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Abstract

We describe an approach to learning causal
models that leverages temporal information.
We posit the existence of a graphical de-
scription of a causal process that generates
observations through time. We explore as-
sumptions connecting the graphical descrip-
tion with the statistical process and what one
can infer about the causal structure of the
process under these assumptions.

1 Introduction

Data that measure the temporal dynamics of systems
is pervasive. The goal of this paper is to describe an
approach to the development of a sound approach to
causal inference for dynamic systems. One of the pop-
ular extant approaches is Granger causality (Granger
1969) which fails to be sound in the presence of la-
tent variables. Granger causality is typically applied in
discrete-time continuous valued time-series. Roughly
speaking, in a multivariate time series X a set of vari-
ables are the Granger-causes of Xj if the historical val-
ues of this set of variables (including Xj) are necessary
and sufficient for optimal prediction. Unfortunately a
variable deemed a Granger-cause can arise due to ei-
ther a latent common cause or as a result of a direct
causal relationship and thus the approach cannot be
used to determine causal relationships if one does not
exclude the possibility of latent variables.

In this paper, we explore how one can leverage the
assumption that causes must precede effects to in-
form causal conclusions drawn from observations of
a temporal statistical process. The approach taken
here is similar to the approach developed by Verma
and Pearl (1990) and Spirtes, Glymour, and Scheines
(2001) for atemporal causal discovery. One key in-
gredient in our approach is a new asymmetric graph-
ical separation criterion for directed (possibly cyclic)

graphs called δ*separation which plays an analogous
role as d-separation in the work of Verma and Pearl
(1990) and Spirtes, Glymour, and Scheines (2001).
Another key ingredient is the process independence
statement that plays an analogous role to the inde-
pendence statement. Conceptually, we assume that
we can test whether a process independence state-
ments about observable quantities holds by observing
the process and that these observation provide insight
into the causal structure governing the process. In
particular, we posit the existence of a graphical de-
scription of a causal process and make assumptions
that connect δ*separation with observable process in-
dependence statements. We explore what can be in-
ferred about the causal structure of the process un-
der various observability assumptions. While the ulti-
mate goal is to create a sound and complete method
for causal inference for observations from a stochas-
tic dynamic system, this paper represents some initial
steps towards this ultimate goal. In particular, the re-
sults in Section 3.2 can be viewed sufficient conditions
for Granger causality and, in Section 3.3, we present
sufficient conditions under which we can make sound
inferences about causal relationships including the ex-
istence of causal relationships and the existence and
non-existence of latent common causal relationships.

As presented in Section 3, our causal discovery algo-
rithm assumes the existence of an oracle for process in-
dependence statements. Our approach of abstracting
away the details of how one connects process indepen-
dence statements with particular statistical processes
allows us to simultaneously make progress on the
causal discovery problem for multiple distinct statis-
tical processes such as marked point processes, Gaus-
sian processes and dynamic Bayesian networks. In Sec-
tion 4, we discuss two particular statistical processes
and their associated process independence statements.
In Section 5, we discuss some related work and open
research questions.



2 Graphical Separation

We use G = 〈L, E〉 to denote a directed graph where
L is a set of vertices and E ⊆ 〈L × L〉 is a set of edges
represented as ordered pairs. We write a→ b if 〈a, b〉 ∈
E and say that a is a parent of b and b is the child of
a. Note that, in addition to allowing cycles, we also
allow that a vertex can be its own parent and child
(i.e., a self-edge a→ a). We use the shorthand a↔ b
to indicate that a→ b and b→ a.

A path in G is a sequence 〈l1, . . . , ln〉 where there is
an edge between successive pairs of vertices in G. The
length of a path p = 〈l1, . . . , ln〉 is |p| = n and a path
p is termed a trivial path if |p| = 1. A vertex li on
path p = 〈l1, . . . , ln〉 is a collider on p if li−1 → li and
li ← li+1 and a non-collider otherwise. A directed path
in graph G = 〈L, E〉 is a sequence of vertices 〈l1, . . . , ln〉
such that 〈li, li+1〉 ∈ E . The source of a directed path
is the first vertex in the path. We denote the set of
ancestors for a set A by An(A). The ancestor relation
is reflexive and thus A ⊆ An(A).

We define a graph separation criterion called
d*separation for directed graphs which is an exten-
sion of d-separation (Pearl 1988). An extension of d-
separation is required as a pure vertex separation cri-
terion like d-separation cannot separate a vertex from
itself which is required to appropriately handle self-
edges in directed graphs. A path p d*connects ver-
tices a and b given the set of vertices C in graph G if
every collider on p is in An(C) and every non-collider
on p is not in C. For sets of vertices A,B,C ⊆ L
where A ∩ C = ∅ we say that B is d*separated from
A by C in graph G if and only if there does not exist
a non-trivial d*connecting path between some a ∈ A
and some b ∈ B given C in G.

There are two key differences from Pearl’s d-separation
that allow us to appropriately handle cyclic directed
graphs. First, we restrict d*separation statements to
sets in which A ∩ C is the empty set but allow the
sets A and B to overlap. Second, d*connecting paths
must be non-trivial. These modifications enable us
to use d*separation statements to distinguish between
graphs in which there is a self-edge (a → a) and one
in which there is not.

We use directed graphs to represent temporal statis-
tical processes. We associate the vertices L with a
set of possible observation types (i.e., things that can
happen). The edges denote potential dependencies
between observations and the absence of a directed
edge from observation type a to observation type b
indicates that the process that generates observations
of type b does not directly depend on the history of
observations of type a. Analogous to the use of d-

separation for directed acyclic graphs, we would like
a graphical separation criterion for directed graphs to
answer questions about how past observations influ-
ence future observations. Due in part to the fact that
a directed graph does not explicitly encode temporal
information we cannot simply apply d*separation on
the directed graph. Instead, we define δ*separation
which extends the graphical δ-separation of Didelez
(2008) to handle self-edges. For sets A,B,C ⊂ L
where A ∩ C = ∅ we say that that B is δ*separated
from A given C (or simply δ(A,C,B)) in G if an
only if B is d-separated from A given C in the B-
historical dependency graph GB where GB =

〈
L, EB

〉
and EB = E\{〈b, a〉 ∈ E|b ∈ B, a 6= b}. Note that
δ*separation is not symmetric in the first and third
arguments due to the use of the graph GB .

3 Learning the Structure of a Causal
Process

Our aim is to connect statistical processes with causal
graphs and to learn the causal graph governing a sys-
tem of observed events. We assume that there is a
statistical process governing what and when events
happen. We denote a statistical process for a set
of observation types L by PL. We also assume that
we can observe the process to determine the whether
process independence statements hold. We will write
PI(A,C,B) to indicate that the process associated
with observations of type B does not depend on the
history of observations of type A given the history of
observations of type C in a given process PL (where
A ∩ C = ∅). We write ¬PI(A,C,B) if this is not the
case. We call such statements process independence
statements. We note that process independence state-
ments need not correspond to statistical independence
statements and, as with δ*separation, there is no ex-
pectation that such process independence statements
ought to be symmetric. In this section, we assume the
existence of a process independence oracle for the rel-
evant statistical process. In Section 4, we discuss par-
ticular statistical processes and the problem of testing
process independence statements for those processes.

A process PL satisfies the Causal Factorization As-
sumption with respect to a causal process graph G =
〈L, E〉 if and only if for all A,B,C ⊂ L where A∩B = ∅
it is the case that δ(A,B,C)⇒ PI(A,B,C)

A process PL satisfies the Causal Dependence Assump-
tion with respect to a causal process graph G = 〈L, E〉
if and only if for all A,B,C ⊂ L where A ∩ B = ∅ it
is the case that PI(A,B,C)⇒ δ(A,B,C)

The Causal Analysis (CA) Algorithm (Algorithm 1)
uses a process independence oracle to construct a di-



rected graph. We use πGl to denote the parents of l
in graph G and |B| to denote the cardinality of the
set B. The basic idea is to use process independence
statements to remove edges from an initially complete
graph. This algorithm is analogous to the PC Algo-
rithm of Spirtes, Glymour and Scheines (2001) but
does not have an orientation phase.

Note that the output of the CA algorithm is a directed
graph and that any edges presented do not necessarily
indicate a causal relationship. In the remainder of this
section we explore the interpretation of the output of
the CA algorithm under various assumptions. Recall
that a↔ b simply indicates that a→ b and b→ a and
not the existence of a latent common cause.

Input: A set of events L and a process PL
Output: A directed graph G
Let G = 〈L, E〉 be a complete directed graph.;
foreach l ∈ L do

Let n = 0;

foreach l′ ∈ πGl do

foreach B ⊆ πGl \ {l′} where |B| = n do
if PI(l′, B, l) holds in PL then
E = E \ 〈l′, l〉

end

end
Let n = n+ 1;

end

end
Return G = 〈L, E〉;
Algorithm 1: The Causal Analysis (CA) Algorithm

Theorem 1 (Complete Observations). If PL satisfies
both the causal dependence and factorization assump-
tions with respect to G then algorithm CA(L,PL) re-
turns G′ = G.

Lemma 1. If PL satisfies the causal dependence as-
sumption for G = 〈L, E〉 and algorithm CA(L,PL) re-
turns G′ = 〈L, E ′〉 then if l′ → l ∈ E then l′ → l ∈ E ′.

Lemma 2. If PL satisfies both the causal depen-
dence and factorization assumptions for G = 〈L, E〉
and algorithm CA(L,PL) returns G′ = 〈L, E ′〉 then if
l′ → l 6∈ E then l′ → l 6∈ E ′.

Proof of Theorem 1: The theorem follows from
Lemmas 1 and 2.

3.1 Absence of a direct causal relationship

Next we consider the case in which some of the event
types in the system are not observed. We let O ⊆ L
be the set of observed event types. In this case we will
assume that the causal factorization and dependence
assumptions hold for a process PL and some causal

process graph G. Our causal factorization and depen-
dence assumptions allow us to focus on δ*separation
in G by assuming that the observed process indepen-
dence statements accurately reflect the δ*separation
statements about G for the observed observation types.
In order to understand and interpret the output of the
CA algorithm we need to understand the conditions
that lead to edges in the final output. We begin by
defining the concept of vertex blockability relative to
a set of observed event types.

We say that a vertex a is b-unblockable relative to O in
G if and only if for all C ⊆ O\{a, b} ¬δ(a,C, b) is true
of G. Otherwise the vertex is said to be b-blockable
relative to O. Note that if b → b then if b ∈ O b is
b-unblockable relative to O.

We say that l is a direct cause of l′ relative to O for
causal process graph G if and only if there exists a
directed path 〈l1, . . . , ln〉 where l1 = l and ln = l′ and
li 6∈ O for (1 < i < n). We call the path in the
definition of direct cause a witnessing path that l is a
direct cause of l′. We let Db denote the set of observed
direct causes of the variable b relative to O, that is,
members of O that are direct causes of b relative to O.

Example 1. Let E = {a → c, c → b}, L = {a, b, c}
and O = {a, b}. The vertex a is b-unblockable relative
to O for G = 〈L, E〉 but the vertex b is a-blockable
relative to O. In this example, a is a direct cause of b
relative to O in graph G and a→ c→ b is a witnessing
path for this fact.

Lemma 3. If l′ is a direct cause of l relative to O in
G then l′ is l-unblockable relative to O in G.

The following lemma allows us to make causal infer-
ences using the causal analysis algorithm about the
absence of a direct causal relationship.

Lemma 4. If PL satisfies the causal dependence as-
sumption with respect to G then, in the graph G′ output
by CA(O,PL), the set of parents for each event type
include all of its direct causes relative to O.

In particular, if the algorithm finds that an event type
a is not a parent of event type b then a is not a direct
cause of b.

3.2 Causal sufficiency

In the section, we restrict the type of unobserved event
types which enables us to make strong inferences about
the causal structure of a process. In particular we as-
sume causal sufficiency which is essentially an assump-
tion that there are no latent confounding processes.

A set of event types O ⊂ L is causally sufficient with
respect to a graph G = 〈L, E〉 if and only if every
common cause of l, l′ ∈ O is in the set of event types



O.

A directed graph G′ = 〈O, E ′〉 is causally correct with
respect to a graph G = 〈L, E〉 if for every edge 〈a, b〉 ∈
E ′ a is a direct cause of b with respect to O in G.

Theorem 2 (Causal Sufficiency). If PL satisfies both
the causal dependence and factorization assumptions
for G = 〈L, E〉 and O ⊆ L is causally sufficient with
respect to G then the graph G′ returned by algorithm
CA(O,PL) is causally correct with respect to G and
O.

Lemma 5. If PL satisfies the causal dependence and
factorization assumptions with respect to G and O is
causally sufficient for G then the output of the CA al-
gorithm removes the edge a → b if a is not a direct
cause of b relative to O.

3.3 Causal insufficiency

We have shown that the CA algorithm can provide
causally accurate information under the assumptions
of causal sufficiency, causal factorization and causal
dependence. In this section we consider removing the
assumption of causal sufficiency.

Example 2. Let E = {a ← c, c → b}, L = {a, b, c}
and O = {a, b}. The observed event types O are not
causally sufficient for the graph G = 〈L, E〉. In ad-
dition, the CA algorithm fails to provide output that
is causally correct. In particular, the CA algorithm
yields the graph in which a→ b and b→ a despite the
fact that neither is a a cause of b in G nor is b a cause
of a.

Our aim is to graphically characterize vertex separa-
bility. We do so using the idea of an inducing path in a
directed graph that was introduced for directed acyclic
graphs by Verma and Pearl (1990). For a pair of ver-
tices a, b, we define Aab = An({a}) ∪An({b}) \ {a, b}.
A path p between 〈a, b〉 is an inducing path relative to
O if and only if (1) every vertex on p ∈ O is a collider
on p and (2) Every collider on p is in Aab. An induc-
ing path p = 〈l1 = a, . . . , ln = b〉 from a to b is into b if
ln−1 → ln. An inducing path p = 〈l1 = a, . . . , ln = b〉
from a to b is out of a if l1 → l2.

Lemma 6. For a directed graph G the following three
statements are equivalent:

(a) A vertex a is b-unblockable relative to O in graph
G

(b) There is an inducing path between a and b relative
to O in graph Gb. Note this inducing path must
be into b.

(c) ¬δ(a,O ∩Aab, b) in G.

We say that a is a cause of b in G and if there is a
directed path from a to b in G.

We aim to find common features of all graphs that are
consistent with the observed pattern of process inde-
pendence statements. Latent processes, however, can
mask the causal nature of the observed pattern of de-
pendencies.

For a pair of vertices a, b and graph G we say that there
is a potential indirect inducing path into b relative to O
if and only if (1) there is a vertex c1 ∈ O \ {a, b} such
that a→ b in G and (2) there is a sequence of vertices
c1, . . . , cn ⊆ O \ {a, c} such that ci ↔ ci+1 and cn ↔ b
in G.

Lemma 7. For any set of observed variable O, if a
graph has an inducing path between observed variables
a, b into b containing another observed variable then
the output of the CA algorithm will contain a potential
indirect inducing path into b.

Theorem 3 (Sufficient Cause). If PL satisfies both
the causal dependence and factorization assumptions
for G = 〈L, E〉 then if CA produces G′ with vertices
O ⊆ L for which the subgraph over {a, b} is a→ b and
G′ contains no potential inducing path between a, b into
b then a is a cause of b in G.

Lemma 8. If PL satisfies both the causal dependence
and factorization assumptions for G = 〈L, E〉 and CA
produces G′ with vertices O ⊆ L for which the subgraph
over {a, b, c} is a↔ b↔ c then

• if PI(a, ∅, c) and PI(c, ∅, a) then there is a latent
common causes of a, b and a (possibly distinct)
latent cause of b, c and b is not a direct cause of c
and b is not a direct cause of a.

• if PI(a, b, c) then there is no latent common
causes of b, c, b is a cause of c in G.

4 Statistical Processes and Process
Independence

Our approach to causal discovery through the obser-
vation of a dynamic process is applicable to different
temporal statistical processes. The key connection re-
quired is a connection between process independence
statements and the observations from a particular sta-
tistical process. In this section we consider two distinct
statistical processes and discuss process independence
for these processes.

4.1 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) are a popular
discrete-time model that can capture temporal dy-
namics of a statistical process. A DBN is a statis-



tical model of an infinite set of variables indexed by
time. A variable Xt

i denotes the ith variable at time
t. We use X = X1, . . . , Xn to denote the set of vari-
able types in the DBN, that is, a variable with an un-
specified time component and Xt to denote the set of
variables at time t. The DBN specifies the evolution
of Xt as a stochastic function of the value of previous
variables Xt−i (i > 0). In particular, the variable Xt

i

is a stochastic function of the value of its parents in
a graph. The causal process graph associated with a
causal DBN is a graph over the variable types of the
DBN X where there is an edge Xi → Xj if there ex-
ists a t, i such that there is an edge Xt−i

i → Xj in the
DBN. Thus, the parent relationship of the causal pro-
cess graph captures the dependence of a variable type
on the history of other variable types. Furthermore,
process independence statements PI(Xi, C,Xj) corre-
spond to a set of independence statements of the form
I(X1

i , . . . , X
t−1
i , X1

C , . . . , X
t−1
C , Xt

j). Without further
assumptions, testing process independence would be
unfeasible but if we focus on stationary processes with
finite temporal dependency we can potentially test
process independence statements.

4.2 Graphical Event Models

In this section, we define Conditional Intensity Mod-
els and Graphical Event Models (GEMs) and con-
nect these models with previous work on the class of
Piecewise-Constant Conditional Intensity Models and
Poisson Networks. We assume that events of differ-
ent types are distinguished by labels l drawn from
a finite alphabet L. An event is then composed of
a non-negative time-stamp t and a label l. A his-
tory is an event sequence h = {(ti, li)}ni=1 where
0 < t1 < · · · < tn, and our data is a specific history
denoted by D. Given data D, we define the history
at time t as h(t,D) = {(ti, li) | (ti, li) ∈ D, ti ≤ t}. We
suppress D from h(t,D) when clear from context and
write hi = h(ti−1). By convention t0 = 0. We define
the ending time t(h) of a history h as the time of the
last event in h: t(h) = max(t,l)∈h t so that t(hi) = ti−1.

A Conditional Intensity Model (CIM) is a set of non-
negative conditional intensity functions indexed by la-
bel {λl(t|h; θ)}l∈L. The data likelihood for this model
is

p(D|θ) =
∏
l∈L

n∏
i=1

λl(ti|hi, θ)1l(li)e−Λl(ti|hi;θ) (1)

where Λl(t|h; θ) =
∫ t
−∞ λl(τ |h; θ)dτ and the function

1l(l
′) is one if l′ = l and zero otherwise. The condi-

tional intensities are assumed to satisfy λl(t|h; θ) = 0
for t ≤ t(h) to ensure that ti > ti−1 = t(hi). These
modeling assumptions are quite weak. In fact, any

distribution for D in which the timestamps are con-
tinuous random variables can be written in this form.
For more details see [1, 2]. Despite the fact that the
modeling assumptions are weak, these models offer a
powerful approach for decomposing the dependencies
of different event types on the past. In particular, this
per label conditional specification allows one to model
detailed label-specific dependence on past events.

Next we define a graphical conditional intensity model
that we call a graphical event model (GEM). A fil-
tered history for A ⊆ L as [h]A = {(ti, li)|(ti, li) ∈
h ∧ li ∈ A}. A GEM is a pair < G, θ >, where
G =< L, E > is a directed graph over a set of event
types and edges in E represent potential dependencies
among event types. The parameters θ = {θl}l∈L pa-
rameterize the intensity functions for each event type.
In particular, λl(t|ht, θl) = λl(t|[ht]πl

, θl) where πl is
the set of parents for l in G. As in the case of the
DBN, a process independence statement correspond to
testing a dependence of an event type on set of event
histories. One potential approach to testing a process
independence PI(a,C, b) is to estimate/learn an inten-
sity function for b using the event histories for {a}∪C
and see if the intensity model depends on the event
history for a. The work by Gunawardana et al (2011)
on learning piecewise continuous intensity models is a
good starting point for this approach.

5 Discussion

One of the goals for the research direction described
in this paper is the development a sound approach
to causal inference for dynamic systems. One of the
popular extant approaches is that of Granger causal-
ity which fails on this account. This approach is typi-
cally applied in a discrete-time continuous valued time-
series and, thus, can be viewed as a dynamic Bayesian
network. Roughly speaking, in a multivariate time se-
ries X a set of variables are the Granger-causes of Xj if
the historical values of this set of variables (including
Xj) are necessary and sufficient for optimal predic-
tion. Unfortunately this approach does not appropri-
ately handle latent common causes. In particular, for
both of the scenarios described in Lemma 8 it is the
case that each of the variables is a Granger cause of its
neighbors while this relationships need not be causal
as the lemma demonstrates. In fact, it is easy to con-
struct stochastic processes with latent factors which
demonstrate that the inferential approach to Granger
causality is not sound with respect to causal relations.

There has been much work related to causal discov-
ery and the estimation of causal effects in time-series.
As discussed above, the work on Granger causality
(Granger 1969) is the most well known. The short-



comings of this approach are also well known (e.g.,
Eichler 2007) and there has been some work in trying
to address these known short comings. For instance,
Eichler (2007) proposes a similar approach to the ap-
proach described here but differs in that it allows for
the possibility of “simultaneous correlation” which re-
quires the use of an alternative definition of separa-
tion. In addition, while providing definitions of cause
and spurious cause, sufficient conditions for the identi-
fication of causal relationships are not presented. The
work of Entner and Hoyer (2010) considers the prob-
lem of causal discovery from time series data using
limited dependence vector autoregressive models and
the FCI algorithm that uses conditional independence
tests to identify the structure. Our approach of using
δ*separation is inspired by the work of Didelez (2008)
who defined δ-separation and shows the connection be-
tween that graphical separation criterion and local in-
dependence of marked point processes. Our extension
to δ*separation allows for the appropriate treatment of
self-edges which are essential in any self-excitatory or
self-inhibitory dynamic process. Another more loosely
connected work is that of Eichler and Didelez (2007)
that considers the estimation of causal effects based
on an intervention in a time-series.

While the results described in this paper offer hope
for developing a methodologically sound approach to
causal inference for dynamic systems, there is much
work that needs to be done. Here are some of the
open research questions.

• Non-parametric tests for process independence for
various type of temporal statistical processes

• Soundness and completeness results for
δ*separation analogous to those provided by
Pearl (1988), Meek (1995) and Spirtes et al
(2001) for d-separation. Note that Didelez (2008)
has shown the soundness of δ-separation for
a family of marked point processes related to
GEMs.

• A representation for equivalence classes of causal
graphs with respect to δ*separation in the case of
causal insufficiency (O ⊂ L) analogous to those
developed by Verma and Pearl (1990) and Spirtes
et al (2001) that captures the common casual as-
pects of the set of graphs in the equivalence class.
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