
A Framework for Incremental Maintenance of
RDF Views of Relational Data

Vânia M. P. Vidal1, Marco A. Casanova2, José M. Monteiro1, Narciso Arruda1,
Diego Sá1, and Valéria M. Pequeno3

1 Federal University of Ceará, Fortaleza, CE, Brazil
{vvidal, jmmfilho, narciso, diego}@lia.ufc.br

2 Pontifical Catholic University of Rio de Janeiro, RJ, Brazil
casanova@inf.puc-rio.br

3 DMIR, INESC-ID Porto Salvo, Portugal
vmp@inesc-id.pt

Abstract. A general and flexible way to publish relational data in RDF
format is to create RDF views of the underlying relational data. In this
paper, we demonstrate a framework, based on rules, for the incremen-
tal maintenance of RDF views defined on top of relational data. We
also demonstrate a tool that automatically generates, based on the map-
ping between the relational schema and a target ontology, the RDF view
exported from the relational data source and all rules required for the
incremental maintenance of the RDF view.

Keywords: RDF View Maintenance, RDB-to-RDF, Linked Data

1 Introduction

The Linked Data initiative [1] promotes the publication of previously isolated
databases as interlinked RDF triple sets, thereby creating a global scale datas-
pace, known as the Web of Data. However, the full potential of linked data
depends on how easy it is to publish data stored in relational databases (RDBs)
in RDF format. This process is often called RDB-to-RDF.

A general way to publish relational data in RDF format is to create RDF
views of the relational data. The contents of views can be materialized to improve
query performance and data availability. However, to be useful, a materialized
view must be continuously maintained to reflect dynamic source updates.

In this demo, we show a framework, based on rules, for the incremental
maintenance of external RDF views defined on top of relational data. Figure 1
depicts the main components of the framework. Briefly, the administrator of a
relational data-base, using Rubya (Rules by assertion), should create RDF views
and define a set of rules using Rubya - Figure 1(a). These rules are responsible
for: (i) computing the view maintenance statements necessary to maintain a
materialized view V with respect to base updates; and (ii) sending the view
maintenance statements to the view controller of V - Figure 1(b). The rules can
be implemented using triggers. Hence, no middleware system is required. The



2 Vânia et al.

view controller for the RDF view has the following functionality: (i) receives the
view maintenance updates from the RDB server and (ii) applies the updates to
the view accordingly.

Fig. 1. Suggested Framework.

Our approach is very effective for an externally maintained view because:
the view maintenance rules are defined at view definition time; no access to
the materialized view is required to compute the view maintenance statements
propagated by the rules; and the application of the view maintenance statements
by the view controller does not require any additional queries over the data
source to maintain the view. This is important when the view is maintained
externally [4], because accessing a remote data source may be too slow.

The use of rules is therefore an effective solution for the incremental mainte-
nance of external views. However, creating rules that correctly maintain an RDF
view can be a complex process, which calls for tools that automate the rule gen-
eration process. In Section 2, we further detail the Rubya tool that, based on
the mapping between the relational schema and a target ontology, automatically
generates the RDF view exported from the relational data source and the set of
rules required for the incremental maintenance of the RDF view.

The demo video is available at http://tiny.cc/rubya. First, the video shows,
with the help of a real-word application, the process of defining the RDF view
and generating the maintenance rules with Rubya. Then, it shows some practical
examples of using the rules for incremental maintenance of a materialized RDF
view. For more information see http://www.arida.ufc.br/ivmf/.

2 Generating Rules with Rubya

Figure 1 highlights the main components of Rubya. The process of defining the
RDF view and generating the maintenance rules with Rubya consists of three
steps:
STEP 1 (Mapping specification): Using the correspondence assertions ed-
itor of Rubya, the user loads the source and target schema and then he can



A Framework for Incremental Maintenance of RDF Views of Relational Data 3

draw correspondence assertions (CAs) to specify the mapping between the tar-
get RDF schema and the source relational schema. The demo video shows how
the CA Editor helps the user graphically to define CAs.

A CA can be: (i) a class correspondence assertion (CCA), which matches
a class and a relation schema; (ii) an object property correspondence assertion
(OCA), which matches an object property with paths (list of foreign keys) of a
relation schema; or (iii) a datatype property correspondence assertion (DCA),
which matches a datatype property with attributes or paths of a relation schema.
CAs have a simple syntax and semantics and yet suffice to capture most of the
subtleties of mapping relational schemas into RDF schemas. Figure 2 shows some
examples of correspondence assertions between the relational schema ISWC REL
and the ontology CONF OWL. CCA1 matches the class foaf:Person with the
relation Persons. We refer the reader to [4, 5] for the details and motivation of
the mapping formalism.

Fig. 2. CONF OWL and ISWC REL schemas and some examples of CAs.

STEP 2 (RDF view creation): The GRVS module automatically generates
the RDF view schema, which is induced by the correspondence assertions defined
in Step 1. The vocabulary of the RDF view schema contains all the elements of
the target RDF schema that match an element of the source relational schema.
STEP 3 (Rule generation): The GVMR module automatically generates the
set of rules required to maintain the RDF view defined in Step 2. The process
of generating the rules for a view V consists of the following steps: (a) Obtain,
based on the CAs of V, the set of all relations in the relational schema that
are relevant to V. (b) For each relation R that is relevant to V, three rules are
generated to account for insertions, deletions and updates on R.

Two procedures, GVU INSERTonR and GVU DELETEonR, are automati-
cally generated, at view definition time, based on the CAs of V that are relevant
to R. Note that an update is treated as a deletion followed by an insertion, as
usual. GVU INSERTonR takes as input a tuple rnew inserted in R and returns
the updates necessary to maintain the view V. GVU DELETEonR takes as in-
put a tuple rold deleted from R and returns the updates necessary to maintain



4 Vânia et al.

the view V. In [4], we present the algorithms that compile GVU INSERTonR
and GVU DELETEonR based on the CAs of V that are relevant to R.

Once the rules are created, they are used to incrementally maintain the ma-
terialized RDF view. For example, Figure 3 shows the process to update a RDF
view when an insertion occurs on Papers. When an insertion occurs on Papers, a
corresponding trigger is fired. The trigger computes the view maintenance state-
ments U, and sends it to the view controller. The view controller computes the
view updates U*, and applies it to the view state.

Fig. 3. Using the rules generated by Rubya when insertions occurs on Papers.

3 Conclusions

In this paper, we present Rubya, a tool for incremental maintenance of external
RDF views defined on top of relational data. There is significant work on reusing
relational data in terms of RDF (see a survey in [3]). Karma [2], for example, is
a tool to semi-automatically create mapping from a source to a target ontology.
In our tool, the user defines mappings between a source and a target ontology
using a GUI. The novelty of our proposal is that we generate rules to maintain
the RDF views.

References

1. Berners-lee, T., design issues: Linked data, http://www.w3.org/DesignIssues/

LinkedData.html
2. Knoblock, C.A., et al.: Semi-automatically Mapping Structured Sources into the

Semantic Web. In: ESWC, pp. 375–390. Springer-Verlag, Berlin, Heidelberg (2012)
3. Spanos, D.E., Stavrou, P., Mitrou, N.: Bringing Relational Databases into the Se-

mantic Web: A Survey. Semantic Web Journal 3(2), 169–209 (2012)
4. Vidal, V.M.P., Casanova, M.A., Cardoso, D.S.: Incremental Maintenance of RDF

Views of Relational Data. In: OTM 2013 Conferences, pp. 572–587. Austria (2013)
5. Vidal, V.M.P., Casanova, M.A., Neto, L.E.T., Monteiro, J.M.: A Semi-Automatic

Approach for Generating Customized R2RML Mappings. In: SAC, pp. 316–322
(2014)


