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David Lindecker
Bentley Oakes
Rick Salay



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Keynote

Exploring the non-functional properties of model transformation techniques used
in industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Ronan Barrett

Session 1: Refactoring

Remodularizing Legacy Model Transformations with Automatic Clustering
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Andreas Rentschler, Dominik Werle, Qais Noorshams, Lucia Happe and Ralf
Reussner

Session 2: Testing

Unit Testing of Model to Text Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Alessandro Tiso, Gianna Reggio and Maurizio Leotta

On Static and Dynamic Analysis of UML and OCL Transformation Models . . . . 24
Martin Gogolla, Lars Hamann and Frank Hilken

Towards Testing Model Transformation Chains Using Precondition Construction
in Algebraic Graph Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Elie Richa, Etienne Borde, Laurent Pautet, Matteo Bordin and José F. Ruiz
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Preface

To facilitate the processing and manipulation of models, a lot of research has gone into
developing languages, standards, and tools to support model transformations. A quick
search on the internet produces more than 30 different transformation languages that
have been proposed in the literature or implemented in open-source or commercial tools.
The increasing adoption of these languages and the growing size and complexity of the
model transformations developed require a better understanding of how all activities in
the model transformation life cycle can be optimally supported.

Properties of an artifact created by a model transformation are intimately linked to
the model transformation that produced it. In other words, to be able to guarantee cer-
tain properties of the produced artifact, it may be very helpful, or even indispensable,
to also have knowledge of the producing transformation. As the use and significance of
modeling increase, the importance that the model transformations produce models of suf-
ficient quality and with desirable properties increases as well; similarly, as the number and
complexity of model transformations grows, the importance that transformations satisfy
certain non-functional requirements and that life cycle activities for model transformations
such as development, quality assurance, maintenance, and evolution are well supported
grows as well.

The central objective of the AMT workshop is to provide a forum for the discussion
and exchange of innovative ideas for the analysis of model transformations, broadly con-
strued. Analyses might support a variety of model transformation activities including the
development, quality assurance, maintenance and evolution by facilitating, for instance,

– the detection of typing errors, anti-patterns, dead code, transformation slices, likely
invariants, or performance bottlenecks;

– the informal, semi-formal, or formal establishment of properties related to correct-
ness or performance;

– test suite evaluation through code coverage determination;

– code completion and generation;

– the evolution of metamodels;

– impact analysis;

– refactoring.

Another objective of the workshop is to help clarify which transformation analysis prob-
lems can be solved with the help of existing analysis techniques and tools developed in
the context of general-purpose programming languages and source code transformation
languages, and which analysis problems require new approaches specific to model trans-
formations. The exchange of ideas between the modeling community on the one hand
and the programming languages community and source code transformation community
on the other hand thus is another objective of the workshop.

In this third edition, AMT received 16 submissions, out of which 9 were accepted. The
workshop also held a keynote speech by Ronan Barrett from Ericsson on exploring the
non-functional properties of model transformation techniques used in industry. We are
grateful to all authors, attendees, program committee members, external reviewers and
local organizers for helping make AMT 2014 a success.

October 2014 Juergen Dingel, Levi Lúcio, Hans Vanghewluwe and Juan de Lara
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Keynote

Exploring the non-functional properties of model
transformation techniques used in industry

Ronan Barrett

Ericsson

Authoring model transformations is arguably the most resource intensive ef-
fort in the whole Model Driven Engineering (MDE) chain. The non-functional
properties (NFP) of the techniques used to realize these transformations has an
enormous impact on the quality of the model based systems being developed.
It is always tempting, and someone will invariable offer, to conjure up a quick
script to implement a transform. However, transformations are more often than
not creatures with a long life span. They evolve in ways you would never have
expected and so require excellent extensibility, readability and maintainability.
They must of course also perform as well as their previous incarnation with the
same or better levels of quality. These non-functional properties are not synony-
mous with hastily written scripts. We know from experience that making bad
choices early on will cost later. In this talk we will share our experiences of au-
thoring transformations using a number of different open source transformation
techniques and how we have tried, and succeeded in most cases, to meet our
NFP obligations.

Ronan Barrett received his Ph.D from the School of Computing at Dublin City Uni-

versity, Ireland, in 2008. He is a Senior Specialist in Modeling Technologies & Trans-

formations at Ericsson, Sweden. Since completing his Ph.D. Ronan has worked on ap-

plying model driven engineering concepts and technologies in industry. He has worked

extensively with Eclipse based open source modeling technologies, working closely with

the open source community and internally within Ericsson. Ronan has a wealth of ex-

perience in writing model transformations and designing domain specific language tools

that meet demanding non-functional requirements. He has published a number of aca-

demic papers in the area of model driven engineering and has also presented at open

source conferences like EclipseCon Europe.
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Remodularizing Legacy Model Transformations

with Automatic Clustering Techniques

Andreas Rentschler, Dominik Werle, Qais Noorshams,
Lucia Happe, Ralf Reussner

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{rentschler,noorshams,happe,reussner}@kit.edu,

dominik.werle@student.kit.edu

Abstract. In model-driven engineering, model transformations play a
critical role as they transform models into other models and finally into
executable code. Whereas models are typically structured into packages,
transformation programs can be structured into modules to cope with
their inherent code complexity. As the models evolve, the structure of
transformations steadily deteriorates, and eventually leads to adverse
effects on the productivity during maintenance.
In this paper, we propose to apply clustering algorithms to find decom-
positions of transformation programs at the method level. In contrast
to clustering techniques for general-purpose languages, we integrate not
only method calls but also class and package dependencies of the mod-
els into the process. The approach relies on the Bunch tool for finding
decompositions with minimal coupling and maximal cohesion.
First experiments indicate that incorporating model use dependencies
leads to results that reflect the intended structure significantly better.

1 Introduction
The idea behind model-driven software engineering (MDSE) is to move the
abstraction level from code to more abstract models. Although the principal aim
of model-driven techniques is to improve the productivity, maintenance of models
and particularly of transformation programs for mapping these models to less
abstract models and finally to executable code remains costly. Studies on long-
term experiences from industrial MDSE projects give evidence for maintenance
issues that arise from constantly evolving models [1, p. 9].

As the complexity of models grows, model transformations tend to become
larger and more complex. If transformation programs are not properly struc-
tured into well-understandable artifacts, understanding and maintaining model
transformations is worsened.

However, as opposed to object-oriented code where data is encapsulated by
the concept of classes, transformation units must consider not only the methods
provided and required by a module, but also the scope of model elements that
are used by a module to implement a particular concern. We recently proposed a
module concept tailored for model transformation languages which introduces
information hiding through an explicit interface mechanism [2]. Per interface,
scoping of model elements can be defined on the package and class level. Further
on, only those methods are accessible that are defined either locally or in one of
the imported interfaces.

Although it is possible to use the added language concept to develop transfor-
mations with a modular design, according to our own experience, many existing
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Fig. 1: Activity2Process transformation – Method and model scoping

transformations have been built monolithically, or their modular structure had
been deteriorating over time. As it has been observed for software in general,
deriving a module structure manually from legacy code can be cumbersome
without an in-depth knowledge of the code. At the present time, there is no
approach to derive such a structure from transformation programs automatically.

Existing clustering approaches [3] are able to derive module structures from
source code. But in contrast to ordinary programs, transformation programs
traverse complex data structures. Most model-to-model and model-to-code trans-
formations are structured based on the source or target model structure. As we
will show, model use relationships should be taken into account by automatic
clustering approaches to produce useful results.

In this paper, we propose to carry out automatized cluster analysis based
on a dependence graph that includes not only method calls, but also model use
dependencies and structural dependencies among model elements.We use the
Bunch tool [4], a software clustering framework that searches for clusters with
minimal coupling and maximal cohesion. By integrating model information into
the search process, found clusters are (near-)optimal regarding the scope of both
methods and model elements.

Next, Section 2 motivates our previously published modularity concept for
transformations as a way to improve maintainability, and presents methods how
experts tend to structure transformation programs. Section 3 briefly introduces the
Bunch tool, a prominent software clustering technique that is used in this paper.
In Section 4, we present a novel approach for clustering model transformations.
Section 5 presents relevant work that is related to our own work, and Section 6
concludes the paper and points out potential further work on the topic.

2 Modular Model Transformations
To explain how model transformations are structured in a way that improves
maintainability, we are going to use a minimalistic example transformation
Activity2Process implemented in QVT-Operational (QVT-O) [5], which maps
activity diagrams to process diagrams (Fig. 1).
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A transformation between the two models would be implemented with five
mapping methods. Each method is responsible for mapping one class of the source
domain to semantically equivalent elements in the target domain. Because the
target model is less abstract, as it does not offer composite steps, hierarchical
activity models are flattened by the transformation.

When decomposing the sample transformation into modules, we may identify
three different concerns: The first module is responsible for mapping the container
elements and to trigger the rest of the mappings. A second module can be assigned
to the task of mapping actions to process elements. Internally, the module does
further deal with start and stop actions. A third module can be made responsible
for mapping the extended concept of composite actions to basic steps.

With our recently proposed module concept for model transformations (cf. [2]),
it is possible to define this decomposition in a way that improves maintainability.
Explicit interfaces. We introduce a new language concept to declare module
interfaces. With explicit interface declarations, it is possible to hide implementa-
tion details behind interfaces. For instance, the second module in Fig. 1 relies on
two mapping functions that are only used locally and can be thus kept internal,
StartAction2Step and StopAction2Step (marked by a dashed frame). By
omitting these from the module’s interface declaration, they remain invisible for
the other two modules that import this module.
Method access control. Only method implementations that are either defined
locally, or that are declared by one of the imported interfaces can be called.
The first module in the example, for instance, is only able to access mappings
Activity2Process and Action2Step.
Model visibility control. The second module in the Activity2Process scenario
must only have access to three model elements in the source domain, Action,
StartAction, and StopAction, and Step in the target domain. These classes
can be specified in the module’s interface declaration. It is statically checked that
an implementation of the interface does not access elements outside of this scope.
Scoping of model elements can also be declared at package-level, so the third
module could list package CompositeActions as accessible.

Information-hiding modularity helps to improve understandability and main-
tainability, as the scope of a module can be directly grasped from its declared
interface. Internal functions for querying model elements are hidden behind the
interface, making it easier to understand the functionality provided by a module.

Keeping the scope of models and the number of modules that are imported at
a minimum is obviously a prime concern; internally, mappings in a module may
have arbitrary references to each other. This relates to two software metrics to
measure the quality of a module decomposition, favoring a low degree of method
and data interconnectivity between modules and a high degree of intraconnectivity
of methods within a module (low coupling and high cohesion). In an optimal
decomposition, each module encapsulates a single concern with a minimal model
scope, and model scopes overlap for as few modules as possible.

By observing transformations that had been manually implemented by experts,
we can distinguish three classic styles of how a transformation is structured [6].
Source-driven decomposition. In this case, for objects of each class in the
source domain, objects of one or more classes are generated in the target do-
main (one-to-many mappings). Transformations where models are transformed
to models that are equally or less abstract usually fall into this category. The
Activity2Process transformation is a typical candidate for a source-driven de-

6



composition. It traverses the tree-like structured activity model, and each node
embodies an own high-level concept that is mapped to target concepts.
Target-driven decomposition. When objects of a particular class in the target
domain are constructed from information distributed over instances of multiple
classes in the source domain (many-to-one mappings), a target-driven decom-
position is deemed more adequate. Transformations from low-level to high-level
concepts (synthesizing transformations) use this style.
Aspect-driven decomposition. In several cases, a mixture of the two ap-
plies. Aspect-driven decompositions are required whenever a single concern is
distributed over multiple concepts in both domains (many-to-many mappings). In-
place transformations (i.e., transformations within a single domain) that replace
concepts with low-level concepts often follow this style, particularly if operations
are executed per concern and affect multiple elements in the domain.

Any of these styles – and preferably also mixtures – must be supported by an
automatic decomposition analysis in order to produce meaningful results.

3 Automatic Software Clustering
The principal objective of software clustering methodologies is to help software
engineers in understanding and maintaining large software systems with outdated
or missing documentation and inferior structure. They do so by partitioning
system entities – including methods, classes, and modules – into manageable
sub systems. A survey on algorithms that had been used to cluster general
software systems has been carried out by Shtern et al. [3]. They describe various
classes of algorithms that can be used for this purpose, including algorithms
from graph-theory, constructive, hierarchical agglomerative, and optimization
algorithms.

In this paper, we employ the Bunch tool, a clustering system that uses one
of two optimization algorithms, hill climbing or a genetic algorithm, to find
near-optimal solutions [4]. Bunch operates on a graph with weighted edges,
the so-called Module Dependency Graph (MDG). Nodes represent the low-level
concepts to be grouped into modules, and may correspond to methods and classes.
As a fitness function for the optimization algorithms, Modularization Quality
(MQ) is used, a metric that integrates coupling and cohesion among the clusters
into a single value. Optimization starts with a randomly created partitioning,
for which neighboring partitions – with respect to atomic move operations – are
explored.

According to Mitchell et al. [4], a dependency graph is a directed graph
G = (V, E) that consists of a set of vertices and edges, E ⇢ V ⇥ V . A partition
(or clustering) of G into n clusters (n-partition) is then formally defined as ⇧G =Sn

i=1 Gi with Gi = (Vi, Ei), and 8v 2 V 91k 2 [1, n], v 2 Vk. Edges Ei are edges
that leave or remain inside the partition, Ei = {hv1, v2i 2 E : v1 2 Vi ^ v2 2 V }.

The MQ value is the sum of the cluster factors CFi over all i 2 {1, . . . , k}
clusters. The cluster factor of the i-th cluster is defined as the normalized ratio
between the weight of all the edges within the cluster, intraedges µi, and the
sum of weights of all edges that connect with nodes in one of the other clusters,
interedges ✏i,j or ✏j,i. Penalty of interedges is equally distributed to each of the
affected clusters i and j:

MQ =
kX

i=1

CFi, CFi =

8
<
:

0, µi = 0
µi

µi+
1
2

Pk
j=1
j 6=i

(✏i,j+✏j,i)
, otherwise
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Bunch does not differentiate between types of nodes, although edges can be
given different weights. Other software clustering approaches exist, a survey by
Maqbool et al. [7] lists ARCH, ACDC [8], LIMBO, and others. We decided for
Bunch, because it uses classic low-coupling and high-cohesion heuristics that
match the information-hiding property we are heading for, and because it has
gained a good reputation so far [7].

4 Clustering Model Transformations
The methodology of our automatic clustering approach for model transformations
follows to a wide extent the typical procedure of software clustering approaches in
general. It comprises three steps (Fig. 2). In the first step, dependence information
is statically analyzed and extracted from the source files, resulting in a weighted
dependence graph. It is crucial to choose appropriate weights for the types of
dependencies that are going to be extracted. The graph serves as input for the
cluster analysis. Before running cluster analysis as the second step, an appropriate
algorithm must be chosen, and the algorithm’s parameters are to be configured.
In the third and last step, the automatically derived clustering has to be analyzed.
One option is to compare results with the existing modular decomposition that
is automatically extractable from the source files, for instance using some of the
available similarity measures. However, developers may also compare clusterings
derived with alternative weights, either manually, or using similarity or quality
metrics. This whole procedure can be repeated with different configurations.
Developers planning to refactor the present code manually to obtain an improved
modular structure can base their decisions on the computed clusterings.

In the following sub sections, we will address any of the peculiarities when
dealing with model transformations. The Activity2Process scenario from Section 2
serves as a running example.
4.1 Dependence Analysis

A preliminary step in any graph-based clustering approach is to extract depen-
dence information from software systems in a graph-based form. When dealing
with general-purpose programming languages, various source code analysis tools
are available to choose from. However, as we want to extract dependencies from
languages specific to the domain of model transformations, we must build our own
tools. We use static analysis, i.e., only information that is immediately available
at the syntactic level is used, whereas dynamic information that results from
(partial) execution of the source code is not used. In the context of transformation
programs, we consider not only dependencies among methods, but in addition
the structure of involved models and model use dependencies.

8
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Fig. 3: Activity2Process transformation – Bunch-derived clustering based on
class-level dependencies

Implementation structure. Any method that is present in one of the source
files is represented by a single node vi 2 V in the graph G = (V, E). For instance,
QVT-O defines four different types of methods, namely helpers, mappings, queries,
and constructors; these are all translated to nodes in the graph.

Method call dependencies are extracted as follows. For any two nodes vi, vj 2
V in the graph where each represents a distinct method, vi 6= vj , a directed
edge points from vi to vj , hvi, vji 2 E, iff the method represented by vi calls
or otherwise references the method represented by vj . In QVT-O, a single call
(indicated by keyword map) may refer to multiple methods in the case of method
dispatching, and references may arise from reuse dependencies (keywords are
disjunct, merge, override, and extend).
Model structure. Any package and class in one of the models used by the
transformation is represented by a distinct node in the graph.

Package containment is extracted as follows. For any two nodes vi, vj 2 V in
the graph where each represents a distinct model element, vi 6= vj , a directed
edge points from vi to vj , hvi, vji 2 E, iff vi represents a class or package and vj

represents a package that directly contains that class or package.
Additionally, inheritance and reference relationships among classes are defined.

For any two nodes vi, vj 2 V in the graph where each represents a class, vi 6= vj ,
a directed edge points from vi to vj , hvi, vji 2 E, iff vi represents a class that
inherits from or references instances of another class represented by vj .
Model use dependencies. For any two nodes vi, vj 2 V in the graph where vi

represents a method and vj a class or package, vi 6= vj , a directed edge points
from vi to vj , hvi, vji 2 E, iff the method represented by vi implicitly or explicitly
refers to one of the classes or packages of the involved models. We distinguish
model use dependencies with read-access and write-access.

In QVT-O, read dependencies occur as both context and in/inout parameters,
or within the implementation body for each of the intermediate Object Constraint
Language (OCL) expression’s inferrable type; write dependencies occur in the
form of a mapping’s result parameter and explicit instantiations via new or object
operator. We provide an alternative extraction method that reduces class-level
dependencies to package-level dependencies.
Weight configuration. To guide the clustering algorithm, the influence of depen-
dence relations can be regulated manually. For this purpose, a weighting function
w : E ! N0 assigns positive numbers to the edges in the graph. Depending on
the type of dependency represented by the respective edge, we use four weights:
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Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := hWwrite , Wread , Wcall , Wpackagei 2 N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite ⌧ Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration h1, 15, 5, 15i had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.
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Table 1: Activity2Process – Manual vs. derived clustering
Configuration Statistics Similarity to expert clustering
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Derived manually 3 1.067 100% 100% 100 100%

Method-call dependencies only

Hill Climbing, WC = h0, 0, 1, 0i 2 1.214 20.00% 100% 54.54 60%

Class-level dependencies

Hill Climbing, WC = h1, 15, 5, 15i 2 1.083 33.33% 100% 72.72 85%

Modularization Quality. Quality metrics can be used for a quick estimation
of the quality of a particular partition. In context of the Bunch approach, it
makes sense to observe the MQ index that Bunch uses to assess partitions when
searching for a (quasi-)optimal partition. The MQ value can be computed for
both method and model dependencies (which it has been optimized for), but also
for method dependencies alone.

We use three similarity measures to quantify the similarity of a sample
clustering with the expert clustering, Precision/Recall, EdgeSim, and MeCl. The
latter two had been specifically built for the software domain by Mitchell et al.,
all three are supported by the Bunch tool. Other measurements that are used in
other contexts include MojoFM [9] and the Koschke-Eisenbarth metric [10].
Precision/Recall. Precision is calculated as the percentage of node pairs in
a single cluster of a sample clustering that are also contained within a single
cluster in the authoritative clustering. Recall, on the other hand, is defined as the
percentage of node pairs within a single cluster in the authoritative clustering
that are also node pairs within a single cluster in the sample clustering [3]. Edges
are not considered, and the metric is sensitive to number and size of clusters [11].
EdgeSim. The EdgeSim similarity measure [11] calculates the normalized ratio
of intra and intercluster edges present in both partitions. Nodes are ignored.
MeCl. The MergeClumps (MeCl) metric is a distance measure [11]. Starting with
the largest subsets of entities that had been placed in each of the partitions into
the same clusters, a series of merge operations, needed to convert one partition
into the other, is calculated. Both directions are considered, and the largest
number of merge operations (in a normalized form) is taken as the MeCl distance.

We used the above measurements to compare quality and similarity of manu-
ally and two automatically derived partitions in the Activity2Process example.
We computed a partition based on method-level dependencies alone, and another
partition based on method and class-level dependencies (Tab. 1). Due to the
small number of nodes in the input graphs, the output partition per dependence
graph produced was identical for five independent runs.

The expert clustering – the one manually done – comprises three clusters,
whereas both derived clusterings comprise two. The method-level clustering
produced the best MQ value. Despite having a slightly worse modularization
quality, the partition derived from class-level dependencies still produces an
(albeit marginally) better MQ value than that of the expert clustering.

Even more importantly, for this example, all three metrics agree that model-
use dependencies result in a partition more similar to the expert clustering than
a partition derived from method-call dependencies alone. The still relatively low
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precision of 20% and 33.33% can be attributed to the fact that two clusters
correspond to a single one in the derived clustering.

5 Related Work
There is only work on statically analyzing model transformation programs for
visualization purposes, whereas software cluster analysis has not been applied to
model transformation programs in particular.
Model transformation analysis. Some work has been done on extracting de-
pendence information from model transformation programs for graphical viewing.
Van Amstel et al. [12] extracted method call and model use dependence infor-
mation and used hierarchical edge bundling diagrams for presentation. Similar
work had been done by us to support model transformation maintenance, as we
employ navigable node link diagrams that are embedded into the development
environment. Our view encompasses both method call and model use depen-
dencies, including inheritance, reference, and containment relationships among
classes and packages. Automatic clustering of these graphs obtained from static
analysis, however, has not been carried out so far by either work.
Software cluster analysis. Software clustering approaches mainly focus on
recovering an architecture from code written in general-purpose programming
languages. Hence their view consists of procedures and call relationships, modules
and use dependencies, or classes and their relationships.

Other information to discover a modular structure had been put into con-
sideration as well, including the change history [13], omnipresent objects [14],
or transactions (repeated use of a set of classes by other classes indicates that
they form a single purpose) [15]. Furthermore, a combination of control and data
dependencies as a source of information to discover a hidden modular structure
in procedural and object-oriented code had been studied over the last three
decades [16,17,18,19]. We apply a similar technique to model transformation
languages, though in our specific case we additionally exploit the subtleties
of UML/MOF-compliant modeling languages as data description language, for
instance hierarchically structured data elements.

Nevertheless, when it comes to the application of automatic clustering tech-
niques to model transformation programs, no previous work is known to us.

6 Conclusions and Outlook
Together with models, model transformations belong to the core assets of software
developed according to the model-driven paradigm. Much of the recent work in
this area has focused on reuse aspects of transformations, neglecting maintain-
ability as an equally important concern. To manage the inherent complexity of
transformation programs, well-approved language concepts can be used, including
information hiding modularity. In practice, however, transformation programs
lack structure, or their structure has slowly eroded over time.

This work proposes to transfer software clustering techniques to the specific
domain of model transformation programs. Based on automatically derived
clusterings, developers have to spent less effort in understanding, maintaining and
refactoring the code. As the example demonstrates, we were able to automatically
derive clusterings that exhibit high similarity with manual decompositions. To
reach this goal, we had to integrate structural information of the models and
model use dependencies of the transformation language’s concepts, and we had
to guide the clustering algorithm by weighting the input dependencies to match
the type of transformation at hand.
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We are currently working on a case study with a larger, more realistic trans-
formation, with promising results so far. However, quality of the results obtained
highly depends on the weight vector which is still configured manually. It would
be interesting to explore methods to determine this vector automatically. Further
on, more details could be used to guide the clustering process. We currently
extract data dependence information at the type-level, whereas dataflow analysis
could help to detect cohesiveness between methods more accurately.
Acknowledgements. This research has been funded by the German Research
Foundation (DFG) under the Priority Programme SPP 1593.
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Abstract. Assuring the quality of Model Transformations, the core of Model
Driven Development, requires to solve novel and challenging problems. Indeed,
testing a model transformation could require, for instance, to deal with a complex
software artifact, which takes as input UML models describing Java applications
and produces the executable source code for those applications. In this context,
even creating the test cases input and checking the correctness of the output
provided by the model transformation are not easy tasks. In this work, we focus on
Model to Text Transformations and propose a general approach for testing them at
the unit level. A case study concerning the unit testing of a transformation from
UML models of ontologies into OWL code is also presented.

1 Introduction

Model to Text Transformations (shortly M2TTs) are not only used in the last steps of
a complete model driven software development process to produce the code and the
configuration files defining a new software system, but can be the way to allow any kind
of user to perform tasks of different nature using visual models instead of the scarcely
readable text required by software tools (e.g. the textual input for a simulator of business
processes may be generated by a UML model made of class and activity diagrams).

Testing model transformations is a complex task [6], since the complexity of the
inputs and the time required to produce them (e.g. complete UML models instead of
numbers and strings), and the difficulties in building an effective oracle (e.g. it may have
to provide whole Java programs instead of a result of such programs). Selecting input
models for model transformations testing is harder than selecting input for programs
testing because they are more difficult to be defined in an effective way. Hence, also
giving adequacy criteria for model transformations is again more difficult than in the
case of programs. Furthermore, also the well-established kinds of tests, e.g. acceptance
and system, are either meaningless for model transformations or have to be redefined.

M2TTs may be quite complex and large. For example, a transformation from UML
models composed of class diagrams and state machines, where the behaviour of any
element is fully defined by actions and constraints, to running Java applications built
using several frameworks (e.g. Hibernate, Spring, JPA). Thus, it is important to be able
to perform tests also on subparts of an M2TT. First, we need to identify the nature of
such subparts, and then define what testing them means. Using the classical terminology,
we need to understand whether a form of unit testing is possible for M2TTs.
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In this paper we present a proposal for testing M2TTs at the unit level. We then
indicate how to implement the executions of the introduced unit tests for M2TTs coded
using Acceleo [1], and how this form of unit testing may be integrated in the development
method for model to text transformation MeDMoT proposed by some of the authors
in [10, 11, 12].

We use the M2TT U-OWL as running example to illustrate our proposal. It is a trans-
formation from profiled UML models of ontologies to OWL definitions of ontologies. An
ontology model is composed by a class diagram (the StaticView) defining the structure of
the ontology in terms of categories (plus specializations and associations among them),
and possibly by an object diagram (the InstancesView) describing the information about
the instances of the ontology (i.e. which are the individuals/particulars of the various
categories, the values of their attributes, and the links among them). The U-OWL targets
are text files describing an ontology using the RDF/XML for OWL concrete syntax. This
transformation has been developed following MeDMoT . Specifically, we have given
the U-OWL requirements, designed the transformation and then implemented it using
Acceleo. It is composed by 8 modules, 21 templates and 8 queries.

The paper is structured as follows. In Sect. 2 we present our proposal for M2TTs unit
testing including suggestions for implementing their execution and getting a report, and
in Sect. 3 how this kind of testing may be integrated within MeDMoT . The results of the
unit testing of U-OWL are summarized in Sect. 4. Finally, related work and conclusions
are respectively in Sect. 5 and 6.

2 Unit Testing of Model to Text Transformations

2.1 Testing Model to Text Transformations

The Model to Text Transformations considered in this paper map models1 (both graphical
and textual) to Structured Textual Artifacts (shortly STAs) having a specific form. An
STA is a set of text files, written using one or more concrete syntaxes, disposed in a
well-defined structure (physical positions of the files in the file system).

In previous works [10,11,12] we have proposed new kinds of tests suitable for model
to text transformations.
– Conformance tests are made with the intent of verifying whether the M2TT results

comply the requirements imposed by the target definition. Generally this means that
the produced STA has the required structure and form. Considering the U-OWL case
this means that the files produced can be loaded into a tool for OWL like Protege2

without errors (because it accepts only well-formed OWL files).
– Semantic tests are made with the intent of verifying whether the target of the M2TT

has the expected semantics. In the U-OWL case a semantic test may check, for example,
if an OWL class has all the individuals represented in the UML model, or that an OWL
class is a sub-class of another one iff such relationship was present in the UML model.

– Textual tests are made with the intent of verifying whether the STAs produced by the
M2TT have the required form considering both the structuring in folders and files and
the textual content of the files.

1 conform to a meta-model
2 http://protege.stanford.edu/
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2.2 Unit Tests for Model to Text Transformations

M2TTs may be quite large and complex. For this reason, they may be composed of
several sub-transformations. Each sub-transformation may be in turn composed of other
sub-transformations, each of them taking care of transforming some model elements.
The various sub-transformations may be arranged in a call-graph (we use a diagram
similar to the structure chart, that we call functional decomposition diagram), where the
nodes are labelled by the sub-transformations themselves and the arcs represent calls
between sub-transformations (see, e.g. Fig. 1).

In what follows, we consider only M2TTs equipped with a functional decompo-
sition diagram; moreover, we assume that their design specifications, which provide
information on the STAs produced by their sub-transformations, are available.

To perform the unit testing of an M2TT we must identify the units composing it.
That will be the subjects of the unit tests. It is natural to choose as subject of unit tests the
various sub-transformations of the M2TT, introduced by the functional decomposition
diagram, considered in isolation.

In the context of testing classical software, the parts considered by unit tests, in
general, cannot be run (e.g. a method or a procedure), thus special stubs have to be
built (e.g. JUnit test cases for Java class methods). In general, in the case of M2TTs
the “parts” composing a transformation return STA fragments that in many cases do
not even correspond to well-formed constructs in the transformation target; to build
some stubs for them to be able to perform conformance and semantic testing may be
utterly complex and time consuming (think for example what does it mean to build a
stub for a configuration file for the Spring framework, or referring to the U-OWL case
study, to build a stub for an RDF/XML definition of an individual). To propose a general
technique for unit testing of M2TTs, we should consider the sub-transformation results
as purely textual artifacts, and so we use only textual tests, which is one of the proposed
new kinds of tests (see Sect. 2.1).

To build a unit test for a given sub-transformation, say ST , we need other ingredients:
the test input and the oracle function.

The test inputs for ST are model elements. For example, the sub-transformation of
U-OWL TAttribute (see Fig. 1) transforms a UML class attribute into an OWL fragment

TOntology 

TStaticView TInstanceView 

TAttribRestrictions TAssocRestrictions TAssociations TAttributes TSubclasses TInstance 

TAttribRestriction TAssocRestriction TAssoc TAttribute TSubclass 

TType 

TSlots TLinks 

TSlot TLink 

TMinCardinality TMaxCardinality 

TCategory 

Fig. 1. Functional decomposition diagram for the U-OWL M2TT
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(more precisely, in the definition of an OWL data type property). Thus, to test TAttribute
we need to use as inputs UML attributes.

There are substantially two ways to obtain the model elements to be used in the unit
tests: (i) they can be built by instantiating the right meta-class (in the case TAttribute, the
meta-class in the UML meta-model which represents class attributes) or (ii) they can be
extracted from a model using an appropriate query. We opted for (ii) because in this way
input models can be easily written by the tester. Furthermore, if the model considered
contains more than one model element of the desired type (e.g. class attribute), it is
possible to easily improve the test coverage of the input space. Indeed, we can retrieve
all these elements in only one query, and thus test the sub-transformation using different
values.

The oracle function has to evaluate the correctness of the result of ST on the chosen
input. Usually, this is done by comparing the actual output given by the ST with the
expected output. In the case of the M2TTs the expected output of a sub-transformation
is a fragment of an STA (for example some text files arranged in different folders, a
text file, a text fragment). It is clear that generating this kind of expected outputs is
very difficult and time consuming if not almost impossible; consider the case of the
transformation from UML models to Java applications, the expected outputs may be
sets of files containing the complete code of various Java classes or long and cryptic
configuration files needed by the used framework (e.g. Hibernate).

Thus, we formulate the oracles in terms of properties on the expected STA fragments.
These properties are about the structure of the STA fragment, for example which files
and folders must be present and how they are named, and about the text files content.
The latter may just require that the output text matches a given regular expression.

Following the classical testing techniques, we define a test case for a sub-transformation
as a pair consisting of a specific input and a property on the expected output; we have
preferred instead to define generic test cases that are properties on the expected output
parameterized on the input of ST . To allow the expression of more powerful tests, we then
decided that an oracle is composed by one or more conditions on the ST parameters that
allow to select the proper parameterized regular expression for checking the correctness
of the ST output.

A test suite is composed by a set of input models and by a list of test specifications
(written by the tester), one for each ST , such as the one shown in Fig. 2. Obviously,
at each test specification corresponds a test case in the test suite implementation. For
simplicity in this case, we adopted a simplified regular expression language in which

Sub-Transformation 

 TAttribute(attrName:String,OwnerClassName:String) 

Verification Pattern 

 <owl:DatatypeProperty rdf:ID = 'attrName'> 

    <rdfs:domain rdf:resource = '#OwnerClassName'/> 

    <rdfs:range rdf:resource = ***/> 

  </owl:DatatypeProperty> 

Fig. 2. Unit Test Specification for TAttribute
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the text that must be ignored is marked by a string containing three “*” characters (see
Fig. 2).

2.3 Unit Tests Implementation

In what follows we assume that the considered M2TTs (and their sub-transformations)
are implemented using the Eclipse Platform [4], taking advantage of the features offered
by the Eclipse Modeling Project [3], such as:
– the Eclipse Modeling Framework [2] (EMF) that provides tools and runtime support
for viewing and editing models, and
– Acceleo [1] that is an implementation of the OMG MOF Model to Text Language [5]
plus an IDE and a set of tools to simplify the production of M2TTs.

Each M2TT is implemented as an Eclipse plugin, and it is composed by a set
of Acceleo templates, which correspond to the sub-transformations appearing in the
functional decomposition diagram.

The test suite is implemented as an Acceleo transformation, built by defining a
template for each test case (thus, it is an Eclipse plugin). Obviously, the Eclipse plugin
implementing the unit test suite must have a dependency to the plugin which implements
the M2TT, so that a test case for ST can invoke the template corresponding to ST .

Let TC be the test case for the sub-transformation ST . The template implementing
TC is defined as follows.

Fig. 3 shows the four logical steps performed by the Acceleo transformation imple-
menting the test suite during its execution. First, an OCL query over the input model
extracts the model elements suitable to be used as input for ST (e.g. TAttribute, see point

Sub-Transformation Input 
(fragment of a UML model) 

 
 
 
 
 
 
 

 
 
 
 

Instantiate Parametric Regular Expression 
(parameters: attribute=’attr14’, attribute.class.name=’Cat1’) 

 
\s*<owl:DatatypeProperty rdf:ID = 'attr14'>\s* 
<rdfs:domain rdf:resource = '#Cat1'/>\s* 
<rdfs:range rdf:resource = \s*(.*)\s*/>\s* 
</owl:DatatypeProperty>\s* 

 
Execute Sub-Transformation 

(output: OWL fragment for the Selected Attribute) 
 
<owl:DatatypeProperty rdf:ID = 'attr14'> 
  <rdfs:domain rdf:resource = '#Cat1'/> 
  <rdfs:range rdf:resource = 'http://www.w3.org/2001/XMLSchema#integer'/> 
</owl:DatatypeProperty> 
 

 
Verify Regular Expression Matching on the Output 

 

Select Fragment to Transform  
(OCL query) 

1 

2 

3 

4 

Fig. 3. Unit Test Logical Schema

18



Fig. 4. HTML Unit Test Report: no failed tests Fig. 5. HTML Unit Test Report: failed tests

1 in Fig. 3). Then, for each model element, a special kind of Acceleo query, called Java
Services wrapper3, is invoked. This kind of Acceleo query can call a Java method as if
it was a simple query. The service wrapper implements the oracle of TC. It takes the
following parameters: a string obtained by invoking ST , that is the actual output of the
ST , and the same parameters (model elements) used by ST . The service wrapper, using
the parameters representing the model element, builds the appropriate regular expression
(point 2 of Fig. 3, the parametric portion of the regular expression is depicted as red
text) by instantiating the general parametric regular expression appearing in TC (see, e.g.
Fig. 2). Then, the service wrapper, using the instantiated regular expression, checks if
the output of ST (point 3) is correct (point 4).

Fig. 3 bottom, shows the actual output of the TAttribute sub-transformation and the
green text represents the correct match of the regular expression shown above while
black text represents text that is not checked (e.g. in the considered case study, the type
of the attributes is managed by the TType sub-transformation and thus is not checked
during the unit testing of the TAttribute sub-transformation).

The result of the oracle function is then used to build a HTML report as it is shown in
Fig. 4 and 5. In detail, Fig. 4 shows a report of a unit test over a ST successful on all the
elements, meanwhile Fig. 5 shows a report of a unit test failing on some elements. In the
latter case on the rightmost column there is a hyper-link to the text fragment generated
by the sub-transformation under test. Thus, the developer can inspect the problematic
output.

Summarizing, each unit test, which has as subject one of the sub-transformations:
(1) selects the model elements composing the test input using appropriate queries over the
input models, and for each model element (2) calls the oracle function that, invokes the
sub-transformation under test obtaining the actual output that is verified using a regular
expression built in conformance to what is defined by the M2TT design specification for
the sub-transformation parameterized with the actual values of the sub-transformation
parameters. As last step, using the oracle function result, we produce a report of the unit
test, in a form suitable to be easily readable from the transformation developer, such as a
HTML report.

Obviously, the plugin containing the test suite can be executed using different models
as input.4

3 see http://www.obeonetwork.com/page/acceleo-user-guide
4 It can be done by configuring in an appropriate way Eclipse run-configurations.
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3 Model to Text Transformations Unit Testing within MeDMoT

In the previous section we described a general approach for testing at the unit level
an M2TT. This approach can be integrated within MeDMoT , our general method for
developing M2TTs. Each instance of MeDMoT is a method to develop a model to text
transformations (e.g. U-OWL). It is briefly described in [11, 12], and more details can
be found in the Ph.D. thesis of one of the authors [10]. Here, we summarize the main
concepts and phases of MeDMoT .

The input of a transformation (e.g. U-OWL) is a set of UML models conform to the
UML meta-model extended with a specific profile (e.g. a profile for UML models of
ontologies). The form of the source models is defined by a conceptual meta-model, i.e. a
UML class diagram with a class whose instances correspond to all the possible source
models. That meta-model is constrained by a set of well-formedness rules that precisely
define the set of acceptable models. The target of a transformation is always an STA
having a specific form (e.g. for U-OWL a set of text files describing an ontology).

In MeDMoT an M2TT is structured as a chain of transformations of different types,
some from model to model and one from model to text. The input model is verified
by a model to model transformation that checks if the input model satisfies the well-
formedness rules constraining the transformation source (i.e. the input model). If the
input model is well-formed, then it is refactored by one or more model to model trans-
formations in an equivalent simplified model. This step helps to maintain the subsequent
and last M2TT as simple as possible, for instance, by reducing the number of different
constructs used in the model. Finally, the refactored model is transformed into an STA
using an M2TT. We call the last transformation of this chain the Text Generation Trans-
formation (shortly TGT), which is precisely the M2TT on which we perform the unit
tests.

The design of each sub-transformation of the TGT is specified by means of relevant
source-target pairs. Each pair is composed by a left side, that shows a template for the
sub-transformation inputs, and a right side that shows the result of the application of
this sub-transformation on model elements obtained instantiating such template, see e.g.
Fig. 6.

Fig. 6. Example of source-target pair defining the TCategory sub-transformation
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Fig. 7. Model 1 used to test U-OWL

Model Classes Attributes Gen-Specs Associations Objects Slots Links
Model 1 12 10 5 4 0 0 0
Model 2 7 3 3 3 0 0 0
Model 3 2 10 0 2 4 20 4

Table 1. Simple Metrics of Test Models

To select the set of model elements to be used as input in our unit tests, we use an
adequacy criteria defined as follows: at least an instance of the various templates of the
M2TT design and at least an occurrence of all UML constructs used to build the source
model must appear in the input models5.

For example the model shown in Fig. 7 contains an instance of the pattern shown in
the definition of TCategory (see Fig. 6). As we can see, class attributes are instantiated
in the model with all the permitted primitive types, the multiplicities of the association
ending roles (m1, mM) are instantiated in the model using different values such as 0..*,
1..* and 1..10.

4 Unit Testing of U-OWL

To perform the unit test of U-OWL we used three models, created in order to satisfy the
adequacy criteria described in Sect. 3. One of these input models is shown in Fig. 7. The
figures in Tab. 1 allow to grasp the size of the three models.

A summary of the results of the execution of all the unit tests (i.e. for the three
models) is shown in Tab. 2. For each model we have reported the number of test cases
executed on each sub-transformation and how many have failed. There are failed tests for
the following sub-transformations: TType, TOntology, TCategory, TAttribRestriction
and TAssociation. In the majority of the cases, all the tests have failed; this is due to the
fact that some sub-transformations erroneously transform any possible input.

For the failed tests, by navigating the hyper link shown in the rightmost column of
the HTML report (see Fig. 5) we can examine the output of the sub-transformations not
satisfying the condition expressed by the tests, and thus we were facilitated to understand
what the problem in their definitions is. TType does not produce any output when the
type of an attribute is double. A quick inspection of the code implementing TType allows
us to discover the error, TType does not transform double. In the same way, we are
able to discover the reasons of the failure of the other tests. For instance, in the case
of TCategory, the owl:Class tag is not closed in the proper way, while in the case

5 This is a slightly different version of the criteria defined in our previous work [12].
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Model 1 Model 2 Model 3
ST Under Test Num. Tests Num. failed Num. Tests Num. failed Num. Tests Num. failed
TType 10 2 5 1 30 6
TOntology 1 1 1 1 1 1
TCategory 12 12 7 7 2 2
TAttribRestriction 10 10 5 5 10 10
TAssocRestriction 4 0 3 0 2 0
TMinCardinality 4 0 3 0 2 0
TMaxCardinality 4 0 3 0 2 0
TAttribute 10 0 5 0 10 0
TAssociation 4 4 3 0 2 2
TSubClass 5 0 3 0 - -
TInstance - - - - 5 0
TSlot - - - - 20 0
TLink - - - - 4 0

Table 2. Tests and Errors

of TOntology one of the name space declaration contains an URI different from the
expected one. Finally, in the case of TAssociation the domain and range references are
inverted in the generated OWL code.

Some of these errors cannot be revealed by the other kind of tests (such as the
conformance and semantic test). Indeed, the error revealed by the unit test on TOntology
cannot be revealed by any other kind of test (given that name space can be defined using
any URI), meanwhile the error revealed by the unit test on TAssociation can be revealed
only by a semantic test (given that, this kind of error produce a correct RDF/XML
specification of an OWL object property, but it is not semantically compliant with the
input model). All the material related (e.g. input models and HTML reports) can be
found at http://sepl.dibris.unige.it/2014-OWLTest.php.

5 Related Work

Wimmer et al. [13] propose a technique to test model to text transformations based on
tracts, that requires to transform an M2TT into a model to model one, by transforming
what we have called STAs into models defined by a specific meta-model with meta-
classes corresponding to folders, text files and their lines. The tests derived by tracts
use the OCL extended with a “grep” function to define their oracles. The intent of this
approach is quite similar to our since it consists in checking that the text produced by
the M2TT has the required form. Moreover, tracts defined for sub-transformations may
be used to build unit tests as those considered by our approach.

García-Domínguez et al. [7] present an approach for testing “model management
tasks” within the Epsilon platform based on the unit testing framework EUnit; differently
from our proposal, [7] does not consider model to text transformations, and, despite the
name, does not seem to introduce any kind of “unit testing” not even for model to model
transformations.

At the best of our knowledge there are no other works which deal specifically with
M2TT testing or unit level model transformation testing (except our previous work [11]).

Esther Guerra in her work [8] considers model to model transformations and starting
from a formal specification written using a custom specification language can derive
oracle functions and generate a set of input test models that can be used to test the model
transformation written using transML [9], a family of modelling languages proposed by
the same author and others.
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6 Conclusion

In this paper, we have presented an approach for the unit testing of model to text
transformations, and up to our knowledge no other ones have been already proposed. The
only requirement of our approach is that the transformation must be provided of: (1) a
functional decomposition diagram showing the various sub-transformations composing
it, and (2) a design specification for each sub-transformation reporting information on the
textual artifacts it produces. Moreover, we have also presented a case study concerning
the unit testing of a transformation from UML models of ontologies into OWL code
performed following the proposed method.

As future work we plan to validate the power of the proposed unit testing approach
for model to text transformations, together with the other kind of tests introduced in
previous works, such as semantic and conformance (see [12]), by means of empirical
experiments, for example based on fault-injection, and by applying them to other case
studies concerning transformations larger and more complex than U-OWL.
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Abstract. This contribution discusses model transformations in the
form of transformation models that connect a source and a target meta-
model. The transformation model is statically analyzed within a UML
and OCL tool by giving each constraint an individual representation in
the underlying class diagram by highlighting the employed model ele-
ments. We also discuss how to analyze transformation models dynami-
cally on the basis of a model validator translating UML and OCL into
relational logic. One can specify, for example, the transformation source
and let the tool compute automatically the transformation target on the
basis of the transformation model without the need for implementing the
transformation. Properties like injectivity of the transformation can be
checked through the construction of example transformation pairs.
Keywords. Transformation model, Metamodel, UML, OCL, Model val-
idator, Static and dynamic transformation model analysis.

1 Introduction

Model transformations are regarded as essential cornerstones for Model-Driven
Engineering (MDE). Quality assessment and improvement techniques like trans-
formation validation and verification are thus central for the success of MDE.
Therefore, testing and analysis techniques for model transformations [2, 1] are
obtaining more and more attention.

Here, we discuss model transformations in form of transformation models [3].
Transformation models are descriptive characterizations of mappings between a
source and target metamodel. Our approach proposes to check the covering of
constraints within transformation models statically in order to better understand
the model, and to check for the completion of partially specified transformation
pairs. We apply a so-called model validator in the tool USE (Uml-based Speci-
fication Environment) that searches for instances within a finite search space.

Our work has links to related approaches. Our contribution is based on Alloy [8]
and Kodkod [10]. The implementation of the model validator that we employ is
grounded on a translation of UML and OCL concepts into relational logic as de-
scribed in [9]. Transformation models using the same example as here, however
with different metamodels and focusing on refinement, have been studied in [4].
A general context of descriptive transformations employing UML and OCL is
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nicely described in [5]. The same example with focus on different transformation
properties (as consistency and metamodel property preservation) and discussing
solving and translation times has been studied in [7], but the covering and com-
pletion techniques developed here are not treated there.

The rest of this paper is structured as follows. Section 2 describes the running ex-
ample. Section 3 sketches how to apply the model validator. Section 4 shows how
transformation models can be statically inspected. Section 5 applies our tech-
nique for dynamically completing partial transformation model pairs. Section 6
closes the paper with a conclusion and future work.

2 Model Transformation Example

The running example in this paper is the well-known transformation between
ER and relational database schemata. We study this transformation in form

Fig. 1. Class diagram and invariants for example transformation model.

of a transformation model as introduced in [6, 3]. A transformation model is a
descriptive model where the relationship between source and target is purely
characterized by the (source,target) model pairs determined by the transforma-
tion. A transformation model consists in our approach of a plain UML class
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diagram with restricting OCL invariants. Typically, there is an anchor class for
the source model, an anchor class for the target model, and a connecting class
for the transformation. There are OCL invariants for restricting the source meta-
model, for the target metamodel, and for the transformation.

In Fig. 1 the class diagram and the invariant names for the example are pictured.
All details of the example can be found in [6]. The example transformation model
has four parts: a base part with datatypes and attributes for concepts commonly
employed in the ER and relational model; a part for ER schemata (ErSchema)
with the concepts Entity, Relship (relationship), and Relend (relationship
end); a part for relational database schemata (RelDBSchema) incorporating re-
lational schemata (RelSchema); finally, a part for the transformation (Trans).
[6] discusses also the semantics. Therefore, some classes here are marked in their
names as belonging to the syntax (ErSyn, RelSyn).

We have used the terms source and target, but transformation models are
direction-neutral due to the central employment of associations. We will say that
we ‘transform a source ER schema into a target relational database schema’, but
formally the class diagram does not indicate any direction. In our view, trans-
formation models can be looked at as a form of bidirectional transformations.

Currently our model validator does not support the computation of strings in
a satisfactory way. In particular, we need string computations for relational at-
tributes in connection with ER attribute names and relationship end names.
Through this, we can establish a connection between the source and the target
model. Thus, in contrast to [6], we model names (for example, of entities or
attributes) as integers and have to pose certain restrictions on the use of the un-
derlying integers and strings. We encode ten letters as digits: A↔0, B↔1, C↔2,
D↔3, E↔4, F↔5, G↔6, H↔7, J↔8, K↔9. Through a derived attribute nameS,
we are able to represent the ‘integer names’ formally as string values. For ex-
ample, we will calculate: 20 = 2*10+0 ~= ‘2.concat(0)’ ~= ’C’.concat(’A’) =

’CA’. This section followed the ideas we have developed in [7].

3 Applying the USE Model Validator

We explain the application of the USE model validator by showing how the tool
has to be configured in order to construct a model transformation between an
example ER schema and a corresponding relational database schema. The needed
configuration is shown in Fig. 2 and the resulting generated object diagram,
which captures both schemata, is pictured in Fig. 3.

In a model validator configuration, the population of (a) classes, (b) associations,
(c) attributes and (d) datatypes is determined. Classes, attributes and datatypes
are displayed in the configuration table in black-on-white, and associations in
black-on-light-grey. (a) A class needs an integer upper bound for the maximal
number of objects in that class, and an optional lower bound may be given.
(b) Associations may also have a lower and upper bound for the number of links
or their population may be left open and be thus determined through the (up-
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Fig. 2. Configuration for ER schema with binary relationship.

Fig. 3. Generated ER and relational database schema with binary relationship.
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per bounds for the) participating classes. (c) Attributes may be determined by
specifying an enumeration of allowed values or by the set of values derived from
the value set of the corresponding datatype. (d) The numerical datatypes In-
teger and Real may be configured through an enumeration (e.g., Set{42,44,46}
or Set{3.14, 6.28, 9.42}) or with lower and upper bounds for the interval of al-
lowed values with an additional step value for Real (for example, resulting in
Set{-8..7} or Set{-1, -0.5, 0, 0.5, 1}). The datatype String may be determined by
an enumeration (e.g., Set{‘UML’,‘OCL’,‘MDE’}) or through a lower and upper
bound for the number of automatically generated String literals (resulting in,
for example, Set{‘String1’,...,‘String7’}).

The example configuration requires (among other restrictions) the following:
(a) there is exactly one transformation object (in class Er2Rel Trans), and
there are exactly two relational schemas (in class RelSyn RelSchema); (b) the
links in association ErSyn OwnershipErSchemaEntity between ErSyn ErSchema

and ErSyn Entity are not explicitly restricted, but only implicitly through the
upper bounds of the participating classes, and there is no link in the associa-
tion ErSyn OwnershipRelshipAttribute, meaning that in the constructed ER
schema there will be no relationship attribute; (c) the attribute isKey is al-
lowed to take values from the enumeration Set{false,true} (recall that in UML
and OCL more than two truth values are available); (d) the datatype Integer is
allowed to take values from the interval [0..127].

The automatically generated transformation in Fig. 3 is displayed in form of the
constructed object diagram and in form of a visual resp. textual domain-specific
representation of the ER schema (in traditional ER notation) and the relational
database schema (as textual SQL table declarations). In particular, the two
relationship ends E and J of the relationship HE are represented as attributes ED
and JD in the relational schema HE, because the attribute D constitutes the key
in entity HD and in the relational schema HD. If there would be a composed
key in the entity HD, say attributes DA and DB, the relational schema HD has to
contain four attributes EDA, EDB, JDA, and JDB. Thus, the key attribute names on
the relational side have to be composed from the relationship end and attribute
names from the ER side. This section followed the ideas we have developed in [7].

4 Analyzing Static Transformation Model Properties by
Coverage of Model Elements

Analyzing static transformation model properties means for us to explore the
model transformation text in order to achieve relevant transformation proper-
ties. Static analysis is interesting because transformation models are usually
structured at least into three parts: (a) the source, (b) the target, and (c) the
transformation metamodel. Accompanying constraints will be found in the re-
spective parts. For a single constraint it is thus particular interesting whether
it restricts all three parts in conjunction or it treats a single part only. Such an
analysis is possible with the static technique proposed here that is based on the
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idea of covering, i.e., to analyze and to indicate which part of the underlying
class diagram is covered by a particular constraint. In our example we even have
four parts in the transformation model, namely the source, the target, the trans-
formation, and a common part that represents model features that are used in
both the source and the target (here, attributes and datatypes). This is probably
not an unusual situation.

In Fig. 4 we have displayed four (of the 22) invariants in the transformation
model. Below we show the invariants also in detail. The coloring in the figure
indicates the degree the respective model element (here classes, attributes, op-
erations) is used in and covered by the constraint. By inspecting the invariant’s
color coverage profile one can analyze its effect on the respective model element,
and one gets an impression about its dominance.

context self:ErSyn_Relend inv c_Relend_Entity_Relship_ErSchema:

self.entity.erSchema=self.relship.erSchema

context self:ErSyn_Entity inv uniqueOsRelendNamesWithinEntity:

self.osRelend()->forAll(re1,re2 | re1.name=re2.name implies re1=re2)

context self:Base_Attribute inv linkedToOneOfEntityRelshipRelSchema:

(self.entity->size)+(self.relship->size)+(self.relSchema->size)=1

context self:Er2Rel_Trans inv forEntityExistsOneRelSchema:

self.erSchema.entity->forAll(e |

self.relDBSchema.relSchema->one(rl |

e.name=rl.name and

e.attribute->forAll(ea |

rl.attribute->one(ra |

ea.name=ra.name and ea.dataType=ra.dataType and

ea.isKey=ra.isKey))))

ErSyn Relend::c Relend Entity Relship ErSchema basically expresses that
the path from Relend over Entity to ErSchema coincides with the path
from Relend over Relship to ErSchema (c stands for ‘commutativity con-
straint’). This is reflected in the invariant’s coverage profile.

ErSyn Entity::uniqueOsRelendNamesWithinEntity restricts the other-side-
relends (osRelends()) of an entity. For example, if we have Person-
employee-Job-employer-Company, then employer is an osRelend of Person
and employee is an osRelend of Company. An osRelend can be applied to
an entity just like an attribute is applied. The collection of the osRelends

must be unique for an entity. The coverage profile of the constraint clearly
expresses that the constraint is working on the ER side only and points out
the influence of the operation osRelend().

Base Attribute::linkedToOneOfEntityRelshipRelSchema requires that an
Attribute either belongs to an Entity or to a Relship or to a RelSchema,
but not to more than one model element although the multiplicities would
allow this. The coverage profile points to and emphasizes the connection
between the four mentioned metaclasses.

Er2Rel Trans::forEntityExistsOneRelSchema is a transformation (Trans)
constraint and thus covers a large portion of the metamodel, the source, the
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Fig. 4. Coverage of model elements for selected invariants.
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target, and the transformation itself. As the constraint deals with Entity

objects only, the coverage reveals that Relship or Relend objects are not
touched. If one goes through all Trans constraints, one basically discovers
that the operation osRelend() is not used in the Trans part at all. Thus the
coverage indicates that this operation is not relevant for the transformation.

Currently we have realized the coverage analysis in the graphical user interface
and with predefined metrics. We are considering to represent the analysis results
in textual and table form as well and to offer apart from predefined metrics the
option to let the developer define her project specific metrics, if desired.

5 Analyzing Dynamic Transformation Model Properties
by Transformation Completion

Analyzing dynamic transformation model properties means for us to actually
construct transformation instances in form of object diagrams. Doing so can
reveal relevant transformation properties. The properties and questions that we

Fig. 5. Transformation completion starting from an ER schema.

consider here are: (a) given a concrete ER schema that is manually constructed,
is it possible to automatically complete the transformation yielding a relational
database schema and to show by this the effectiveness of the transformation and
inspect whether the transformation model constructs the expected result (see
Fig. 5) and (b) given a manually constructed relational database schema, is it
possible to complete the partially given object diagram and to show that the
transformation is non-unique in the sense that the given relational database
schema has two ER counterparts (see Fig. 6).

In Fig. 5 question (a) is treated. A partial object diagram representing the man-
ually constructed ER schema (the white objects in the left part of the figure)
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is handed to the model validator in order to complete the object diagram. The
completion is shown in the right part of the figure. The model validator config-
uration asks for one transformation object, one connected ER schema, and one
connected relational database schema.

In Fig. 6 question (b) is handled. A partial object diagram representing the man-
ually constructed relational database schema (the white objects in the middle of
the figure) is handed to the model validator in order to complete the object dia-

Fig. 6. Non-unique transformation completion starting from a relational DB schema.

gram. The ER completions are shown in the left and the right part of the figure.
The model validator configuration in this case explicitly asks for two transfor-
mation objects connected to a single relational database schema and connected
to two different ER schemas. Additionally, two invariants had to be added for
the process of finding the proper object diagram. These invariants are not part
of the transformation model, but are needed to drive the model validator into
the proper direction.

context ErSyn_ErSchema inv connectedToTransformation:

self.trans->notEmpty()

context ErSyn_ErSchema inv oneWithRelship_oneWithoutRelship:

ErSyn_ErSchema.allInstances()->exists(with,without|

with.relship->notEmpty() and without.relship->isEmpty())

Summarizing, we observe that the approach allows the developer to check the
injectivity of a transformation model in either direction. We have considered a
transformation model in one particular direction, from the relational database
model to the ER model, and were able to show through the construction of
an example, that the particular considered direction of the transformation is
not injective because one relational database schema was connected with two
ER schemas. As the approach is grounded on finite checks, it is not possible to
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prove in general that a transformation going into one direction is injective, but
one can show through examples the non-injectivity.

6 Conclusion

The paper presented an approach for automatically checking transformation
model features. We have analyzed transformation models statically by identify-
ing model elements in the underlying class diagram that are covered by a trans-
formation model invariant. We also checked transformation models dynamically
through the completion of partially specified transformation pairs.

Future work could consider to study invariant independence, i.e., minimality of
transformation models. The static analysis features can be improved by present-
ing the results in table and text form and through the introduction of project
specific definition of metrics. The handling of strings must be improved. Last
but not least, larger case studies must check the practicability of the approach.
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Abstract. Complex model-based tools such as code generators are typi-
cally designed as chains of model transformations taking as input a model
of a software application and transforming it through several intermedi-
ate steps and representations. The complexity of intermediate models is
such that testing is more conveniently done on the integrated chain, with
test models expressed in the input language. To achieve a high test cover-
age, existing transformation analyses automatically generate constraints
guiding the generation of test models. However, these so called test ob-
jectives are expressed on the complex intermediate models. We propose
to back-propagate test objectives along the chain into constraints and
test models in the input language, relying on precondition construction
in the theory of Algebraic Graph Transformation. This paper focuses on
a one-step back-propagation.

Keywords: testing, model transformation chains, algebraic graph trans-
formation, weakest precondition, ATL

1 Introduction

Tools used in the production of critical software, such as avionics applications,
must be thoroughly verified: an error in a tool may introduce an error in the
critical software potentially putting equipment and human lives at risk. Testing
is one of the popular methods for verifying that such tools behave as specified.
When testing critical applications, a primary concern is to ensure high coverage
of the software under test (i.e. ensure that all features and different behaviors
of the software are tested). The recommended way to achieve this is to consider
each component separately, identify its functionalities, and develop dedicated
tests (unit testing). This guideline is therefore reflected in industrial software
quality standards such as DO-330 [13] for tools in the avionics domain.

However, with complex model transformation tools such as code generators,
applying unit testing is very costly and impractical. In fact, such tools are often
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designed as a chain of several model transformations taking as input a model de-
veloped by the user in a high-level language and transforming it through several
steps. Unit testing then boils down to testing each step of the chain indepen-
dently. In practice, intermediate models increase in detail and complexity as
transformations are applied making it difficult to produce test models in the
intermediate representations: manual production is both error-prone because of
the complexity of the languages and tedious since intermediate languages do not
typically have model editors [1]. It is often easier for the tester to create a model
in the input language of the chain, with elements that he knows will exercise a
particular feature down the chain. Existing approaches [7,8,11] can automate the
production of tests for model transformations, thus producing unit tests. How-
ever, when a test failure uncovers an error, analyzing the complex intermediate
representations is difficult for the developer.

Given these factors, we propose an approach to the testing of model trans-
formation chains that aims to ensure test coverage of each step while preserving
the convenience of using test models in the input language. First we rely on
existing analyses [7,8,11] to generate a set of so-called test objectives that must
be satisfied by test models to ensure sufficient coverage. Then we propose to
automatically propagate these test objectives backward along the chain into con-
straints over the input language. The back-propagation relies on the construction
of preconditions in the theory of Algebraic Graph Transformation (AGT) [5].

Within this general approach, we focus in this paper on the translation of
postconditions of one ATL transformation step to preconditions, which is a key
operation in the propagation of test objectives. We thus propose a first transla-
tion of the ATL semantics into the AGT semantics where we use the theoretical
construction of weakest preconditions [9] . We illustrate our proposal on a realis-
tic code generation transformation using a prototype implementation based on
the Henshin3 and AGG4 frameworks. This first prototype allowed us to back-
propagate test objectives across one transformation step.

In the remainder of the paper, section 2 gives an overview of the testing
approach, explaining the role of precondition construction. Section 3 recalls the
main concepts of ATL and AGT. Section 4 introduces an example of ATL trans-
formation that will serve to illustrate (i) the translation of ATL to AGT in sec-
tion 5 and (ii) the construction of preconditions in section 6. Finally, we present
our prototype in section 7 and conclude with our future plans in section 8.

2 General Approach

As highlighted in [1], one of the major challenges in achieving thorough testing
is producing test models that are relevant, i.e. likely to trigger errors in the
implementation. Several approaches address this challenge for standalone trans-
formations. In [7], [8] and [11], the authors propose to consider a transformation
3 The Henshin project, http://www.eclipse.org/henshin
4 The Attributed Graph Grammar development environment, http://user.cs.
tu-berlin.de/~gragra/agg
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and analyse one or more of (i) the input metamodel, (ii) the transformation spec-
ification and (iii) the transformation implementation. This analysis results in a
set of constraints, each describing a class of models that are relevant for finding
errors in the transformation. We refer to such constraints as test objectives in the
remainder of the paper. Constraint satisfaction technologies such as the Alloy
Analyzer5 and EMFtoCSP [6] are then used to produce model instances such
that each test objective is satisfied by at least one test model.

Input Models 
ATL Transformation 

rule R1 rule R2 

Graph Transformation 

rule R1_Inst 

rule R2_Inst 

rule R1_Res 

ATL semantics 
AGT semantics 

Graph 
Constraint 

Postcondition 

Output Models 

OCL 
Postcondition 

Graph 
Constraint 

Precondition 

OCL 
Precondition 

Instantiation Resolving 

ATL2AGT 

Post2Pre Type Graph 

uses 
OCL2GC 

Fig. 1: Transformation of Postcondition to Precondition

Let us now consider a transformation chain Mi
Ti−→ Mi+1 for 0 ≤ i < N

where an input model M0 is processed by N successive transformation steps Ti

into intermediate models Mi and ultimately into the final output model MN .
Focusing on an intermediate transformation Ti such that i > 0, we can apply
the above approaches to obtain a set of test objectives {toi,j | 0 ≤ j} ensuring
the thoroughness of the testing of Ti. Each test objective toi,j is a constraint
expressed over the input metamodel of Ti. At this point we want to produce
a model M0 at the beginning of the chain, which ultimately satisfies toi,j after
being processed by the sequence T0 ; · · · ; Ti−1. We propose to automate this
operation by transforming toi,j into a test objective toi−1,j at the input of Ti−1

and thus iterate the process until we obtain to0,j that can serve to produce a
model M0. The key challenge of this paper is to devise an analysis that takes as
input a constraint toi,j and a transformation specification Ti−1, and produces
as output a constraint toi−1,j . Such a method exists in the formal framework of
Algebraic Graph Transformation (AGT) [5] in the context of the formal proof
of correctness of graph programs. It is the transformation of postconditions into
preconditions [9] that we propose to adapt and reuse in our context. Since we
consider transformations specified in ATL [10], a translation to AGT is necessary.

As shown in Figure 1, we propose to translate the ATL transformation Ti−1

into a graph transformation program (ATL2AGT arrow) and toi,j into a graph

5 Alloy language and tool, http://alloy.mit.edu/
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constraint (OCL2GC arrow). Assuming the constraint is a postcondition of Ti−1,
we automatically compute the precondition toi−1,j that is sufficient to satisfy
the postcondition (Post2Pre arrow) using the formal foundation of AGT. Since
ATL embeds OCL constraints, ATL2AGT also uses OCL2GC. However this is a
complex translation [14] that will not be addressed given the space limitations.
We thus focus on a first proposal of ATL2AGT in section 5 and Post2Pre in
section 6, both limited to the structural aspects of the semantics and constraints.
First, we recall the main elements of ATL and AGT in the next section.

3 Semantics of ATL and AGT

3.1 ATL and OCL

ATL [10] is a model-to-model transformation language combining declarative
and imperative approaches in a hybrid semantics. A transformation consists of
a set of declarative matched rules, each specifying a source pattern and a target
pattern. The source pattern is a set of objects of the input metamodel and an
optional OCL6 constraint acting as a guard. The target pattern is a set of ob-
jects of the output metamodel and a set of bindings that assign values to the
attributes and references of the output objects. The execution of a transforma-
tion consists of two main phases. First, the matching phase searches in the input
model for objects matching the source patterns of rules (i.e. satisfying their fil-
tering guards). For each match of a rule’s source pattern, the objects specified
in the target pattern are instantiated. A tuple of source objects may only match
one rule, otherwise an error is raised. For this reason the order of application of
rules is irrelevant. Second, the target elements’ initialization phase executes the
bindings for each triggered rule. Bindings map scalar values to target attributes,
target objects (instantiated by the same rule) to target references, or source ob-
jects to target references. In the latter case, a resolve operation is automatically
performed to find the rule that matched the source objects, and the first output
object created by that rule (in the first phase) is used for the assignment. If no
or multiple resolve candidates are found, the execution stops with an error.

As the current proposal is limited to structural aspects, we only consider
bindings of target references and not those of attributes. OCL constraints are not
considered as OCL2GC (Figure 1) is too complex to address within this paper
[14]. Instead, we will use test objectives in the form of AGT graph constraints.

3.2 AGT and Graph Constraints

Several graph transformation approaches are proposed in the theory of Algebraic
Graph Transformation [5]. We will be using the approach of Typed Attributed
Graph Transformation with Inheritance which we found suitable to our needs and
which is supported in the AGG tool allowing for concrete experimentation of our
proposals (see section 7). There are 3 main elements to a graph transformation:
6 Object Constraint Language (OCL), http://www.omg.org/spec/OCL
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a type graph, a set of transformation rules, and a high-level program specifying
the order of execution of rules.

Graphs consist of nodes connected with directed edges. Much like models
conform to metamodels, typed graphs conform to a type graph. As introduced in
[3], metaclasses, references and metaclass inheritance in metamodels correspond
to node types, edge types, and node type inheritance in type graphs which allows
an easy translation between the two. Even though multiplicities and containment
constraints are not addressed in type graphs, they are supported in AGG.

A graph transformation is defined as a set of productions or rules executed in
a graph rewriting semantics. There are two major approaches to defining rules
and their execution. Even though the theory we use is based on the Double
Pushout (DPO) approach, we will use the simpler Single Pushout (SPO) ap-
proach and notation which is also the one implemented in AGG. A rule consists
of a morphism from a Left-Hand Side (LHS) graph to a Right-Hand Side (RHS)
graph. The LHS specifies a pattern to be matched in the transformed graph.
Elements mapped by the morphism are preserved and elements of the RHS that
are not mapped by the morphism are new elements added to the transformed
graph. We do not address element deletion since our translation will not need it
(see section 5). Thus the execution of a rule consists in finding a match of the
LHS in the transformed graph and adding the new nodes and edges.

With the transformation rules defined above, we can construct so called high-
level programs [9] consisting of the sequencing or the iteration of rules. A program
can be (1) elementary, consisting of a rule p, (2) the sequencing of two programs
P and Q denoted by (P ;Q), or (3) the iteration of a program P as long as
possible, denoted by P ↓, which is equivalent to a sequencing (P ; (P ; (P · · · )
until the rule no longer applies.

Graph constraints are similar to OCL constraints for models. They are de-
fined inductively as nested conditions, but for the sake of simplicity we consider
a very basic form ∃(C) where C is a graph. A graph G satisfies such a constraint
if G contains a subgraph isomorphic to C. This form is suitable to express test
objectives which typically require particular patterns to exist in models.

Next, we present the example that will help us illustrate our proposal.

4 Example: Code Generation

We aim to apply our approach to a realistic code generator from Simulink7 to
Ada/C source code, under development in the collaborative research project
Project P8. Simulink is a synchronous data flow language widely used by in-
dustrials for the design of control algorithms. The code generator consists of a
chain of up to 12 model transformations (depending on configuration options),
including flattening of nested structures, sequencing, code expansion and optimi-
sation. We consider the Code Model Generation (CMG) transformation step of

7 MathWorks Simulink, http://www.mathworks.com/products/simulink/
8 Project P, http://www.open-do.org/projects/p/
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Fig. 2: Input and Output Metamodels

this chain to illustrate our translation to the AGT semantics. Then, considering
a postcondition on the output of CMG, we construct a precondition on its input.

CMG transforms a Simulink model into a model of imperative code. A sim-
plified version of the input metamodel is shown on the left side of Figure 2.
Computation blocks such as Sum or UnitDelay receive data through their In-
ports and send the result of their computation through their Outports. Signals
convey data from a source Outport to a target Inport. The output metamodel
of CMG shown on the right side of Figure 2 features variables (Variable), ex-
pressions (Expression), references to variables (VarExp) and imperative code
statements. In particular, an assignment statement (AsgnStmt) assigns its righ-
tExp expression to its leftExp which typically is a reference to a variable.

Listing 1.1: The Code Model Generation ATL transformation
1 rule O2Var { from oport : SMM!Outport
2 to var : CMM!Variable }
3
4 rule S2VExp { from sig : SMM!Signal
5 to varExp : CMM!VarExp (variable <- sig.srcPort) } -- Resolve
6
7 rule UDel {
8 from block : SMM!UnitDelay
9 to assgnStmt : CMM!AsgnStmt (rightExp <- outVarExp,

10 leftExp <- memVarExp1),
11 memAssgnStmt : CMM!AsgnStmt( rightExp <- memVarExp2,
12 leftExp <- block.inports->at(1).inSignal), -- Resolve
13 memVar : CMM!Variable,
14 outVarExp : CMM!VarExp(variable <- block.outports->at(1)), -- Resolve
15 memVarExp1 : CMM!VarExp(variable <- memVar),
16 memVarExp2 : CMM!VarExp(variable <- memVar) }

The ATL implementation of the CMG transformation consists of the 3 matched
rules in Listing 1.1. The first rule creates a Variable for each Outport of the in-
put model, and the second one creates a VarExp for each Signal. Note that the
second rule requires resolving the Outport at line 5 into a Variable and will be
used to illustrate our modeling of the resolve mechanism in AGT. The last rule
creates 2 assignment statements referencing a Variable created by the same rule
at line 13, a VarExp resolved at line 12, and a Variable resolved at line 14.

As for the test objective, we consider it directly in the graph constraint form
in Figure 3. It requires that an assignment statement exists where both the source
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Fig. 3: Example Test Objective

and the target of the assignment are references to variables. This pattern matches
the objects created by ATL rule UDel, and thus requires resolve operations.

5 ATL to Algebraic Graph Transformation

This section introduces our main contribution, the translation of ATL transfor-
mations to artifacts of an algebraic graph transformation: a type graph, graph
transformation rules and a high-level program. Given the rewriting semantics of
AGT and the exogeneous nature of the transformations we consider, we choose
to model the ATL transformation as a rewriting of the input graph that adds the
output elements. Consequently, the type graph includes types corresponding to
both the input and the output metamodels. As explained in Section 3.2, the cor-
respondence of metamodel elements to graph type elements is straightforward
[3], and the resulting type graph is depicted in Figure 4. In addition, tracing
node types are added to support the ATL resolve mechanism. First, an abstract
Trace node relates source objects (SMElement) to target objects (CMElement)
of ATL rules. Second, for each ATL rule, a concrete trace node (named <atlrule-
name>_Trace) references the actual source and target types of this rule. These
trace nodes will be used by the graph transformation rules, as explained next.

Fig. 4: Resulting Type Graph in AGG

Much like the execution semantics of ATL, the graph transformation starts
with a set of instantiation rules that create output nodes without linking them.
For example, O2Var_Inst in Figure 5a matches an Outport and creates a Vari-
able and a concrete trace O2Var_Trace relating the source and target nodes
(numbers indicate mapping by the rule morphism). Then, a second set of resolv-
ing rules rely on the trace nodes produced in the first phase to link output nodes.
For example, S2VExp_Res in Figure 5b matches an Outport and a Trace node
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to find the resulting Variable and create the variable edge. Thus the elements
created in the RHS of Figure 5a (O2Var_Trace and Variable) are matched later
by the LHS in Figure 5b (Trace and Variable). Note the use of abstract Trace
nodes in the resolving rules to allow resolving with any rule as long as the number
and types of source and target elements match, as per the ATL semantics.

Finally, a high-level program implements the two phases by iterating instan-
tiation rules first and resolving rules second, yielding the following for CMG:
P = O2V ar_Inst↓; S2V Exp_Inst↓; UDel_Inst↓; S2V Exp_Res↓;
UDel_Res↓

(a) O2Var_Inst

(b) S2VExp_Res

Fig. 5: GTS rules translated from ATL rules

Having translated the ATL transformation to the AGT semantics, we next
explain how we use precondition construction to back-propagate test objectives.

6 Transformation of Postcondition to Precondition

In [9], Habel, Pennemann and Rensink formally define a construction of weakest
precondition for high-level programs in the interest of proving transformation
correctness. Given a program and a postcondition, the weakest precondition is
a constraint that characterizes all possible input graphs that lead to the termi-
nation of the program with a final graph satisfying the postcondition. A precon-
dition construction is defined for one rule application and applied inductively
to the sequence of rules defined by the program. In the case of P ↓ programs
each number of iterations of P from 0 to ∞ must be considered, making the
construction theoretically infinite.

However, in contrast with proof of correctness, we actually do not need to
compute the weakest precondition. Since the final goal is to find a test model
satisfying the test objective, computing one sufficient precondition would be
enough. To do so, we limit iterations of rules in the program to a bounded num-
ber, making the precondition construction finite (the choice of bounds remains
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an open point at this stage). For example we can bound the CMG transforma-
tion to two applications of O2Var and one application of each of the other rules:
P = O2V ar_Inst;O2V ar_Inst; S2V Exp_Inst;UDel_Inst;S2V Exp_Res;
UDel_Res

As for the precondition construction of each rule, the theoretical construc-
tion requires to consider all possible overlaps of the RHS of the rule with the
graph of the postcondition. Each overlap represents a way in which the rule
may contribute to the postcondition. For each overlap, we perform an operation
similar to a backwards execution of the rule9 and thus construct a sufficient
precondition.

7 Prototype and Results

We have prototyped our approach using the Henshin and AGG frameworks.
ATL2AGT is implemented with the Henshin API, and an existing service is used
to export the artifacts to AGG. Precondition construction is not readily available
in AGG, so we have implemented Post2Pre using the existing services such as
generating overlaps of two graphs and constructing a pushout complement. For
the example test objective introduced in Figure 3, two of the preconditions we
obtain are shown in Figure 6. The existence of one of these patterns in input
models ensures that the UDel rule is able to execute and resolve the necessary
elements to produce the pattern required by the test objective.

∃
( )

∃
( )

Fig. 6: Preconditions Computed for the Example Test Objective

8 Conclusion

In this paper we have approached the problem of testing model transformation
chains with two main concerns: achieving high test coverage and using test mod-
els in the input language of the chain to ease the analysis of detected errors. To
this end, we have proposed to extend existing approaches of test objective gener-
ation with a method to propagate intermediate test objectives back to the input
language. Central to this method is the transformation of postconditions of one
transformation step into preconditions, which was the focus of this paper. We
have contributed a first translation from ATL semantics into the AGT semantics
and adapted the theoretical precondition construction to achieve our goal.
9 the formal construction is a pushout complement
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In future work, we plan to investigate the OCL2GC step of our approach
and alleviate the limitation to structural aspects by handling object attributes
based on works such as [4,12,14]. Moreover, we plan to work towards test-suite
minimality [2] by allowing a test model to cover several test objectives across
the chain and only back-propagating non-satisfied test objectives.
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Abstract. As the size and complexity of models grow, there is a need to count on
novel mechanisms and tools for transforming them. This is required, e.g., when
model transformations need to provide target models without having access to the
complete source models or in really short time—as it happens, e.g., with stream-
ing models—or with very large models for which the transformation algorithms
become too slow to be of practical use if the complete population of a model is
investigated.
In this paper we introduce Approximate Model Transformations, which aim at
producing target models that are accurate enough to provide meaningful and use-
ful results in an efficient way, but without having to be fully correct. So to speak,
this kind of transformations treats accuracy for execution performance. In par-
ticular, we redefine the traditional OCL operators used to query models (e.g.,
allInstances, select, collect, etc.) by adopting sampling techniques and analyse
the accuracy of approximate model transformations results.

Keywords: Model Transformation, Approximation, Performance, Sampling

1 Introduction

Model transformations (MTs) are gaining acceptance as model-driven techniques are
becoming commonplace. While models capture the views on systems for particular
purposes and at given levels of abstraction, MTs are in charge of the manipulation,
analysis, synthesis, and refinement of the models [3]. They do not only allow the gener-
ation of implementations from high-level models, but also to generate other views that
can be properly analyzed or that provide users with the information they need, at the
right level of abstraction, e.g., a synopsis of a larger data set.

So far the community has mainly focused on the correct implementation of a MT,
according to its specification [4, 14–16, 30, 32], although there is an emergent need
to consider other (non-functional) aspects such as performance, scalability, usability,
maintainability and so forth [5]. In particular, the study of the performance of MTs
is gaining interest as very large models living in the cloud have to be transformed as
well [8, 28, 29]. The usual approach to improve performance has focused on the use of
incremental execution [7, 22] and parallelization techniques [8, 28].

In this paper we explore a different path. Our aim is to weaken the need to produce
exact target models but approximate ones. Such approximate target models should be
accurate enough to provide meaningful and useful results to users, but alleviate the
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need for the transformation to generate fully correct models—being able to produce
such target models in much shorter time. We call Approximate Model Transformations
(AMT) those model transformations that produce approximate target models staying
inside a given error bound. For this, we investigate the adoption of statistical sampling
techniques, such as they are employed in the database area [1,10,19] and in the general
field of approximate computing [34].

This kind of MTs are needed in various circumstances. The most obvious situation
is when very large models have to be synthesized into much smaller models for de-
cision making, the synthesis process is not trivial, the decision should be made really
fast, and near-optimal solutions or just accurate results are enough (without having to
be fully correct). Another situation in which AMTs come also into play is when we
cannot fully guarantee the correctness of the source models. For example, when deal-
ing with infinite [9] or streaming models [11]: only a portion of them (e.g., the ones
inside the sliding window) is available at any given moment in time. This means that
some connections between model elements may be broken because not all the elements
involved in these connections are available at the same time. By eliminating the need
for the source model to be correct in this case (i.e., the portion we are considering is
just a fragment [6], which does not need to conform to the source metamodel), we
cannot guarantee that the transformation will produce a correct target model. As an ex-
ample, think, e.g., of several wireless sensor networks sending information that needs
to be semantically annotated, combined, and analyzed to make decisions about traffic
routes [27]. Here the transformation rules in charge of distilling the information need
to be somehow simplified in order to be fast—at the cost of sacrificing correctness.

There are several issues involved in these kinds of MTs. First, we need to provide
a measure of the accuracy of the target model produced, what we do based on the
confidence level and relative error, to be able to decide how good the results given by
the approximate transformation are after analyzing them, and if they are good enough
for the user’s purposes. Second, we need to redefine in this context some of the tradi-
tional operators used to traverse or query the models: allInstances(), select(), collect(),
etc. Third, we need to identify adequate methods for the design of approximate model
transformations that provide accurate-enough results. Finally, we need to be able to
identify specific scenarios where it makes sense to apply this kind of MTs.

The structure of the paper is as follows. Section 2 sets the context by presenting a
motivating example used throughout the paper to illustrate our ideas. Section 3 presents
the concept of AMT and describes the ideas for our approach, which are applied in the
case study as presented in Section 4. Then, in Section 5 we discuss related work, and in
Section 6 we conclude the paper with an outlook on future work.

2 Motivating Example

Let us consider a real-world example of a Wireless Sensor Network (WSN) for mea-
suring different climatological conditions. The metamodel that we show in Fig. 1 has
been extracted from the data [2] obtained from a WSN deployed in the Elora George
Conservation Area, Ontario, Canada, and also out of some ideas gathered from [27].
The station deployed gathers 19 different kinds of data, from which we have selected 6
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Fig. 1. Metamodel for observation phenomena in the WSN in Elora.

Fig. 2. Metamodel for defining consequences from observed phenomena.

of them. Thus, as we can see in the metamodel, the EloraWSN is composed of obser-
vations, of type Phenomenon. Each of them registers the day and time. The phenomena
are specialized into different types: Pressure, Temperature, Humidity, Wind, Rain and
Snow. Each of these specializations has an attribute that stores the value gathered from
the environment. WSNs are normally a clear example of streaming models, since data is
registered as time moves forward. Consequently, at any point in time, we cannot access
the data that is to come in some future instant.

As explained in [27], to derive additional knowledge from semantically annotated
sensor data, it is beneficial to use a rule-based reasoning engine. In this way, when
a group of sensor nodes provides information regarding for instance temperature and
precipitation, then, using such rules, we can specify possible road conditions. One of
these rules could be the following: if the temperature is less than 1 degree Celsius and it
is raining, then the roads are potentially icy. Also, the probability of the risk for having
a fire or a storm could be obtained from the information about humidity, wind and
temperature. To be able to express this kind of information in a model-based manner,
we have created the metamodel shown in Fig. 2. It contains four different Consequences
that are to be predicted according to the observed phenomena—there could be many
more. Each consequence contains the day and time when it is predicted, as well as the
probability that such consequence actually occurs.

In this context, we aim at reasoning over this kind of models not only considering
the sliding window, i.e., the current information gathered from sensors that we have,
but also taking into consideration that the information within such window can be po-
tentially large. Thus, we focus on obtaining approximate predictions using AMTs.
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3 Leveraging Sampling for AMTs

In statistics, a sample is a subset of individuals from within a statistical population that
is known to be representative of the population as a whole. The process of using sam-
ples for addressing a specific problem is called Sampling. There exist several different
sampling strategies. Which one to utilize depends on the context and the input data.
For instance, in Random Sampling, each individual in the population is given the same
probability to be in the sample. Systematic Sampling, in turn, involves a random start
and then proceeds with the selection of every kth individual from then onwards. There
are other techniques to be used when the population embraces a number of distinct
categories, such as Stratified Sampling or Cluster Sampling.

A common issue when selecting the sample of a population is to decide its size
so that it can be representative. This is influenced by a number of factors, including
the purpose of the study, population size, the risk of selecting a “bad” sample, and the
tolerable sampling error. In [19], several strategies for determining the sample size are
presented when the data in the population follow a normal distribution.

With the sampling concept in mind, our proposal aims to redefine the common op-
erators that current model transformation languages use to manage and operate with
collections, such as allInstances(), collect(), select(), ..., i.e., the collections operators
used by OCL. When transforming very large models, these operations become very
expensive, performance-wise, because they have to traverse the whole model and deal
with a large number of elements. If we reduce this number of elements, the transforma-
tion will be faster.

For this reason we introduce a set of new collection operators, each one correspond-
ing to an OCL collection operator. The new ones are suffixed by “Approx” and incorpo-
rate additional arguments: one indicating the confidence level (CL) and another one in-
dicating the relative error (RE). For example, Temperature.allInstancesApprox(95, 10)
returns a set of instances of type Temperature whose size is determined by the formula
proposed in [19] according to the CL and RE specified.

Fig. 3 illustrates this idea. In the upper part of the figure, there are ten elements of a
certain type. Realizing the Type.allInstances() operation would return all the elements.
However, with our new operator Type.allInstancesApprox(CL, RE) we obtain only a
subset of them. The lower part of the figure shows ten elements of a certain type that are
referenced by the first element in the upper part. A normal collect(Condition) operation,
where all the elements satisfy the condition, would select the ten elements (along with

Fig. 3. Idea for Approximate Operators
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their relationship to the object in the upper part). This means that all vertices and arcs are
selected. We apply now the same concept as before with the collectApprox(Condition,
CL, RE) operation, so that only a subset of the graph is actually retrieved.

Similarly, when we have a model transformation rule (think for instance of ATL [21]),
declarative rules can also have now these arguments. In fact, matched rules in ATL ap-
ply an implicit allInstances() operation in the matching part, since they obtain all ele-
ments that satisfy this part (in the simplest case, where the matching part specifies only
one type with no filtering, i.e., all the instances of such type are transformed). Finally,
we also consider our approximate operators for the imperative part of transformation
languages. Indeed, when a loop like for (p in e.observations) is used (consider that e
is an element of type EloraWSN), then all phenomena are traversed. For this reason,
applying an approximate operator would avoid the complete traversal.

The values to be chosen in the new arguments of these operations depend on how
accurate and fast we want our transformation to be. There is effectively a tradeoff be-
tween these two metrics. Thus, the smaller the CL and the higher the RE, the smaller
the size of the sample population is and the faster the transformation computes, being
of course less accurate, and vice versa.

4 Implementation and Evaluation

We now describe how we have implemented and evaluated our case study.

4.1 Description and Setting

For our experiment, we use data gathered from the WSN in Elora during 2013 [2]. The
data we have obtained from the website consists of 8760 points in time (365 days × 24
measurements per day). For each of these points, there is data gathered for each type.
We have increased the quantity of data, by extrapolating the original, in 26 points. Thus,
we have 6 different types of data (cf. Fig. 1), and for each data we have 560768 different
measurements through time, what results in 3364608 objects in our input model, whose
file has a size of 306 MB.

Out of the four possible consequences that may happen in the output model (Fig. 2),
we want to focus now on calculating the risk of having a fire. Noble et al. [25] present
a formula for calculating it. More specifically, they describe the MacArthur FFDI in-
dex, which is a weather-based index derived empirically in south-eastern Australia. It
indicates the probability of a fire starting, its rate of spread, intensity, and difficulty of
suppression. This formula uses data from temperature, humidity, wind and rain. We will
not go into what the values returned mean, since it is out of the scope of the paper, but
we want to compare the values calculated by the exact model transformation (EMT)
and an approximate model transformation (AMT).

FFDI = 2 ∗ (0.987 ∗ log(D)− 0.45 + 0.0338 ∗ T + 0.0234 ∗ V − 0.0345 ∗H)e

In the formula, D stands for Drought, T for Temperature, V for Wind and H for
Humidity. As for drought, it is calculated taking into account the data regarding rain.
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To be able to create a transformation where the huge amount of data we have in our
model is utilized, we want to calculate the probability for having fire risk every month.
This is, for obtaining the probability in a certain month, we will use the data gathered
in the previous month (by calculating the average value).

For selecting the samples, we have decided to use Systematic Sampling. In this tech-
nique, the sample is selected according to a random starting point and a fixed, periodic
interval. This interval, called the sampling interval, is calculated by dividing the popu-
lation size by the desired sample size. The reason for using this technique in this case
study, as well as the concrete method for calculating the sample size [19], is the way
data related to meteorological conditions evolve over time. For instance, if we approach
summer, it is very likely that the temperature after ten days is higher than today’s, and
the intermediate values would normally range between these two values. The data is,
consequently, normally distributed.

4.2 Implementation and Results

In both scenarios, the EMT and the AMT, we have to calculate the index 12 times –
since we are considering all the months of the year. In our EMT, we have around 46730
(560768 divided by 12) points in time for each month. In our AMT, we want to make
two experiments: calculate the index with a confidence level of 95% and a relative error
of 3%, and with a confidence level of 99% and a relative error of 3%. According to the
formula described in [19], the AMT only has to deal, each month, with 1043 and 1764
points in time in these situations, respectively.

As a proof-of-concept of our approach, we have implemented our experiment in
Java/EMF. Thus, after obtaining the data from the Elora Station [2], we have converted
it into a model conforming to the metamodel shown in Fig. 1 and generated the API for
the metamodel in Java. Then, once we have loaded the model into memory, we have
used the same implementation for obtaining the FFDI indexes for each month, where
in the EMT we traverse the whole population of phenomena and in the AMT we use
only the data returned by the systematic sampling, as explained above. Regarding the
output metamodel, we create an element of type FireRisk for each month, where day
and time indicate the month (first day of the year and time of the day of each month),
and probability stores the computed FFDI index.

The results displayed in Table 1 show the differences between the three executions.
As it can be read, the difference between the FFDI indexes calculated by the exact
and the approximate model transformations are very similar. Furthermore, the gain in
performance is huge: the first AMT is 49 times faster than the EMT, while the second
AMT is 23 times faster. We have analyzed the results and calculated the relative error,
obtaining a value of 0.06287% in the first AMT, what makes sense since we have used a
confidence level of 95%. The second, and more accurate, AMT produces only an error
of 0.0285%, at the expense of spending more time in the execution.

5 Related Work

To the best of our knowledge, this paper is the first work which deals with the devel-
opment of AMTs for large models. In [3, 24], a model transformation intent catalog is
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Table 1. Results from Exact MT (EMT) and Approximate MT (AMT).

95% CL and 3% RE 99% CL and 3% RE
Month FFDI in EMT FFDI in AMT Error FFDI in AMT Error
January 0.36845 0.36778 0.00181 0.36445 0.01097
February 0.37482 0.40547 0.07559 0.36478 0.02751

March 0.36216 0.37434 0.03252 0.35931 0.00795
April 0.40994 0.43950 0.06727 0.38833 0.05565
May 0.59438 0.59420 0.00031 0.59081 0.00604
June 0.69891 0.76448 0.08577 0.69739 0.00217
July 0.73598 0.78531 0.06281 0.71403 0.03073

August 0.80324 0.83444 0.03739 0.80616 0.00362
September 0.76696 0.71483 0.07939 0.83423 0.08063

October 0.80842 0.73761 0.09599 0.79740 0.01381
November 0.77053 0.79436 0.02999 0.75324 0.02296
December 0.48258 0.49907 0.03304 0.47241 0.02154

Exec Time 0.25651 0.005154 – 0.011153 –

introduced which contains different transformation intents, where one of them is the
approximation intent. According to the definition given in [24], a transformation “m1

approximates another transformation m2 if m1 is equivalent to m2 up to a certain error
margin”. As an example the Fast Fourier Transformation is given which is an approxi-
mation of the Fourier Transformation. This definition is in accordance with our idea of
AMT. As future work, studying which other kinds of transformation intents may benefit
from AMTs seems promising.

A related research area is concerned with model transformation by-example [23,
31, 33], which may be interpreted as an approximation of output models for new input
models based on previously seen input/output model pairs. However, here the idea is
not trading accuracy for response time, but reducing the development efforts of model
transformations.

Concerning the reduction of the number of input elements to be read from input
models to produce output models, two transformation strategies have been discussed
in the past. First, if an output model already exists from a previous transformation run
for a given input model, only the changes in the input model are propagated to the
output model. Second, if only a part of the output model is needed by a consumer, only
this part is produced while other elements are produced just-in-time. For the former
scenario, incremental transformations [7, 20, 22, 26] have been introduced, while for
the latter lazy transformations [29] have been proposed. In this paper, we proposed an
orthogonal approach which does not rely on previous transformation runs and is able to
produce an approximate answer independent of its consumption. However, combining
AMTs with other query optimization techniques such as incremental execution, e.g., to
store samples, seems a next logical step.

The approximation of computations has a long tradition in the database area in or-
der to deal with very large data sets [10, 13]. Thus, several approximation techniques
have emerged in the last decades. One technique in this respect is online query process-
ing [17], which provides intermediate results already before the exact result is produced.
Other techniques such as histograms, samples, and wavelets, are based on precomputed
data synopses [13], i.e., synopses are constructed and stored for the complete data set
prior to query time and used at query time to answer the queries. Most related to AMTs

50



as presented in this paper are approximate queries based on sampling. For approximate
queries the user specifies in addition to the query a certain error bound or time constraint
for the query [1, 18]. Based on this meta-information, the database selects a sampling
strategy or a pre-cached sample if available to answer the query.

To sum up, several approximation techniques are available for databases, but their
adoption to models is challenging because of the different meta-languages (graphs vs.
relations) and query languages (OCL vs. SQL) employed. Furthermore, approximate
queries are still intensively studied for databases to make them useable in different
scenarios as well as to support a wide range of different query types. Currently, dif-
ferent techniques support different query types, but supporting approximate queries for
general and flexible queries is still limited [1]. In order to deal with current scalability
challenges in MDE, it seems promising to further explore which kinds of approximation
techniques fit best for certain MDE scenarios.

6 Conclusions and Future Work

In this paper we have introduced Approximate Model Transformations, which aim at
producing target models that are accurate enough to provide meaningful and useful
results in an efficient way, but without having to be fully correct. We have explained its
basic notions and applied it successfully in a case study. AMTs provide a mechanism for
being able to balance performance and accuracy in the realm of model transformations
design and execution.

Of course, this paper presents an exploratory study which requires deeper investiga-
tions at all levels. In particular, we were interested in exploring the possibility of defin-
ing AMTs, and our initial results show that there are enough reasons to keep working
on them. The work presented here does not pretend to be conclusive, or comprehensive,
but to open the path for the model transformation community to start working on it.

The ideas presented in the paper may also be challenged, as potential threats may
impact the internal and external validity [12] of the results showed here. For example,
a potential threat to external validity is that the case study that has been utilized, even if
it is a real-world example, does not cover all cases. For instance, our input data follows
a normal distribution, so the function we have used for calculating the sample size [19],
as well as the sampling strategy used—systematic sampling, are optimal for this case
study. We need to study the situations in which the data come in different forms. As for
internal validity, the main threat can be due to the way our approach has been imple-
mented so far. We have used Java/EMF in our implementation. In fact, in this paper we
have simulated the behavior of the approximate operators in Java/EMF and therefore
the performance gains we have obtained may not be comparable as if the operators had
been implemented in a model transformation language and the data had been distributed
on different computing nodes.

There are several open issues that we plan to address next. In the first place, we
would like to provide formal and precise specifications for our approximate operators,
and integrate them in the ATL language. This would consist of extending the syntax of
ATL so that these new operators are available, and also extending the ATL execution
engine by implementing these operators. Secondly, we would like to add a new argu-
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ment to the approximate operators, namely the time we want the operator to execute
(such an approach is presented in [1] in the context of databases). The idea is to choose
between this new operator or the two we have defined in this work (confidence interval
and relative error) when calling a collection operator. Also, we need to study and de-
velop methods for the appropriate design of AMTs. Although this will normally require
a deep knowledge on the domain and the particular transformation scenarios, there is
already a fair amount of work about the design of approximate and randomized algo-
rithms [34] that could be applicable in this context. Last, but not least, in this work we
have dealt with the approximation of values, i.e., numerical values stored in elements’
attributes. However, we would also like to investigate how references can be approx-
imated. For instance, if one element is referencing one million of different elements,
how should we decide which ones to choose for the sample, and according to which
criteria?
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Abstract. Model Transformation (MT) is an important operation in
the domain of Model-Driven Engineering (MDE). While MDE contin-
ues to be further adopted in the design and development of systems,
MT programs are applied to more and more complex configurations of
models and relationships between them and grow in complexity. Struc-
tured techniques have proven to be helpful in design and development of
programming languages. In this paper, using an example, we explain an
approach in which MT specifications are defined in a structured man-
ner, by distinguishing queries as their main building blocks. We call the
approach Query Structured Transformation (QueST). We demonstrate
that the contents of individual queries used in QueST to define a trans-
formation are dispersed all over the entire corresponding MT definition
in ETL or QVT-R. Our claim is that the latter two languages are less
supportive of a structured approach than QueST. Finally we discuss the
promising advantage of QueST in MT definition, and possible obstacles
towards using it.

Keywords: Model Transformation, Query Structured Model Transfor-
mation, Formal Methods, Model Driven Engineering.

1 Introduction

As the adaption of Model-Driven Engineering (MDE) in the design and devel-
opment of systems increases in industry, the complexity of Model Transforma-
tion (MT) programs —basic MDE operations which transform models to other
models— also increases. Structured approaches already have proven to be suc-
cessful in managing the complexity of systems; for example, the shift from pro-
gramming with goto statements to the structured programming paradigm has
proven to be a good design decision, which undoubtedly improved the quality of
the software produced. Following this principle, we propose a Query Structured
Transformation (QueST1) approach for defining model transformations which
are translating source models to target models. QueST approach is originated
from [2, 1], and its mathematical foundation has been developing for the past
few years [3, 4]. In this paper, we explain QueST by introducing its structural

1 The acronym is suggested by Sahar Kokaly, our colleague in the MDE group.
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components using a well-known class-to-table example. The structural compo-
nents of QueST are declarative queries that are used to define target element
generation. For each individual target metamodel element, there exists one dis-
tinct query in QueST used to define the part of the source metamodel used to
generate it. We exhibit the definition of a number of these queries in relation to
an example, and explain their execution in QueST. Then, we demonstrate how
these queries are dispersed in the body of the corresponding MT programs writ-
ten in the Epsilon Transformation Language (ETL) [7], and in QVT-Relational
[9]. We discuss the reasons for this phenomenon, and finally discuss the benefits
of QueST for MT definitions.

The paper is organized as follows: in the next section we introduce the meta-
models for the class-to-table example, and informally describe the transformation
rules. In Section 3, we explain the structural components of the class-to-table
example in QueST, and provide a mathematical definition for a number of these
components. Then, we explain how the QueST engine would execute the MT def-
inition. In Section 4, we briefly discuss program building blocks in QVT-R and
ETL, and demonstrate the dispersal of the contents of the QueST components
(i.e., queries) in the MT definitions corresponding to the same class-to-tables
example in these languages. In Section 5, we briefly discuss the reasons for the
query dispersals, and also promising advantages of using QueST. Section 6 con-
cludes the paper and mentions potential future research.

2 Class diagram to database schema MT

Metamodels specify valid instances of domains, and are the focal point of MT
definitions in QueST. We first briefly describe the source and target metamodels
of the class-to-table example and then define the MT in QueST based on them.

2.1 Metamodels

Metamodels of the class diagram (CD) and database schema (DBS) specify the
valid model spaces of the CDs and DBSs, respectively. Fig. 1(a) exhibits the
CD metamodel. Each class contains some attributes associated to it by atts;
each attribute has a type and a multiplicity (Lbound and Ubound). Each class

might inherit at most one class (parent arrow). Associations have multiplicity
like Attributes and connect src classes to trg classes.

Fig. 1(b) shows the metamodel of the DBS. Each Table has at least one
Column (see cols in the figure). Some columns are primary keys for the table
(pKeys). A table might also have some foreign keys (Fkey). fKeys associate these
foreign keys to tables. Each FKey refers to one table (refs) and some columns
(fCols).

The constraints associated with the metamodels are exhibited using red la-
bels with enclosing brackets. The multiplicities on the arrows are also constraints
and therefore they are in red and are included inside brackets. Constraints can
be written in any suitable language by interpreting squares as sets and ar-
rows as binary relations. [isAbstract] specifies that NamedElement is abstract.
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[noLoop] specifies that there is no loop in the inheritance hierarchy of classes.
[pKeysInCols] states that the primary keys are columns of the same tables.
[FKeyColIsValid] states that the columns to which each foreign key refers are
subset of table columns of which they are a part (i.e., fKeys;fCols ⊂ cols).
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************************************************)

Lbound):)Int)
Ubound):)Int)
Type:)String)

)

[0..*]&Associa:on)
********************************************

*)
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[FKeyColIsValid]+

Fig. 1. Class Diagram and DB schema metamodels

2.2 Transformation rules

There are different ways to translate a CD to a corresponding DBS [5]. We pro-
pose the following rules as the transformation specification of the example in
this paper. For each class we generate a table. Single-valued attributes (svAtts)
—those with multiplicity of one or zero— of a class are translated to columns
of the corresponding table. A table is generated for each multi-valued attribute
—those with the multiplicity greater than one. These tables have two columns:
one for keeping the attribute values and another for a foreign key referring to
the table corresponding to the attribute containment class. Single-valued asso-
ciations (svAssoci) are handled by foreign keys; for each svAssoci we create a
column in the table corresponding to the source of the association. For each
multi-valued association, we create a table with two foreign keys which refer to
the source and target of the association, respectively. Inheritance is handled in
a way similar to the single-valued associations.

Fig.2(a) shows a class diagram and Fig.2(b) shows its corresponding DB
schema, following the rules specified above. In Fig.2(b), FK in parenthesis in
front of a column indicates that the column is a foreign key and its outgoing arrow
is referring to the table that this foreign key is referring to. As exhibited in the
figure, the two tables takes and teaches are created due to the corresponding
two multi-valued associations and the table telephone is created due to the
corresponding multi-valued attribute.

3 QueST: Query Structured Transformation approach

In a typical MT language, like ETL or even QVT-R, the MT designer thinks in
the following way: how does each pattern in the source model produce a collection
of elements in the target model? But QueST assumes a different manner of
thinking. The question that the MT designer is required to think about when
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Fig. 2. A class diagram and its corresponding DB schema

starting to specify an MT in QueST is the following: from which elements of
the source model is each element of the target model generated? This arises from
the observation that the target model information is somehow hidden inside the
source model and the model transformation program functionality’s purpose is to
reveal this information by manipulating the information inside the source model
and creating the target elements out of the resulting information; for example,
according to the MT rules specified in Sec. 2.2, tables in DBS are generated
in three different cases: 1) for each class 2) for each multi-valued attribute and
3) for each multi-valued association. This can be specified by defining a query
on the CD metamodel. The blue square with a diagonal corner named QTable
in the right hand side of Fig.4 represents this query and Fig.3(a) exhibits this
query definition in mathematical notation. The plus notation in the query means
disjoint union. After this query definition, we associate the Table element in the
target to this query (the green arrow from Table to QTable in Fig. 4).
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Fig. 3. Query definitions

From the transformation specification, we need to figure out how the columns
are generated, and continue to answer similar questions for all the other entities
(including squares and arrows) in the target metamodel. This method of thinking
is the cornerstone in writing an MT in QueST. Therefore, based on the MT
specification, we write a query like the one shown in Fig. 3(b) for the Column

entity and name it QColumn. This query is simply specifying all the possible ways
leading to the generation of a column based on the MT specification rules. Then
we associate the Column in the target metamodel to this query (see Fig. 4).

We apply the same method for the associations between the squares in the
target metamodel. Hence we draw an arrow between the QTable and QColumn
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(see purple arrow called Qcols in Fig.4) and associate a query to this arrow.
The query definition for this arrow is defining the relation between the elements
of the QTable and QColumn. That is the disjoint union of all the arrows which
are indexed from one to eight in Fig.3(c); restr(atts) is restriction of the atts

relation over the svAtt co-domain; inv(src) is the inverse of the src relation,
and id arrows are the identity relations over their domains. The � , � and F
signs on the Qtable, Qcol and QColumn in this figure will be used for comparison
purposes in Section 4.
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Fig. 4. CD to DBS MT definition in QueST

If we continue the above process of query definition and linking, for the other
elements of the DBS metamodel, we will arrive at the structure shown in Fig.4.
The entire figure shows the definition of the class-to-table MT in QueST. The
new green elements called QFKey, QpKeys, Qrefs, QfKeys, and Qfcols are all new
queries. Their definitions are not shown in the figure due to space limitations,
but they are defined in a similar way to the queries defined in Fig. 3. We call the
source metamodel with query annotations an augmented source metamodel. The
augmented CD metamodel is shown in the left hand side of the Fig. 4. As it is
shown by the dotted enclosing polygon in the figure, the structure of the target
metamodel is somehow replicated in the source metamodel. The association links
from the DBS to the CD metamodel show how the DBS metamodel is associated
to the augmented CD metamodel. Not all the individual links are shown in the
figure; instead a large blank green arrow is used to represent all the links. This
linking from the target to the source is total.

From the MT definition in Fig. 4, it is seen that the building blocks of an MT
definition in QueST are the queries on the source metamodel, and the links which
associate the elements of the target metamodel to these queries (like QTable)
or the source metamodel elements (like NamedElement). This provides a well-
formed structure for the model transformation definition; the query definitions
are encapsulated inside the squares and arrows, and are independent of each
other, and tracing back (by the association links) from the target elements to the
augmented metamodel shows how the transformation definition for each entity
in the target metamodel is defined. In Section 4 we show how these queries are
represented in ETL and QVT-R.
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3.1 MT execution in QueST

For a given class diagram, like the one in Fig.2(a), the QueST engine first starts
executing the queries of the augmented CD metamodel over the given class dia-
gram. The order in which the queries are executed does not matter semantically,
so the execution of the queries can be scheduled in any order by the QueST
execution engine. This enables the engine implementation with the possibility
of applying any appropriate optimization mechanism over the execution of the
queries at the implementation level.

The collected elements from the execution of each query are then typed over
that query. For example, Fig 5 shows the elements generated by execution of
the QTable query that are typed over it (see :QTable square in Fig 5). The
incoming dotted arrows to the :QTable square show from where each element of
the square is coming. After all queries are executed, the next step for the QueST
engine is to produce the taget elements. This is done by replicating the elements
collected by the queries and changing their types according to the association
links in the MT definition; for example, for the QTable query, the engine first
duplicates all the elements collected inside the :QTable square and changes their
types to Table, since the Table entity is associated to the QTable by a link in
the MT definition, as in the previous section. The outgoing dotted arrows from
:QTable connect the elements to their replicated versions which are all typed
over the Table element (or simply are tables in DBS).

The process described for the QTable query in the previous paragraph con-
tinues for all other queries and its completion leads to the generation of the
target model shown in Fig 2(b) .
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Fig. 5. QueST engine executing QTable query and generating Tables

4 Dispersal of queries in ETL and QVT-R
We have defined the very same MT transformation described in Section 2.2 with
ETL, and also with QVT-R. In this section, we briefly explain the structures of
the MT definitions is each language, and by marking each transformation code,
we demonstrate the wide dispersal of the contents of structural components (i.e.,
queries) of QueST in these definitions.

4.1 Query dispersal in ETL

An MT in ETL is specified by a set of rules. Each rule defines how an element of
a specific type is translated to one or more elements (not all necessarily having

59



the same type) in the target model. The rules might have guard expressions that
constrain their application.

Fig. 6 shows the code for defining the class-to-table example in ETL. Inten-
tionally, the code font size used is very small in the figure, since we will not discuss
in detail each part of the definition, and instead, we only take into account the
entire transformation definition to show the dispersal of the QueST queries all
over it. The parts in Fig. 6 that correspond to the queries in Fig.3 are marked: 1)
� marking the parts corresponding to the generation of tables (QTable query);
2) F marking the parts corresponding to the generation of columns (QColumn
query) and 3)� marking the parts which associate the columns to the tables
(Qcols Query). The numbers above the markings correspond to the numbers
in Fig. 3(c) for each marking; for example,

2
� refers to the mvAtt component of

the QTable, and 3� and 3F refer to the parent arrow of Qcols, and the coParent

component of QColumn, respectively.
Class Diagram To  DB Schema MT in ETL.etl

pre {
  "Running ETL".println();
  var dbschema : myDB!DBSchema;
}

rule ClassSchema2DBSchema 
  transform c : myOO!Schema
  to t:myDB!DBSchema{
  dbschema=t;
 }
rule Class2Table      
  transform c : myOO!Class
  to t:myDB!Table,
  pk:myDB!Column{
  
  dbschema.tables.add(t);
  dbschema.tables.add(pk);
  t.name=c.name;
  pk.name=c.name+"PK";
  pk.type="INT";
  
  t.cols.add(pk);
  
  t.pKeys.add(pk);
  
  if (not (c.parent=null)){
  var col:new myDB!Column;
  col.name="parent-"+c.parent.name+"PK";
  col.type="INT";
  
  t.cols.add(col);
  
  var f:new myDB!Fkey;
  f.fCols.add(col);
  t.fKeys.add(f);
  f.ref=c.parent.getCorrTable();
  }
  
  for (a : myOO!Attribute in c.atts) {

if (a.ubound = 1 ){
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    t.cols.add(a.equivalent("svAtt2Col"));
    
}

} 
}
rule mvAtt2Table   
  transform a : myOO!Attribute
  to t:myDB!Table,
  c1:myDB!Column,
  c2:myDB!Column,
  f:myDB!Fkey{
  
  guard : (a.ubound> 1 or a.ubound=-1)
  
  dbschema.tables.add(t);
  t.name=a.name;
  c1.name=a.name;
  c1.type=a.type;
  
  var oclass:myOO!Class=a.getOwningClass();
  c2.name=oclass.name+"PK";
  c2.type="INT";
  
  t.cols.add(c1);
  t.cols.add(c2);
  
  t.fKeys.add(f);
  f.ref=oclass.getCorrTable();
  f.fCols.add(c2);
}
rule mvAssoci2Table 
  transform a : myOO!Association
  to t:myDB!Table,
  c1:myDB!Column,
  c2:myDB!Column,
  f1:myDB!Fkey,
  f2:myDB!Fkey{
  
  guard : (a.ubound> 1 or a.ubound=-1)
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  dbschema.tables.add(t);
  
  t.name=a.name;
  c1.name=a.src.name+"PK";
  c1.type="INT";
  c2.name=a.trg.name+"PK";
  c2.type="INT";
  f1.fCols.add(c1);
  f2.fCols.add(c2);
  f1.ref=a.src.getCorrTable();
  f2.ref=a.trg.getCorrTable();
  
  t.cols.add(c1);
  t.cols.add(c2);
  
  t.fKeys.add(f1);
  t.fKeys.add(f2);

}

rule svAtt2Col 
  transform a : myOO!Attribute
  to c:myDB!Column{
  
  guard : (a.ubound = 1 )
  
  c.name=a.name;
  c.type=a.type;
}
rule svAssoci2Col 
  transform a : myOO!Association
  to c:myDB!Column,
  f1:myDB!Fkey{
  
  guard : (a.ubound = 1 )
  
  c.name=a.name+"-"+a.trg.name+"PK";
  c.type="INT";
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  a.src.getCorrTable().cols.add(c);
  
  f1.fCols.add(c);
  f1.ref=a.trg.getCorrTable();
  a.src.getCorrTable().fKeys.add(f1);
}
operation myOO!Attribute getOwningClass() : myOO!Class {
  return myOO!Class.all().selectOne(c|c.atts.includes(self)); 
}
operation myOO!Class getCorrTable(): myDB!Table {

var tbs:Bag= self.equivalents("Class2Table").flatten();
  //tbs.println();
  var t:myDB!Table=null;
  for (k in tbs){
  if (k.isTypeOf(myDB!Table)){
  t=k;
  }
  }
    return t;
}
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Fig. 6. ETL code for the CD to DBS transformation

As the figure shows, each marking sign is dispersed over the entire code. This
means that different components of the queries in Fig 3 are dispersed all over the
code in ETL; for example the eight component of the Qcols which are indexed
from one to eight are scattered throughout the entire definition and among the
different rules.

We avoided marking all the queries that are generating the target elements
in the definition of Fig. 6 to keep the figure simple. However, by repeating the
marking procedure for all of the other queries, we would get a similar dispersal of
their content over the entire code. One immediate consequence of these dispersals
is the difficulty that occurs during the debugging process in the development of
the model transformation; since the user needs to check different parts of the
code, if he gets some errors regarding generation of specific element in the target.

4.2 Query dispersal in QVT-R

An MT definition in QVT-R is composed of a set of top and non-top relations.
The difference is that the latter relations are invoked by the former ones. Each
relation definition specifies how some elements in the source model are related
to some elements in the target model. There are when and where clauses which
act as pre- and post-conditions for the execution of the corresponding relation
[8]. At the time QVT-R engine executes an MT definition, it enforces that all
the defined top relations hold true, by creating missing elements in the target.
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We wrote a transformation in QVT-R for the same class-to-table example,
and perform the same analysis over the code as we did in the previous section for
the ETL definition. Fig. 7 shows the definition and the marking; the semantics
of the markings are identical to what we described before. It is seen from the
figure that, similar to the ETL code, the queries for the generation of the target
model elements are distributed all over the code.
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Fig. 7. QVT-R code for the CD to DBS transformation

5 Discussion

This section is divided into two parts: we first discuss the reasons that cause the
scattering of each individual query in QueST over the entire MT definitions by
ETL and by QVT-R; then, we discuss the promising advantages of QueST from
different perspectives.

5.1 Why query dispersal happens in ETL and QVT-R

It might be argued that what are presented in Section 4, as the definitions of the
class-to-table example in QVT-R, and in ETL are subjective, in the sense that
there might be different implementations for the example by these languages,
such that the demonstrated query dispersal are prevented. We believe that the
scattering of the QueST queries would happen in any implementation, because
of the three reasons briefly discussed below:
One to many and many to many associations. In ETL, each rule associates
one source metamodel element to many target metamodel elements. In QVT-
R, each relation associates many source metamodel elements to many target
metamodel elements. Therefore one target element can be referenced in many
rules/relations in a transformation definition in these languages; this means that
the queries generating the elements of a specific type are spread between differ-
ent rules/relations.
Arrows are secondary elements. References to arrows in MT definitions in
ETL and QVT-R happen by means of nodes; queries only define nodes, and ar-
row definitions are implicit inside these queries. More concretely, it is not possible
to define an arrow as a target of an ETL rule (i.e., as a rule header parameter),
or as a domain of a relation in QVT-R. This means that if the queries gener-
ating nodes are dispersed, then the queries for generating the arrows which are
referenced by these nodes will also be dispersed. The � marking signs appearing
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everywhere close to the F signs in Fig. 7 show this phenomenon.
Flattening the graphical structure. ETL and QVT-R are textual languages,
while as it may be seen from the Fig. 4, MT definitions contain graphical con-
structs. A representation of a graphical construct in a textual format causes
a scattering of references to the graphical elements, inside the representation;
for example a node with several incoming edges in a graph would be inevitably
referenced in different places in the graph’s textual representation.

5.2 Promising advantages of QueST

MT design and development. As is shown in Section 3, QueST provides well
structured definitions by encapsulating queries inside squares and arrows, i.e.,
the first class elements of the metamodeling language. All the target elements of
a specific type (type could be an arrow or a square) are generated by one, and
only one, query. We believe that this is helpful in development and debugging
of MT definitions, because it follows the well-known principle of separation of
concerns, where the concern is the production of elements of specific type. Fur-
ther, each query definition is fairly independent in QueST, i.e., square queries
are independent, and arrow queries are only dependent on their corresponding
source and target queries; Hence, QueST’s structural construct, the query, suit-
ably provides a pattern to decompose complex MT definition tasks into small
fairly independent definitions.
Semantic foundations. The mathematical foundation of the QueST approach
is already discussed in some other work [2–4, 6]. This ensures that there is a
clear and formal understanding of QueST. This would prevent some ambiguity
and semantic issues like the ones investigated for the QVT-R specification [10].
Furthermore, its formal foundation provides a context to validate and formally
verify MT definitions.
Flexibility in query language. Theoretically, any query language can be used
for defining the queries in QueST. The expressive power of QueST depends on
the expressive power of the chosen query language. We insist that the chosen
query language should consider the arrows as equally as important as the nodes;
the experiments of using QueST for MT definitions have shown that defining the
square queries are easy in some query languages like OCL, but defining arrow
queries are fairly complicated, because they necessarily include many references
to the source and target of the arrow.
Declarative vs. imperative. QueST is declarative: the definitions of its struc-
tural building blocks (i.e., queries) provide specifications rather than implemen-
tations for the generation of the target elements. Further, the queries could
be executed in any order in QueST. The advantages of declarative approaches
in programming languages is less debatable now; even though the traditional
challenges of training MT programers to think declaratively might still be an
obstacle, considering the number of people who are trained to write queries
declaratively, in the database community, it might be plausible enough to follow
a similar pathway in the MT community as well.
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6 Conclusion
From one perspective, the intent of MT programs is to collect information from
the source model by executing some queries, and, then, to build up the target
model elements. Formalizing this procedure suggests a structural pattern for
model transformation which we call QueST. In QueST, the MT definer should
think in a target-oriented manner, in the sense that he should define a query
for each individual element in the target metamodel, during the MT develop-
ment process. These queries define the generation of target model elements, and
are encapsulated inside the fairly independent components which make up the
structural building blocks of an MT definition in QueST. We used a well-known
class-to-table example to explain these structural components (i.e., queries) and
their definitions. We also demonstrated that the contents of these queries are
necessarily dispersed all over the entire MT definitions written with ETL and
QVT-R. Subsequently, we discussed how the dispersal of each query is not a
specific property of the implemented examples and could be generalized to any
programs written in QVT-R and ETL. Finally, we discussed the advantages
of QueST from different perspectives. A deeper examination and evaluation of
QueST, regarding the aspects discussed in the previous section, is the subject
for our future work.
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Abstract. We present work in progress on, verified, transformation of a
modeling language based on communicating concurrent state machines,
slco, to Java. Some concurrency related challenges, related to atomicity
and non-standard fairness issues, are pointed out. We discuss solutions
based on Java synchronization concepts.

1 Introduction

Model-Driven Software Engineering (MDSE) is gaining popularity as a method-
ology for developing software in an efficient way. In many cases the models can
be verified which leads to higher quality software. In MDSE, an abstract model is
made increasingly more detailed through model-to-model transformations, until
the model can be transformed to source code. This allows detecting defects in
the early stages of the development, which can significantly reduce production
costs and improve end product quality.

One of the challenges in MDSE is maintaining correctness during the develop-
ment. The correctness of model-to-model transformations is one of the research
topics of our group [6–8]. In this paper the correctness of model-to-code trans-
formations is addressed. We investigate automated Java code generation from
models in the domain specific language Simple Language of Communicating Ob-
jects (slco) [1]. slco was developed as a small modeling language with a clean
manageable semantics. It allows modeling complex embedded concurrent sys-
tems. slco models are collections of concurrent objects. The dynamics of the
objects is given by state machines that can communicate via shared memory
(shared variables in objects) and message passing (channels between objects).

In this paper, we present the current status of our work and how we envision
its continuation. We have defined a transformation from slco to Java code,
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and discuss in this paper the main complications as regards specifically efficient
communication via shared variables and channels. We have started proving that
this transformation is correct, i.e. that the semantics of slco models is preserved
under some assumptions. This reasoning requires tackling non-standard fairness
issues involving the built-in fairness assumptions in Java.

2 SLCO and its transformation to Java

SLCO In slco, systems consisting of concurrent, communicating objects can
be described using an intuitive graphical syntax. The objects are instances of
classes, and connected by channels, over which they send and receive signals.
They are connected to the channels via their ports.

slco offers three types of channels: synchronous, asynchronous lossless, and
asynchronous lossy channels. Furthermore, each channel is suited to transfer
signals of a predefined type.

Fig. 1. Behaviour diagram of an slco model

The behaviour of ob-
jects is specified using
state machines, such
as in Figure 1. As
can be seen in the
figure, each transi-
tion has a source and
target state, and a
list of statements that
are executed when
the transition is fired.
A transition is en-
abled if the first of
these statements is
enabled. slco supports a variety of statement types. For communication be-
tween objects, there are statements for sending and receiving signals. The state-
ment send T (s) to InOut , for instance, sends a signal named T with a single
argument s via port InOut . Its counterpart receive T (s) from InOut receives
a signal named T from port InOut and stores the value of the argument in vari-
able s. Statements such as receive P ([[false]]) from In1 offer a form of condi-
tional signal reception. Only those signals whose argument is equal to false will
be accepted. There is also a more general form of conditional signal reception.
For example, statement receive Q(m | m ≥ 0) from In2 only accepts those sig-
nals whose argument is at least equal to 0. Boolean expressions, such as m == 6 ,
denote statements that block until the expression holds. Time is incorporated
in slco by means of delay statements. For example, the statement after 5 ms
blocks until 5 ms have passed. Assignment statements, such as m := m + 1 ,
are used to assign values to variables. Variables either belong to an object or a
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state machine. The variables that belong to an object are accessible by all state
machines that are part of the object.

Transformation from SLCO to Java The transformation from an slco
model to Java is performed in two stages. First the textual slco model is au-
tomatically transformed into an intermediate model, which is then translated
to Java. Recently we created a platform for the second stage in the Epsilon
Generation Language (EGL) [2], tailored for model-to-text transformation. The
execution of the generated Java code should reflect the semantics of slco. In
the sequel we present some important parts of the end-to-end transformation
from slco models to Java code.

State Machines Since slco state machines represent concurrent processes, each
state machine is mapped to a different thread in the Java implementation.

We use switch statements to represent the behavior of the state machine (List-
ing 1.1). Each case corresponds to one state of the state machine and comprises
a sequence of statements corresponding to the actions of a related outgoing state
transition. If a state has more than one transition, nested switch statements are
added in the generated code with a separate case for each transition.

Listing 1.1. Part of generated code for the state machine

1 currentState = "Com0";

2 while(true){

3 switch(currentState){

4 case "Com0":

5 String transitions[] = {"Com02Com1","Com02Com2"};

6 ...

7 int idx = new Random().nextInt(transitions.length);

8 String nextTransition = transitions[idx];

9 ...

10 switch(nextTransition){

11 case "Com02Com1":

12 ...//check whether the transition Com02Com1 is enabled or not

13 }

14 case "Com1":

15 ...

16 }

17 }

Shared Variables Since shared variables can be accessed and modified by multi-
ple state machines in one object, we need to consider synchronization constructs.
In our current implementation we use one writing lock and one reading lock to
control the access for all shared variables in one object. Both the reading and
writing locks operate in fair mode, using an approximate arrival-order policy. A
boolean expression statement using a reading lock is shown in Listing 1.2.
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Listing 1.2. Part of generated code for the Boolean expression statement

1 boolean isExecutedExpression = false;

2 while(!isExecutedExpression){

3 r.lock();

4 try{

5 if((m.value==6)){

6 isExecutedExpression = true;

7 }

8 } finally { r.unlock(); }

9 }

10 ...

Channels Because lossy channels in slco are an undesired aspect of physi-
cal connections, these are not transformed to Java; hence the framework just
supports the synchronous and asynchronous lossless channel.

slco’s asynchronous channels have buffer capacity 1. The sender/receiver blocks
when the channel is full/empty - this is provided by a BlockingQueue with a
buffer capacity of 1 (from the package java.util.concurrent). In case of conditional
reception from an slco channel, the element will only be consumed if the value
satisfies the condition. This requires that the head of the queue is inspected
without taking the element, which is provided by BlockingQueue.

slco’s synchronous channels enable handshake-like synchronization between
state machines. Our current implementation again uses the BlockingQueue, with
additional ad hoc synchronization code.

In Listing 1.3 we give the generated Java code for sending a signal message
of state machine Com via port InOut as shown in Fig. 1. Notice that we add
the wait() method of Java to synchronize sending and receiving parties, if the
channel between two state machines is synchronous.

Listing 1.3. Part of generated code of channels for sending signal message

1 synchronized(port_InOut.channel.queue){

2 port_InOut.channel.queue.put(new SignalMessage("T",new Object[]{s}));

3 if(port_InOut.channel.isSynchronousChannel){

4 port_InOut.channel.queue.wait();

5 }...

6 }

3 Challenges

The challenges in the transformation from slco to Java as well as in the verifi-
cation of it mainly originate from the differences between the modeling-oriented
primitives in slco and their implementation-oriented counterparts in Java.
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Shared variables – atomicity In slco assignments where multiple shared vari-
ables are involved are atomic, therefore we use Java variables together with locks
to guard the assignments. Instead of the built-in locks we use ReentrantRead-
WriteLock from the package java.util.concurrent.locks with concurrent read ac-
cess, which improves performance. Furthermore, in slco conditions on a transi-
tion may involve several shared variables. The aforementioned package enables
to create a condition object for each condition on a transition, that can be
used to notify waiting processes, which gives better performance than checking
with busy-waiting. Our current implementation uses ReentrantReadWriteLock,
but with a simple busy wait to simulate the slco blocking. Using the condition
objects whilst maintaining the slco semantics is the next step.

Channels – synchronization Other synchronization primitives from the package
java.util.concurrent are under investigation to replace the current ad hoc syn-
chronization code.

Choice between transitions – external/internal In case of several possibly block-
ing outgoing transitions of a state in slco, the state machine will only block if all
outgoing transitions are blocked. (This applies to shared variable access as well
as channel operations.) In a naive implementation, however, the disabledness of
a transition can only be assessed by initiating its execution and then blocking,
and waiting for the transition becoming enabled. Essentially, this means that an
external choice is turned into an internal choice, which is undesired. Here we face
a similar challenge as with conditions or assignments using several shared vari-
ables. This may be solved in a similar manner, namely with a condition object
dedicated to the state and cooperating processes that notify the waiting process
when one of the reasons for blocking might have changed.

We have solutions for specific cases and are investigating a generic solution for all
transitions that involve blocking and is orthogonal to other concurrency aspects
like conditional reading from a channel, synchronization of channels, etc.

Fairness – interleaving, resolving conflict The slco specification approach raises
non-standard fairness issues. In early usage of slco, no fairness was assumed for
slco specifications. If properties depended upon fairness, this meant taking this
into account for the implementation. The challenge is to advance the formal rigor
of the slco-approach by formally expressing fairness and have the generated
code together with the JVM ensure this fairness.

We use an interleaving semantics for slco with weak fairness: if at some time
point a transition becomes continuously enabled, this transition will at some later
time point be taken: in linear time temporal logic 2(2enabled(t)→ �taken(t)).

Because the granularity in Java is much finer than in slco, more progress is en-
forced by weak fairness in slco than in Java. Therefore we need stronger fairness
in Java. We aim to achieve this through a combination of fairness in scheduling
threads, obtainable by choosing the right JVM, and fair locks, obtainable from
the package java.util.concurrent.locks.
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Verification We aim to partially verify the transformation. Our first approach
is that the generated code uses generic code that we provide as a library of
implementations for, e.g., channels. We annotate and verify this generic code.
To deal with pointers and concurrency in Java we will use Separation Logic [3]
in combination with the tool VeriFast [5] as we have applied to a preliminary
version of this research [4]. The report indicates that this is feasible. Our research
aims to incorporate more advanced library code from the java.util.concurrent
packages. A second, complementary, approach deals with specific code generated
in the transformation. From the slco model we generate annotation along with
the code, which captures what the code should satisfy to conform to the slco
semantics – whether it does is then verified using the techniques described above.

4 Conclusions

In the context of automated Java code generation we identified several challenges
involving shared memory communication and fairness. Our initial findings imply
that the verification of the generic Java code implementing shared memory com-
munication for safety properties is feasible using separation logic. As one of the
anonymous reviewers observed, it might be useful to identify Java patterns for
correctly capturing concurrent model semantics. Besides code generation, this
can be used as a basis for developing efficient simulation, formal verification and
other analysis tools.
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Abstract. Bidirectional model transformations (bx) are mechanisms for auto-
matically restoring consistency between multiple concurrently modified models.
They are, however, challenging to implement; many model transformation lan-
guages not supporting them at all. In this paper, we propose an approach for
automatically obtaining the consistency guarantees of bx without the complex-
ities of a bx language. First, we show how to “fake” true bidirectionality using
pairs of unidirectional transformations and inter-model consistency constraints in
Epsilon. Then, we propose to automatically verify that these transformations are
consistency preserving—thus indistinguishable from true bx—by defining trans-
lations to graph rewrite rules and nested conditions, and leveraging recent proof
calculi for graph transformation verification.

1 Introduction and Motivation

Model transformations are operations for automatically translating models conform-
ing to one language (i.e. a metamodel) into models conforming to another, in a way
that maintains some sense of consistency between them. At their most basic, model
transformations are unidirectional: given a source model (e.g. some high-level yet user-
modifiable view of a system), they generate a target model (perhaps a lower-level view,
such as code) whose data is “consistent” with the source, in a sense that is either left
implicit, or captured by textual constraints or an inter-model consistency relation.

Many situations arise where the source and target models may both be modified by
users in concurrent engineering activities, e.g. when integrating parts of systems that
are modelled separately but must remain consistent. Bidirectional model transforma-
tions (bx) [5,17] are a mechanism for automatically restoring inter-model consistency
in such a scenario; in particular, bx simultaneously describe transformations in both
directions—from source to target and target to source—with their compatibility guar-
anteed by construction [5].

While this advantage is certainly an attractive one, bx are challenging to implement
on account of the inherent complexity that they must encode. Model transformation lan-
guages supporting them often do so with conditions: some require that bx are bijective
(e.g. BOTL [3]), essentially restricting their use to models presenting identical data in
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different ways, whereas others require users to work with specific formalisms such as
triple graph grammars (e.g. MOFLON [1]). The QVT-R language—part of the OMG’s
Queries, Views, and Transformations standard—allows bx to be expressed, but suffers
an ambiguous semantics [18] and limited tool support (the most successful ones often
departing from the original semantics [11]). Moreover, many modern transformation
languages do not provide any support for bx (e.g. ATL [9]), meaning that users must ex-
press them as two separate unidirectional transformations. While this seems a practical
workaround, it comes with the major risk that the compatibility of the transformations
might not be maintained over time.

A trade-off between the benefits (but complexity) of bx and the practicality (but
possible incoherence) of unidirectional transformations can be achieved in Epsilon, a
platform of interoperable model management languages. Epsilon has languages sup-
porting the specification of unidirectional transformations in either a rule-based (ETL),
update-in-place (EWL), or operational (EOL) [12] style. Furthermore, it provides an
inter-model consistency language (EVL [10]) that can be used to express and evaluate
constraints between models conforming to different metamodels. With these languages
together, bx can be “faked” in a practical way, by: (1) defining pairs of unidirectional
transformations for separately updating the source and target models; and (2) defining
“consistency” via inter-model constraints in EVL, the violation of which will trigger
appropriate transformations to restore consistency.

Although this process gives us a means of checking consistency and automatically
triggering a transformation to restore it, we lack the important guarantee that bx give
us: the compatibility of the transformations. It might be the case that after the execution
of one transformation, the other does not actually restore consistency, leading to further
EVL violations. How do we check for, and maintain, compatibility?

We aim to address this shortcoming and obtain the guarantees of bx without the need
for bx languages. Instead, we will use rigorous proof techniques to verify that faked bx
are consistency preserving, and thus indistinguishable to users from true bx. To this end,
we propose to apply techniques from graph transformation verification. Given a faked
bx in Epsilon, we will model the unidirectional transformations as graph transformation
rules, and EVL constraints as nested graph conditions [7]. Then, by leveraging graph
transformation proof calculi [8,14,15] in a weakest precondition style, we aim to auto-
matically prove compatibility of the unidirectional transformations with respect to the
EVL constraints. Furthermore, we aim to exploit the model checker GROOVE [6] to
automatically search for counterexamples when consistency preservation does not hold.

The overarching goal of our work is to achieve the ideal that Stevens [17] con-
templated in her survey of bx: that “if a framework existed in which it were possible
to write the directions of a transformation separately and then check, easily, that they
were coherent, we might be able to have the best of both worlds.”

2 Example bx in Epsilon: Class Diagrams to Databases

To illustrate the ideas of our proposal, we recall a common model transformation prob-
lem that concerns the consistency of class diagram and relational database models
(CD2RDBM). Class diagram models conform to a simple language describing famil-
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iar object-oriented concepts (e.g. classes, attributes, relationships), whereas relational
database models conform to a language describing how databases are constructed (e.g.
tables, columns, primary keys). Here, consistency is defined in terms of a correspon-
dence between the data in the models, e.g. every table n corresponds to a class n, and
every column m corresponds to an attribute m. Figure 1 contains two simple models
that are consistent in this sense (we omit the metamodels for lack of space).

:Class

name = "users"

:Attribute

pkey = True
name = "id"

:Attribute

pkey = False
name = "username"

feature feature

:Table

name = "users"

:Column

name = "id"

:Column

name = "username"

pkey column

Fig. 1. Two consistent CD and RDB models

Users of the models should
be able to create new classes (or
tables) whilst maintaining inter-
model consistency. A bx would
be well suited for this: upon the
creation of a new class (resp. ta-
ble), a table (resp. class) should
be created with the same name
to restore consistency. We can
fake this simple bx in Epsilon with a pair of unidirectional transformations (one for
updating the class diagram model, one for updating the relational database) and a set of
EVL constraints. For the former, we can use the Epsilon Wizard Language (EWL) to de-
fine a pair of update-in-place transformations, AddClass and AddTable (for simplicity,
here we assume the new class/table name newName to be pre-determined and unique,
but Epsilon does support the capturing and sharing of such data between wizards).
wizard AddClass {

do {
var c : new Class ;
c .name = newName ;
self .Class .all .first ( ) .contents .add (

c ) ;
}}

wizard AddTable {
do {
var table : new Table ;
table .name = newName ;
self .Table .all .first ( ) .contents .add (

table ) ;
}}

Using the Epsilon Validation Language (EVL), we express the relevant notion of inter-
model consistency: that for every class n, there exists a table named n (and vice versa).
If one of the constraints is violated, Epsilon can automatically trigger the relevant trans-
formation to attempt to restore consistency. For example, after executing the transfor-
mation AddClass, the constraint TableExists will be violated, indicating that the
transformation AddTable should be executed to restore consistency.
context OO !Class {
constraint TableExists {

check : DB !Table .all .select (t |t .name
= self .name ) .size ( ) > 0

}}

context DB !Table {
constraint ClassExists {

check : OO !Class .all .select (c |c .name
= self .name ) .size ( ) > 0

}}

This example of a bx, “faked” in Epsilon, is a deliberately simple one chosen to illustrate
the concepts. Note even that the CD2RDBM problem can lead to more interesting (i.e.
less symmetric) bx, e.g. manipulating inheritance in the class model.

3 Checking Compatibility of the Transformations

The critical difference between the “faked” bx in the previous section and a true bx is
the absence of guarantees about the compatibility of the transformations: upon the vio-
lation of TableExists, for example, does the execution of AddTable actually restore
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consistency? For this simple example, a manual inspection will quickly confirm that the
transformations are indeed compatible in this sense. But what about more intricate bx?
And what about bx that evolve and change over time? For the Epsilon-based approach
to be a convincing alternative to a bx language, it is imperative that the compatibility (or
not) of the transformations can be checked, and—crucially—that this can be done in a
simple and automatic way. To this end, we propose to leverage and adapt some recent
developments in the verification of graph transformations.

Graph transformation is a computation abstraction: the state of a computation is
represented as a graph, and the computational steps as applications of rules (i.e. akin to
string rewriting in Chomsky grammars, but lifted to graphs). Modelling a problem using
graph transformation brings an immediate benefit in visualisation, but also an important
one in terms of semantics: the abstraction has a well-developed algebraic theory that
can be used for formal reasoning. This has been exploited to facilitate the verification
of graph transformation systems, i.e. calculi for systematically proving specifications
about graph properties before and after any execution of some given rules. Further-
more, such calculi have been generalised to graph programs [13], which augment the
abstraction with expressions over labels and familiar control constructs (e.g. sequential
composition, branching) for restricting the application of rules.

Habel et al. [7,8] developed weakest precondition calculi for proving specifications
of the form {pre} P {post}, which express that if a graph satisfies the precondition
pre, then any graph resulting from the execution of graph program P will satisfy the
postcondition post; these pre- and postconditions expressed using nested conditions,
a graphical formalism for first-order (FO) structural properties over graphs. They de-
fined constructions that, given a nested condition post and program P , would return a
weakest liberal precondition Wlp(P, post), representing the weakest property that must
hold for successful executions of P to establish post. The specification would then be
(dis)proven by checking the validity of pre ⇒ Wlp(P, post) in an automatic FO the-
orem prover. Poskitt and Plump developed proof calculi in a similar spirit, separately
addressing two extensions: programs and properties involving attribute manipulation
[14,15], and reasoning about non-local structural properties [16].

We aim to exploit this work to check the compatibility of transformations in the
Epsilon approach to bx. In particular, we are developing automatic translations of EWL
transformations to graph programs (denoted PS , PT for the source and target updates
respectively), and translations from EVL constraints to nested conditions (denoted evl).
Then, the task of checking compatibility of the transformations, as shown in Figure 2,
reduces to proving the specifications {evl} PS ; PT {evl} and {evl} PT ; PS {evl}
(here we assume the input graphs to be disjoint unions of the two models). Intuitively:
if the models are consistent to start with, and executing the transformations in either
order maintains consistency, then the transformations are compatible.

The technical challenges of the process fall into two main parts: computing the
abstractions, and checking validity. Defining translations for the former requires care:
we need to determine how much of the EWL language can be handled, we need to
ensure that the graph-based semantics we abstract them to is “correct”, and we need to
adapt the proof technology to our specific needs. The work in [14,15,16], for example,
does not presently support type graphs (causing more effort to encode conformance to
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Fig. 2. Overview of the process for checking compatibility of the transformations

metamodels). Similar concerns must be addressed for the translations of EVL to nested
conditions (we can take inspiration from recent work on such translations for core OCL
[2]). For the challenge of checking validity, we aim to leverage existing FO theorem
provers (e.g. Vampire) as much as possible, adapting existing translations of nested
conditions to FO logic [7,14]. Given the undecidability of FO validity, we also aim to
explore the use of the GROOVE model checker [6] in finding counterexamples when
the theorem provers respond with “no”, or do not appear to terminate.

Our example bx for the CD2RDBM problem is easily translated into graph programs
and nested conditions, as given in Figure 3. The programs PS , PT are the individual
rules creating respectively a class or table node labelled newName (here, ∅ denotes the
empty graph, indicating that the rules can be applied without first matching any struc-
ture, i.e. unconditionally). The nested condition evl, given on the right, expresses that
for every class (resp. table) node, there is a table (resp. class) node with the same name
(we do not define here a formal interpretation, but note that x, y are variables, and that
the numbers indicate when nodes are the same down the nesting of the formula). Were
the weakest liberal preconditions to be constructed, we would find:

Wlp(PS ;PT , evl) ≡Wlp(PT ;PS , evl) ≡ evl.

Since evl ⇒ evl is clearly valid, both {evl} PS ; PT {evl} and {evl} PT ; PS {evl}
must hold, and—assuming correctness of the abstractions—the original EWL transfor-
mations are therefore compatible with respect to the EVL constraints.

8( , 9( ))
:Class

name = x

:Class
name = x

:Table
name = x

1 1

8( , 9( ))
:Table

name = y

:Table
name = y

:Class
name = y

2 2

:Class
name = newName; )

:Table
name = newName; ) ^

Fig. 3. Our CD2RDBM bx expressed as graph transformation rules and a nested condition

4 Next Steps

After further exploring the CD2RDBM example, we will identify a selection of bx case
studies—from the community repository [4] and beyond—that exhibit a broader range
of characteristics and challenges to address. We will implement these bx using EWL
transformations and EVL constraints, then manually translate them into graph trans-
formations and nested conditions. These will serve as a proof of concept, but also as
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guidance, helping us to determine how far we should adapt the proof calculi to support
our goals (e.g. introducing type graphs for capturing the metamodels). After imple-
menting the weakest precondition calculations and translations to FO logic, we will
design and implement automatic translations from Epsilon bx to their corresponding
graph-based abstractions, initially focusing on a core (but expressive) subset of the lan-
guages. Finally, we will explore the use of GROOVE in finding counterexamples when
verification fails, by exploring executions of the graph transformation rules.
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Abstract. In Model-Driven Engineering, the potential advantages of using bidi-
rectional transformations are largely recognized. Despite its crucial function, bidi-
rectionality has somewhat limited success also because of the ambivalence con-
cerning non-bijectivity. In fact, in certain situations more than one admissible
solution is in principle possible, despite most of the current languages generate
only one model at time, possibly not the desired one.
In this paper, we propose to manage non-determinism during the design pro-
cess. The approach aims to analyze bidirectional transformations with the pur-
pose to detect ambiguities and support designers in solving non-determinism in
their specification.

1 Introduction

In Model-Driven Engineering (MDE) [18] bidirectionality in transformations has been
always regarded as a key mechanism [20]. Its employment comprises mapping models
to other models to focus on particular features of a system, simulate/validate a given
application, and primarily keeping a set of interrelated models synchronized or in a
consistent state. Despite its relevance, bidirectionality has rarely produced anticipated
benefits as demonstrated by the lack of a language comparable to what ATL1 represents
for unidirectional transformations. Among the reasons why bidirectional techniques had
limited success there is the ambivalence concerning non-bijectivity: when bidirectional
transformations are non-bijective, there may be multiple update policies to transform
two models into a consistent state, introducing uncertainty and non-determinism [8].

Most current languages are able to generate only one model. Thus, non-injective
transformations involved in round-tripping can give rise to results, which are some-
what unpredictable. In these cases, the solution is normally identified according to
heuristics, language implementation decisions and/or to the order the rules are writ-
ten, as it happens with Medini [14] and ModelMorf [15]. Recently, few declarative ap-
proaches [6, 12, 4] to bidirectionality have been proposed; they are able to cope with the
non-bijectivity by generating all the admissible solutions of a transformation at once.
Among them, the Janus Transformation Language [6] (JTL) is a model transformation
language specifically tailored to support bidirectionality and change propagation. Its
semantics relies on Answer Set Programming (ASP) [9] in order to generate multiple

? This research was supported by the EU through the Model-Based Social Learning for Public
Administrations (Learn Pad) FP7 STREP project (619583).

1 http://www.eclipse.org/atl/
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models. However, the JTL transformation engine is not able to detect non-deterministic
rules, i.e., rules that can give place to multiple solutions, at static-time.

There have been several works analyzing semantic issues and idiosyncrasies of bidi-
rectional model transformations. [21] emphasizes the need of a clear semantics to grant
developers full control about what the transformation does. The author goes even further
by claiming that a transformation must be deterministic in order to ensure that devel-
opers will find the transformation behavior predictable. However, there exists cases in
which designers are not able to disambiguate their transformations. In fact, they may
lack the information needed beforehand to take appropriate design decisions. Moreover,
very often the non-determinism in a transformation becomes evident only after its ex-
ecution, especially if the language implementation resolves latent ambiguity by means
of default strategies whose behavior is unclear to developers.

In this paper, we present an approach to statically detect non-determinism in bidi-
rectional transformations, i.e., without executing them. To this end, Answer Set Pro-
gramming (ASP) [9] is exploited to realize a logic environment for the analysis of bidi-
rectional transformations. In particular, transformations are translated into logical rules
and constraints able to analyze the behavior of the transformation with an emphasis on
non-determinism. The approach aims to support designers in solving non-determinism
in their specifications by detecting the rules that give place to alternative solutions at
design time2.

The paper is organized as follows. Section 2 introduces the problem by means of
an example. Section 3 describes the static analysis of bidirectional transformation. Sec-
tions 4 and 5 present the proposed approach and show it in practice. Section 6 describes
related work. Finally, Section 7 draws some conclusion and future work.

2 A motivating example
Non-determinism is a frequent aspect which affects model transformation design and
implementation. In this section, we describe how ambiguous mappings in a model trans-
formation may cause multiplicity in the generated solution, i.e., to somewhat a form of
uncertainty.

Person 

name {is_primary} 

Worker 

working_address 

Employer 
{persistent} 

department 

number_of_publication 

Professor 
{persistent} 

University 

PK name 
working_address 

Employer 

department 
number_of_publication 

University 

Professor 
PK name 

working_address 
department 

(a) (b) 

Fig. 1: The UML model (a) and the correspondent RDBMS model (b)

Scenario Let us considering a typical round-trip problem based on a non-bijective
class diagram to relational data base (UML2RDBMS) benchmark scenario [7, 10]. Only

2 Note that, the proposed analysis environment is general as does not depend on the JTL engine
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persistent classes are mapped to correspondent tables and their attributes to columns in
the tables, including inherited attributes. In order to preserve all the information of the
source diagram, attributes of non-persistent classes have to be distributed over those
tables stemming from persistent classes which access non-persistent ones.

The UML model in Fig. 1(a) shows the package university that is composed
of an inheritance hierarchy of classes, whereas the correspondent schema is depicted
in Fig. 1(b). Let us suppose that the generated model is manually modified (e.g., for
satisfying new requirements) as depicted in Fig. 2(a): a new column email has been
added in the table employer. This gives place to an interesting situation since such
modifications can be reflected to the source model in Fig. 1(a) in three alternative ways:
the attribute (corresponding to the manually added column) can be a member of the
class employer or with each of parent classes worker and person, as in Fig. 2(b).
Consequently, although not shown in the figure, starting from each of this alternatives,
every subclass will inherit the attribute. Thus, more than one source model propagating
the changes exist.

Implementation The UML2RDBMS bidirectional transformation, which relates class
diagrams and relational database models, has been implemented by means of the Janus
Transformation Language (JTL) [6].

Fig. 2: The modified RDBMS model (a) and the correspondent UML model (b)

In Listing 1.1 we report a fragment of the transformation which is expressed in the tex-
tual concrete syntax of JTL and applied on models given by means of their Ecore repre-
sentation within the EMF framework3. In particular, the following relations are defined:
a) Class2Table, which relates classes and tables in the two different metamodels, b) At-
tribute2Column, which relates attibutes and columns in the two different metamodels
and c) SuperAttribute2Column, which relates attributes of the parent class to columns
of the corresponding child table. The when and where clause specify conditions on the
relation. In particular, the when clause in Line 18 allow to navigate the parent classes of
each attribute, then the where clause in Line 19 generates the correspondent columns.
These relations are bidirectional, in fact both the contained domains are specified with
the construct enforce.

The forward application of the transformation is illustrated in Fig. 1, where the
UML model is mapped to the correspondent RDBMS model. As aforementioned the

3 http://www.eclipse.org/modeling/emf/
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transformation is non-injective. The back propagation of the changes showed in Fig. 2
gives place to the following situation: the transformation execution produces a set of
three models each one represents a different solution where the column email belongs
to each of the three different classes of the hierarchy. In particular, the modified RDBMS
target model in Fig. 2(a) is mapped back to the UML source models in Fig. 2(b).

Such non-determinism can be resolved by specifying in the transformation that any
new column of the table must be mapped to the corresponding attribute of the class
from which the table is generated (for instance, the new column email of the table
employer is mapped to the attribute email of the class employer).

1transformation UML2RDBMS(uml:UML, rdbms:RDBMS) { ...
2 top relation Class2Table {
3 cn, an: String;
4 enforce domain uml c:Class {
5 is_persistent = true,
6 name = cn,
7 attrs = attr: Attribute { name = an}
8 };
9 enforce domain rdbms t:Table {

10 name = cn,
11 cols = col: Column { name = an }
12 };
13 when { ... }
14 where { Attribute2Column(c, t); }
15 }
16 relation Attribute2Column {
17 an, at : String;
18 enforce domain uml c:Class {
19 attrs = attr: Attribute { name = an, owner = c, is_primary = false }
20 };
21 enforce domain rdbms t:Table {
22 cols = col: Column { name = an, owner = t }
23 };
24 when { ... }
25 }
26 top relation SuperAttributeToColumn{
27 enforce domain uml c: Class {
28 parent = sc: Class { }
29 };
30 enforce domain rdbms t: Table { };
31 when { ClassToTable(c,t) or (cc = c.parentOf and SuperAttributeToColumn(cc,t));}
32 where { AttributeToColumn(sc, t); }
33 } ...

Listing 1.1: A fragment of the UML2RDBMS transformation in JTL

Thus, the considered piece of transformation can be made deterministic by accommo-
dating the mentioned refinement. However, when size and complexity of metamodels
and transformations grow, the designer should be supported by an automated tool capa-
ble of detecting the ”guilty” rules in the transformations.

3 Static analysis of bidirectional transformations
Typically, bidirectional transformations are specified by a collection of rules which de-
fine mapping from source to target metamodel elements, and viceversa. By consid-
ering existing relational languages [16, 6], mappings among metamodel elements are
expressed as relations that are executed in both the directions. In this context, transfor-
mations are models as well, therefore amenable to model operations.

Analysis of model transformations can be used for a wide range of assessments
including the satisfaction of specific requirements, verifications/validation, and perfor-
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mance analysis. Existing approaches and tools involve testing (e.g., test case genera-
tion for model transformations), or analysis performed on executing programs (e.g.,
run-time monitoring) [1]. In contrast, static analysis is performed without actually ex-
ecuting the model transformation or generating test cases; in fact, it is performed on
some (abstract) version of the transformation code with the scope to allow designer to
understand and review the code at design-time.

Non-determinism is a critical aspect in bidirectionality. Thus, detecting the ambigu-
ous fragments of a transformation at design-time may prevent unwanted behaviors like
a severe increase of the solution space. At this scope, it is of paramount relevance to
support the designer in understanding which rule is ambiguous and how to refactor the
transformation in order to reduce non-determinism. This is intrinsically difficult as it
not unusual that the backward (forward) execution of an seemingly deterministic for-
ward (backward) transformation generates more than one alternative. The challenge
consists of precisely identifying those combinations of rules which are responsible of
the solution multiplicity.

The analysis is performed by considering not only the behavior of individual state-
ments and declarations, but rather including the complete transformation. Information
obtained from the analysis are used for detecting possible coding ambiguities. In par-
ticular, the approach aims to detect so-called non-deterministic portions of the transfor-
mation represented by collections of rules that if executed together may cause multiple
alternative solutions. Please note how the degree of non-determinism of a single frag-
ment depends on the model instance given as input.

In this paper, we propose to use the Answer Set Programming (ASP) [9] to ana-
lyze bidirectional transformation. ASP is a form of declarative programming oriented
towards difficult (primarily NP-hard) search problems and based on the stable model
(answer set) semantics of logic programming. Then the ASP solver4 finds and gener-
ates, in a single execution, all the possible models which are consistent with the logic
rules by a deductive process. The proposed ASP-based engine is able to analyze the
model transformation specification and verify non-determinism conditions expressed
by means of rules and constraints. The environment has been implemented as a set of
plug-ins of the Eclipse framework and mainly exploits EMF5 as illustrated in the next
section.

4 Description of the approach
Figure 3 illustrates the approach, which is comprised of two main steps. The first step
translates a model transformation specification into a notation suitable for the analy-
sis. The second analyzes the information extracted in the previous step and produces a
feedback. These two steps are explained in more details in the following.

(1) Translation of the transformation into the analysis notation
A model transformation consists of a set of rules which define mapping among element
types of the involved left- and right-metamodels. Generally, a rule is constrained with
pre- and post-conditions that limit its applicability and behavior. This step defines a

4 http://www.dlvsystem.com/
5 http://www.eclipse.org/modeling/emf/
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characterization that permits to capture only the information which is relevant for per-
forming the analysis (neglecting irrelevant details which are not pertinent to our pur-
pose). The notation used for representing the elicited information is the Transformation
Analysis Language (see Fig. 3). Each rule is represented by means of two sets contain-
ing the left- and right-patterns, respectively. Whereas, each pattern is represented by a
class and values for any of its properties and references. As defined in OCL6, a pattern
can be viewed as a set of variables, and a set of constraints that model elements bound to
those variables must satisfy to qualify as a valid binding of the pattern. In other words, a
pattern can be considered a template for objects and their properties that must be located
in a candidate model to satisfy the rule. The model representing the bidirectional model
transformation (Bidirectional Transformation Model in Fig. 3) must be translated into
the corrisponding model for the analysis (Transformation Analysis Model) by means of
a semantic anchoring [5] able to translate rules and constraints as set of patterns.

Bidirec'onal	  
Transforma'on	  

Language	  

C2	   C2	  

traslate	  

ASP	  Transf.	  	  
Analysis	  Model	  

ASP	  solver	  

IN	   OUT	  

annotate	  

Bidirec'onal	  
Transforma'on	  

Model	  

Transforma'on	  
Analysis	  Language	  

Transforma'on	  
Analysis	  Model	  

input	  

ASP	  Analysis	  
Result	  Model	  

en
co
de

	  

STEP	  1	   STEP	  2	  

Logical	  Analysis	  

ASP	  rules	  and	  constraints	  

Fig. 3: Architecture overview of the approach

(2) ASP-based analysis

Once the analysis models are generated by abstracting from the concrete transforma-
tions, they need to be translated into ASP in order to be analyzed. The analysis models
and the metamodels involved in the transformations are consistently consistently en-
coded as a knowledge base, whereas the properties which are required to be checked
are translated in constraints and verified by ASP rules. As aforementioned the scope
of the analysis is to provide an automated detection of non-deterministic rules. In
particular, it generate sets of logically related rules whose simultaneous applications
may generate multiple admissible solutions. When the ambiguous rules are marked
by the analysis process, the designer can refactor the initial specification by resolving
the non-determinism. In Listing 1.2 a fragment of the ASP rules for the detection of
non-deterministic code is presented. In particular, the rule in Lines 1-4 deduces pairs
of equal domains by comparing patterns and predicates of each domain. The rule in
Lines 6-9 deduces non-deterministic relations; in particular, for each transformation
direction, relations with equal domains are detected. Finally, the rule in Lines 11-13

6 http://http://www.omg.org/spec/OCL/
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deduces pair of ambiguous relations which cause non-determinism if simultaneously
executed.

1are_equal_domains(ID1, ID2, Dom) :-
2 have_equal_patterns(ID1, ID2, Dom, MC, MCName),
3 have_equal_predicates(ID1, ID2, Dom, MC, MCName),
4 not have_different_patterns(ID1, ID2, Dom).
5
6non_deterministic_relation(ID, RelName, DomLeft) :-
7 are_equal_domains(ID, ID2, DomRight),
8 relation_name(ID, RelName),
9 tranformation_model(DomRight), tranformation_model(DomLeft), DomRight != DomLeft.

10
11are_ambiguous_relations(ID1, ID2, DomLeft) :-
12 are_equal_domains(ID1, ID2, DomRight),
13 tranformation_model(DomRight), tranformation_model(DomLeft), DomRight != DomLef

Listing 1.2: A fragment of the ASP rules and constraints for the analysis

5 Running the approach
In this section, we present an application of the proposed approach to the UML2RDBMS
example presented in Sect. 2. The goal is to illustrate how to use of the approach in
practice by exploiting the developed environment. In particular, we analyze the JTL
implementation of the UML2RDBMS transformation7. First, the bidirectional transfor-
mation is translated into the analysis model. Then, the analysis is executed to highlight
those rules which may be responsible of non-determinism.

(a) (b)

Fig. 4: The UML2RDBMS tranformation and analysis models

(1) Translating UML2RDBMS into the analysis language
Starting from the specification of the UML2RDBMS transformation by means of JTL
described in Sect. 2 (see Listing 1.1), the corresponding JTL model in Ecore is repre-
sented in Fig. 4(a). As aforesaid, in JTL the mapping between candidate models are

7 The implementation is available at http://jtl.di.univaq.it/
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represented by means of a set of relations defined by two domain patterns. Each re-
lation includes a pair of when and where predicates which specify the pre- and post-
conditions that must be satisfied by the elements of the candidate models.

The JTL model in Fig. 4(a) is translated into the correspondent analysis model
in Fig. 4(b) by means of an automated model-to-model transformation implemented
in ATL. In particular, all the mapping rules (including pre- and post- conditions) of
the source JTL model are translated in the corresponding sets of patterns of the tar-
get analysis model. For instance, let us consider the Class2Table relation, then every
predicate belongs to the UML or RDBMS domain pattern, is represented by an OCL
expression, and is evaluated as follows: (i) each Object Template Expression is
transformed in a named Pattern of the analysis model; (ii) each statement is evaluated
and transformed in a correspondent predicate; finally (iii) each condition is considered
as a pattern and added to the correspondent Domain in the analysis model.

(2) Executing the analysis of the UML2RDMBMS transformation
The transformation analysis model, generated during the previous step is entered into
the ASP-based engine. In order to perform the analysis, model transformation and the
involved metamodels have to be encoded in the ASP language. For instance, in Listing
1.3 a fragment of the ASP encoding of the analysis models in Fig. 4(b) is showed. In
particular, it declares the class2table relation with an identifier 1 (in Lines 1) and
the correspondent patterns and predicates for the domain UML (in Lines 2-10) and the
patterns and predicates for the domain RDBMS (in Lines 11-17), as well.

1relation_name(1, class2table).
2relation_domain(1, uml).
3 relation_pattern(1, uml, c, class).
4 relation_predicate(1, uml, c, is_persistent, true).
5 relation_predicate(1, uml, c, name, cn).
6 relation_predicate(1, uml, c, attrs, attr).
7 relation_pattern(1, uml, attr, attribute).
8 relation_predicate(1, uml, attr, name, an).
9 relation_predicate(1, uml, attr, owner, c). % added from where

10 relation_predicate(1, uml, attr, is_primary, false). % added from where
11relation_domain(1, rdbms).
12 relation_pattern(1, rdbms, t, table).
13 relation_predicate(1, rdbms, t, name, cn).
14 relation_predicate(1, rdbms, t, cols, col).
15 relation_pattern(1, rdbms, col, column).
16 relation_predicate(1, rdbms, col, name, an).
17 relation_predicate(1, rdbms, col, owner, t).

Listing 1.3: A fragment of the analysis model encoded in ASP

Starting from the ASP encoding, the analysis is now able to detect the non-deterministic
rules. In particular, the analysis outcome consists of a number of rule sets; each of
which includes logically related relations whose simultaneous applications may gener-
ate multiple solutions. For instance, Listing 1.4 shows a fragment of the result of the
analysis executed on the UML2RDBMS specification (in Listing 1.1). In particular,
when the transformation is executed in the RDBMS-to-UML direction, the set of non-
deterministic relations class2table, superAttribute2column and superAttri-
bute2column is detected. In particular, in the scenario described in Sect. 2, more than
one alternative solutions can be obtained because of the simultaneous executions of the
three ambiguous mappings.
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1%%%% Analysis Model
2%%%% sets of non-deterministic relations (UML to RDBMS direction):
3[]
4%%%% sets of non-deterministic relations (RDBMS to UML direction):
5[(1,class2table), (3,superAttribute2column), (5,superAttribute2column)]
6[(..), (...)]

Listing 1.4: A fragment of the output of the analysis

The final goal of such analysis is to convey to the transformation implementor enough
information to perform a refinement which resolves the non-determinism. In this re-
spect, the ”guilty” rules are opportunely marked in such a way the sets of rules respon-
sible of the non-determinism sources can be easily recognized by the designer.

6 Related work

Non-determinism is a recurrent aspect affecting model transformation design and im-
plementation. As said, most of the current languages (e.g.,[11, 17, 3, 19, 16, 14, 15] are
able to generate only one model at time; in this way even if the transformation is non-
bijective the solution is normally identified according to details which are often un-
known to the designer rendering such approached unpredictable and therefore unprac-
tical. Existing declarative approaches [6, 12] cope with the non-bijectivity by gener-
ating sets of models at once, i.e., all the admissible solutions of a transformation are
generated as a solution set. Among them, JTL [6] is specifically tailored to support
bidirectionality and change propagation. In [12], the authors propose to use Alloy and
follows the predictable principle of least change [13], by using a function that calcu-
lates the distance between instances reducing the generated models. Non-determinism
is also considered in BiFlux [17], which adopts a novel ”bidirectional programming by
update” paradigm, where a program succinctly and precisely describes how to update
a source document with a target document, such that there is a unique inverse source
query for each update program. Within the Triple Graph Grammars, PROGRES [2]
considers non-deterministic cases by demanding user intervention to rule execution in
order to choose the desired behavior.

Existing approaches and tools involve testing (e.g., test case generation for model
transformations), or analysis performed only on executing programs (e.g., run-time
monitoring) [1]. In contrast, in [1] the author propose an approach to analyze model
transformation specification represented in Alloy. The simulation produces a set of ran-
dom instances that conform to the well-formedness rules and eventually that satisfy
certain properties. Furthermore, existing functional approaches perform model trans-
formation analysis [11, 17], in order to evaluate the transformation validity (generally,
in terms of correctness) before its execution.

7 Conclusion and Future Work
In this paper, we have proposed an approach to detect non-determinism in bidirectional
transformations at static-time, i.e., without executing the transformation. The intention
is to provide transformation implementors with a tool capable of analyzing transforma-
tions in order to return feedback which could resolve potential non-determinism. The
approach has been demonstrated on a small yet significant case study implemented in
JTL. Despite the analysis is completely independent from JTL, in order to make the
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approach completely language-independent additional implementation efforts are re-
quired which we intend to do in the near future. Furthermore, the logical foundation
of the engine makes possible the verification of different formal properties by translat-
ing them in ASP, with the scope to provide a mean for improving the quality of model
transformation specifications.
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