities P (τ = τ1) = α and
P (τ = τ2) = 1 − α, then uniformly pick a user j from τ ,
and go to j if j >τ i else stay in i. Here, j >τ i means the
list τ ranks j closer to the top than i. Let Tk represent the
transition matrix for the Markov chain derived from individ-
ual ranking list τk, k = 1, 2, where Tk(i, j) is the transition
probability from state i to j,

Tk(i, j) =











1
|F2|

, if j >τk i

1−
|{j|j>τ

k
i}|

|F2|
, if j = i

0, otherwise

(10)

The transition matrix T of the rank aggregation Markov
chain can be written as

T = αT1 + (1− α)T2. (11)

The aggregated ranking is obtained by ranking users accord-
ing to the stationary probabilities of the Markov chain.

By varying the parameter α between 0 and 1, we can bias
the aggregation rank towards similarity or popularity, with
α = 0 for similarity and α = 1 for popularity. Further, α can
be personalized for individual users to better predict their
behavior and thus meet individual preferences.

3.2 Popularity-biased Collaborative Filtering
We adapt the two cases of the neighborhood method and

the matrix factorization method, which are the most pop-
ular collaborative filtering recommendation algorithms, for
popularity-biased collaborative filtering. It should be noted
that the specific techniques proposed here might not be di-
rectly applicable to other collaborative filtering algorithms,
as they may have very different prediction models. Never-
theless, we stress the viability and benefits of incorporating
popularity into collaborative filtering link recommendation.

3.2.1 The popularity-biased neighborhood method

The neighborhood method predicts the score on user i ∈
F2 for source s using (4), where the feedback R(u, i) from
user u in F1 (set as 1 for following i and 0 for not following
i) is weighted by the similarity of user u to source s. How-
ever, the similarity computed using the Jaccard’s coefficient
assigns zero to users who do not have common followees
with the source. To bias the neighborhood method towards
popularity, we modify the similarity measure as follows

Jp(s, u) =
|F+(u) ∩ F+(s)|+ c

|F+(u) ∪ F+(s)|
, (12)

where c > 0 ensures that every user u ∈ F1 is counted with
Jp(s, u) > 0. In this way, the popular users who are followed
by many users in F1, though not necessarily highly similar
to the source, can have a higher predicted score than other
users followed by only a few users with high similarity to the
source.

3.2.2 The popularity-biased MF-BPR method

The MF-BPR method represents each user i ∈ F2 using
a latent vector as described in Sec. 2.2.2. The similarity of
user interests is modelled by the angle between latent vec-
tors. We now adapt the model to also incorporate the popu-
larity of each user by the length, or magnitude, of the latent
vector. We assume a prior distribution N (γ1, λ−1IK) for
the latent vectors, where 1 denotes a vector with all entries
one, and randomly initialize the latent vectors following the
normal distribution N (γ1, βIK), where γ needs to be cho-
sen relatively large. Using the stochastic gradient descent
learning algorithm, the latent vectors are updated for triple
(u, i, j) ∈ D as follows

wu ← wu + µ

(

vi − vj

1 + eX(u,i)−X(u,j)
− 2λ(wu − γ1)

)

, (13)

vi ← vi + µ

(

wu

1 + eX(u,i)−X(u,j)
− 2λ(vi − γ1)

)

, (14)

vj ← vj + µ

(

−wu

1 + eX(u,i)−X(u,j)
− 2λ(vj − γ1)

)

. (15)

The latent vector vi of user i is updated through (14), where
the angle between vi and wu is expected to be small, as they
are both close to the vector γ1 if γ is relatively large. Hence,
vi increases in length after each update. As popular users
are updated more often in the stochastic optimization pro-
cess, their associated latent vectors will have larger length.

The score on user i ∈ F2 by source s is predicted by

X(s, i) = 〈ws,vi〉 = cos θsi|ws||vi|, (16)

where θsi is the angle between ws and vi, which reflects the
similarity of interests between user i and source s. Moreover,
with the popularity-biased MF-BPR method, the magnitude
|vi| is large for popular users. Therefore, both similarity and
popularity are taken into account. Also, increasing γ biases
the algorithm more towards popularity.

4. EVALUATION
In this section, we compare the empirical performance of

all recommendation algorithms on the Twitter dataset and
the Tencent Weibo dataset. Tencent Weibo is a Twitter-
like online microblogging service widely used in China. The
Twitter dataset is downloaded from Twitter.com using the
Twitter API. The Tencent Weibo dataset is a subset of the
dataset provided by KDD Cup 2012 Track 11. The source
users are selected such that they have at least 100 followees.
For each source user, we use its earliest 50 followees as the
initial set F1, and construct the set F2 from the followees of
F1. The statistics of the two datasets are shown in Table 1,
where the number of F2 users is the total of F2 users from
all source users, and the number of edges refers to the total
number of follower-followee relationships between users.

In the experiment, we use 70% of the subset of F2 fol-
lowed by each source user for training, 15% for validation,

1http://www.kddcup2012.org/c/kddcup2012-track1

Table 1: Statistics of the two datasets.

Dataset # of sources # of F2 users # of edges
Twitter 158 3,195,481 6,822,720
Tencent 200 22,904 195,760



Table 2: Popularity versus similarity.

Algorithms Twitter dataset Tencent dataset
AUC P@10 AUC P@10

Adamic-Adar 0.7822 0.0144 0.7351 0.0934
SALSA 0.7458 0.0258 0.7168 0.1757

Neighborhood 0.6498 0.0186 0.6253 0.1326
MF-BPR 0.6363 0.0196 0.6730 0.1459

and 15% for testing. To reduce computational complexity,
we further prune the F2 users that are followed by less than
5 users, as they are very unlikely to be followed by the source
users. The metrics used for evaluating recommendation per-
formance are AUC (Area Under the ROC Curve) and P@10
(Precision at top 10). The AUC metric measures the algo-
rithm’s overall ability to rank positive instances above neg-
ative instances, whereas the P@10 metric emphasizes more
on the quality of the top 10 recommended instances. We
report results of all algorithms on the testing set.

4.1 Popularity versus Similarity
We first compare the performance of the popularity-based

algorithms (Adamic-Adar and SALSA) and the similarity-
based algorithms (Neighborhood and MF-BPR) as shown
in Table 2. The parameters of the MF-BPR algorithm are
set as K = 20, λ = 0.01 and µ = 0.001. The results show
that the popularity-based algorithms generally achieve bet-
ter AUC than the similarity-based algorithms. However,
the similarity-based algorithms have quite good P@10 per-
formance. Overall, combining the results suggests that while
Twitter users tend to follow popular users, they also like to
follow users with similar interests to them. Hence, there is
a trade-off between popularity and similarity.

4.2 Combining Popularity and Similarity
For the rank aggregation approach, we experiment with

different combinations of popularity-based and similarity-
based algorithms, including AA & Neighb (Adamic-Adar
& Neighborhood), AA & MF-BPR (Adamic-Adar & MF-
BPR), SLS & Neighb (SALSA & Neighborhood), and SLS &
MF-BPR (SALSA & MF-BPR). The parameter α is selected
independently for each individual user such that the AUC is
maximized on the validation set for that user.

For the popularity-biased collaborative filtering approach,
we evaluate the Pop-Neighb (Popularity-biased Neighbor-
hood) algorithm and the Pop-MF-BPR (Popularity-biased
MF-BPR) algorithm. The parameter c is set to 1 for Pop-
Neighb, and the parameters for Pop-MF-BPR are set as
γ = 1 and β = 0.01, while other parameters are set the
same as in the original MF-BPR algorithm.

The results in Table 3 show that the popularity-biased
MF-BPR algorithm achieves the best performance in terms
of both AUC and P@10. Comparing the results of rank ag-
gregation algorithms with those of the individual algorithms
in Table 2, we can see that rank aggregation can combine
the advantages of the popularity-based algorithm and the
similarity-based algorithm. The popularity-biased neighbor-
hood method also improves over the original neighborhood
method. In summary, the evaluation results confirm that
combining popularity and similarity can improve the overall
recommendation performance in terms of AUC as well as
the quality of the top ranked recommendations.

Table 3: Empirical performance of algorithms combining
popularity and similarity.

Algorithms
Twitter dataset Tencent dataset
AUC P@10 AUC P@10

AA & Neighb 0.7873 0.0155 0.7458 0.1365
AA & MF-BPR 0.7835 0.0227 0.7540 0.1519
SLS & Neighb 0.7493 0.0247 0.7156 0.1746
SLS & MF-BPR 0.7606 0.0309 0.7392 0.1862

Pop-Neighb 0.7746 0.0186 0.7236 0.1657
Pop-MF-BPR 0.7940 0.0536 0.7734 0.1818

5. CONCLUSIONS
We proposed two approaches, the rank aggregation ap-

proach and the popularity-biased collaborative filtering ap-
proach, to exploiting both popularity and similarity for Twit-
ter user recommendation. Through experimental evaluation
on two real-world datasets, we showed that the rank aggre-
gation algorithms can combine the advantages of popularity-
based and similarity-based algorithms, and the popularity-
biased collaborative filtering algorithms improve upon the
original algorithms in terms of both AUC and P@10.
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