
Licentia: a Tool for Supporting Users in Data
Licensing on the Web of Data

Cristian Cardellino1, Serena Villata1, Fabien Gandon1,
Guido Governatori2?, Ho-Pun Lam2, and Antonino Rotolo3

1 INRIA Sophia Antipolis, France - firstname.lastname@inria.fr
2 NICTA Queensland Research Laboratory

firstname.lastname@nicta.com.au
3 University of Bologna

antonino.rotolo@unibo.it

Abstract. Associating a license to data is a fundamental task when
publishing data on the Web. However, in many cases data producers
and publishers are not legal experts, and they usually have only a basic
knowledge about the possible constraints they want to ensure concerning
the use and reuse of their data. In this paper, we propose a framework
called Licentia that offers to the data producers and publishers a suite of
services to deal with licensing information. In particular, Licentia sup-
ports, through a user-friendly interface, the users in selecting the license
that better suits their needs, starting from the set of constraints proposed
to regulate the terms of use and reuse of the data.

1 Introduction

In order to ensure the high quality of the data published on the Web of Data,
part of the self-description of the data should consist in the licensing terms
which specify the admitted use and re-use of the data by third parties. This
issue is relevant both for data publication as underlined in the “Linked Data
Cookbook”1 where it is required to specify an appropriate license for the data,
and for the open data publication as expressing the constraints on the reuse of
the data would encourage the publication of more open data. The main problem
is that data producers and publishers often do not have extensive knowledge
about the existing licenses, and the legal terminology used to express the terms
of data use and reuse. To address this open issue, we present Licentia, a suite
of services to support data producers and publishers in data licensing by means
of a user-friendly interface that masks to the user the complexity of the legal
reasoning process. In particular, Licentia offers two services: i) the user selects
among a pre-defined list those terms of use and reuse (i.e., permissions, prohi-
bitions, and obligations) she would assign to the data and the system returns

? NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

1 http://www.w3.org/2011/gld/wiki/Linked_Data_Cookbook



the set of licenses meeting (some of) the selected requirements together with
the machine readable licenses’ specifications, and ii) the user selects a license
and she can verify whether a certain action2 is allowed on the data released
under such license. Licentia relies on the dataset of machine-readable licenses
(RDF, Turtle syntax, ODRL vocabulary3 and Creative Commons vocabulary4)
available at http://datahub.io/dataset/rdflicense. We rely on the deon-
tic logic presented by Governatori et al. [2] to address the problem of verifying
the compatibility of the licensing terms in order to find the license compatible
with the constraints selected by the user. The need for licensing compatibility
checking is high, as shown by other similar services (e.g., Licensius5 or Creative
Commons Choose service6). However, the advantage of Licentia with respect to
these services is twofold: first, in these services compatibility is pre-calculated
among a pre-defined and small set of licenses, while in Licentia compatibility is
computed at runtime and we consider more than 50 heterogeneous licenses; sec-
ond, Licentia provides a further service that is not considered by the others, i.e.,
it allows to select a license from our dataset and verify whether some selected
actions are compatible with such license.

2 Licentia: services for supporting data licensing

Licentia is implemented as a Web service 7. It is written as a Play Framework
application in Scala and Java, using the Model-View-Controller architecture, and
powered with SPINdle [3] Java library as background reasoner. The architecture
of the Web service is shown in Fig. 1. The workflow is defined by three steps:
selection and specification of licensing conditions, reasoning and incompatibility
checking, and process and return of results.

Selection and specification of conditions. Using the web interface form, the data
producer and publisher specifies a set of licensing conditions she wants to as-
sociate to the data. These conditions are divided into three categories: permis-
sions (e.g., Distribution), obligations (e.g., Attribution) and prohibitions (e.g.,
Commercial Use). The chosen set of conditions is taken by a server side con-
troller, which also gets, through a SPARQL endpoint from a RDF triplestore
server containing our licenses repository, a list of the stored licenses and their
corresponding conditions. This data is delivered to a module that handles the
information and formalizes it into defeasible logic rules for process in SPINdle8 –
a modular and efficient reasoning engine for defeasible logic and modal defeasible

2 In the interface, we adopt the terminology and the rights of the ODRL vocabulary.
3 http://www.w3.org/ns/odrl/2/
4 http://creativecommons.org/ns
5 http://oeg-dev.dia.fi.upm.es/licensius/
6 https://creativecommons.org/choose/
7 A demo video of Licentia showing the finding licenses service is available at http:

//wimmics.inria.fr/projects/licentia/.
8 http://spin.nicta.org.au/spindle/index.html



Fig. 1: Licentia Web service architecture.

logic [3]. Licentia is based on the logic and the licenses compatibility verification
process proposed by Governatori et al. [2]. The module translates the licenses
and the set of conditions from the RDF specification to defeasible logic rules so
that SPINdle can reason over them. The module considers every single license in
the repository and compares them to the list of conditions selected by the user.

Reasoning and incompatibility checking. SPINdle returns a set of conclusions
for each license’s conditions compared to the set of conditions selected by the
user. From these conclusions, the module gets the set of incompatible conditions
chosen by the user with respect to each license: all defeasible non provable rules
are incompatible conditions. If this list is empty, then the license is compatible to
the set of conditions the user selected. After the module gets all the conclusions
for each license, it has two partial results: one containing compatible licenses, and
one containing incompatible ones. If the set of compatible licenses is non empty,
the module divides this set in two parts: one with those licenses containing the
complete set of user’s conditions, and the other with those licenses that do not
contain all the user’s conditions (but still are compatible), highlighting those
user’s conditions that are not explicitly mentioned in such license. If the set of
compatible licenses is empty, the module returns the set of incompatible licenses
along with a list highlighting for each license what are the user’s conditions that
are incompatible with the license.



Process and return of results. If a set of compatible licenses is returned, the
controller provides a view listing all the licenses that are compatible and contain
the user’s selected conditions on the top of the page. Secondly, it returns a list
of all other compatible licenses that do not share all of the user’s conditions, in
ascending order by the number of not contained conditions, highlighting each of
the user’s conditions that are not explicitly defined in the license. If the set of
incompatible licenses is returned, the controller filters all licenses not matching
any of the conditions the user selected, keeping those licenses containing at least
one of the conditions chosen by the user. If the filtered set is non empty, the
system shows a message stating there is no license in the repository compatible
with the selected conditions, but there exist some licenses that meet some of
the conditions. Such licenses are thus listed in ascending order by number of
incompatible conditions, highlighting every unmet condition. In any case, the
list provides a link to the legal specification of the license as well as a link to
a downloadable RDF version of the license. If no compatible license is found
then a disclaimer is shown. Note that the evaluation of the performances of the
SPINdle9 reasoning module to verify the compatibility of licensing terms has
been presented in [2].

3 Future Perspectives

In this demo, we present the Licentia tool that proposes a set of services for
supporting users in data licensing. We are currently finalizing the second service
(verification of compatible actions with respect to a specific license), and we
are increasing the number of considered machine readable licenses. We plan to
extend Licentia by integrating an improved version of the generator of RDF
licenses specifications from natural language texts introduced in [1]. Finally, a
user evaluation should not be underestimated in order to improve the usability
of the user interface.

References

1. Cabrio, E., Aprosio, A.P., Villata, S.: These are your rights - a natural language
processing approach to automated rdf licenses generation. In: ESWC. Lecture Notes
in Computer Science, vol. 8465, pp. 255–269. Springer (2014)

2. Governatori, G., Rotolo, A., Villata, S., Gandon, F.: One license to compose them
all - a deontic logic approach to data licensing on the web of data. In: ISWC. Lecture
Notes in Computer Science, vol. 8218, pp. 151–166. Springer (2013)

3. Lam, H.P., Governatori, G.: The making of SPINdle. In: Proceedings of RuleML,
LNCS 5858. pp. 315–322. Springer (2009)

4. Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible
reasoning systems. International Journal of Artificial Intelligence Tools 10, 483–501
(2001)

9 SPINdle has been experimentally tested against the benchmark of [4] showing that
it is able to handle very large theories, indeed the largest theory it has been tested
with has 1 million rules.


