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Abstract The Linked Open Data cloud provides a wide range of different types
of information which are interlinked and connected. When a user or application is
interested in specific types of information under time constraints it is best to ex-
plore this vast knowledge network in a focused and directed way. In this paper we
address the novel task of focused exploration of Linked Open Data for geospatial
resources, helping journalists in real-time during breaking news stories to find
contextual geospatial information related to geoparsed content. After formalising
the task of focused exploration, we present and evaluate five approaches based on
three different paradigms. Our results on a dataset with 425,338 entities show that
focused exploration on the Linked Data cloud is feasible and can be implemented
at very high levels of accuracy of more than 98%.

1 Introduction

The Linked Open Data (LOD) cloud is a rich resource for geospatial information. This
is reflected in the LOD cloud diagram with geospatial Linked Data resources repre-
senting a large part of the overall cloud (cf. Fig. 1). Thanks to the network structure of
Linked Data it is possible to explore both the semantic and geographic context, starting
from a known location entity and following references through to other entities.

Applications can utilise this rich resource when providing geospatial context infor-
mation to end users. For example in the REVEAL project3 we provide real-time news
room social media analytics to journalists, making use of Linked Data resources to
both augment real-time situation assessments, such as a breaking news story of a ma-
jor flooding event, and provide context to assist the verification and analysis of social
media content behind these news stories such as official flood risk assessment data.

In practice, however, exploring the semantic neighbourhood of a location entity
involves following multiple links and dereferencing the URIs representing the corre-
sponding entities. As the outdegree of Linked Data nodes can be high—during our
investigations we typically observed between 15 and 100 outgoing links—this involves
a potentially large network communication and data transmission overhead in collect-
ing the data. The resulting latency in collecting this information might be too much for
time critical applications or use cases where network bandwidth is limited (e.g. when

3 http://revealproject.eu
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Figure 1. The Linked Open Data cloud diagram with DBpedia in the centre [6]. The
data sources in the geographic domain are zoomed and highlighted in yellow.

systems aim for near real time analytics of data streams or when end users explore
geospatial data on mobile devices). This becomes even more an issue when only a few
of the links lead to relevant contextual information such as geospatial resources. Typical
solutions to this challenge involve operating on local and aggregated copies of relevant
Linked Data which are maintained in data caches [11]. Caching approaches are not opti-
mal however for applications where resources are updated frequently or where relevant
entities are not known in advance [5].

In this paper we address the question of whether it is possible to perform a focused
and directed exploration of LOD for geospatial context. To the authors’ knowledge
this challenge has not been investigated before. Following our geospatial use case we
attempt to explore only those links starting from a seed entity which lead to geospatial
resources. This means we prioritise the outgoing links of a location entity to decide
which URIs to dereference first. We base this prioritisation on information encoded in
the semantic links, i.e. the predicates which lead to the referenced LOD entities. Our
hypothesis is that we can learn from the types of references to other entities which
entities are of a geospatial type themselves and are likely to have information about a
geo-coordinate.

We investigate five approaches based on three different paradigms: (a) one approach
using the semantics of RDFS schema definitions for predicates, (b) two variations of
supervised classifiers which use predicate types as features and (c) two approaches
inspired by Information Retrieval (IR) techniques on the descriptiveness of terms. We
have implemented all five approaches and run an evaluation using a real world dataset
with 425,338 entities to benchmark their predictive performance.

This paper proceeds with a detailed description and formalisation of the task of
focused exploration in Sections 2 and 3. We then describe our five prediction models,
explain our design decisions and implementation choices. Afterwards we evaluate the
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Figure 2. Oxford flooding use case and Linked Data resources. Images courtesy of BBC
news, DBpedia and the UK Environment Agency.

approaches and discuss their relative performance in Section 5. In Section 6 we look at
related work, before concluding with a summary and an outlook for future work.

2 Exploring Geospatial Context on the LOD Cloud

A significant share of the LOD cloud deals with geospatial information (cf. Fig. 1).
The entities in this part of the cloud typically provide a geolocation in the form of
coordinates and information related to the entity itself. This information is valuable for
many use cases and applications.

For example during 2014 there was a major flooding event in Oxford, UK. This
flooding was well documented by journalists in the UK, e.g. at the BBC. The REVEAL
project provides real-time geoparsing of location data [7] from large volumes of social
media content (e.g. Twitter streams) visualised using situation assessment maps such
as flood incident maps. Locations are extracted from social media reports and anno-
tated with linkedgeodata.org URIs. This provides us with initial Linked Data entities
for flooded locations from which we can do a first hop of exploration to DBpedia, and
follow-on hops to links containing relevant contextual geospatial information such as
regional population data, socio-economic data for impacted regions and UK environ-
ment flood risk assessment maps. Figure 2 contains some screenshots from BBC News
relating to Oxford flooding, DBPedia Linked Data for Oxford and Open Data resources
such as live flood alert maps from the UK environment agency websites.

Our motivation is to explore the context of each location using semantic links. The
links to the related items are typed to model the semantic relations and can imply that
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certain entities are locations. However, on the LOD cloud one can never be certain that
the semantics hold. Furthermore, the semantic declaration of a location entity does not
necessarily imply the availability of geo-coordinates. At the same time the outdegree
of the nodes makes it difficult to follow all links in time critical applications or in
scenarios where bandwidth is a limiting factor. This motivates the question of alternative
approaches for prioritising or filtering links to related entities and to perform a focused
exploration of Linked Data.

3 Task Definition: Focused Exploration on Linked Data

In the context of our geospatial use case, the task of focused exploration on Linked
Data can be be formalised as follows. We have got a set of entities E modelled on the
Linked Data cloud and represented by URIs. Information about the entities is expressed
as triple statements (s, p, o) where s ∈ E, p is a predicate denoting a specific property
or relation of the entity (also expressed as a URI) and o is the object of this relation and
can be a literal value or another entity URI. The set of all statements is denoted by R.

Among the entities in E there are some which represent locations and have an as-
sociated geo-coordinate. In our setting these are the only location entities which are of
relevance, as they are the only ones which can be located on a map. The W3C recom-
mendation to represent locations is by using the WGS84 standard to define a position
via latitude and longitude. Hence, we define a subset L ⊂ E of relevant location entities
which provide WGS84 coordinates. Formally, we can define L as:

L := {x ∈ E | (x,wgs84:lat, latitude) ∈ R ∧ (x,wgs84:long, longitude) ∈ R} (1)

In our scenario we are now facing a situation in which we are provided with an
entity x ∈ L. Furthermore, we have access to all statements (x, p, o) ∈ R, where the
entity x appears in the subject position. The task we intend to solve is to predict which
of the objects in the set {o : (x, p, o) ∈ R} are also elements of L, i.e. do provide
a geo-coordinate. This focused exploration task can be formalised from two different
points of view: (a) as a classification task and (b) as a ranking task.

Formalising the task as a classification task means that we have to assign a class
label l to each object URI o ∈ E. The label will be l = 1 for the objects which are
predicted to provide a geo-coordinate and 0 for those which are predicted not to provide
a coordinate. This is a simple binary decision which needs to be made on the basis of
some features and information we have available about the URI for o (e.g. the type of
predicate used to link to it). In an application setting, the use of the predicted labels
would be to dereference only those objects o which have a label of l = 1.

When formalising the task as a ranking task, the setting is slightly different. In-
stead of selecting the presumably relevant objects, we sort them from the object most
likely to provide a location to the object least likely. This means we derive a ranking
(o1, o2, . . . , on) of the objects. This formalisation is favorable for application scenarios
where it is possible to dereference and retrieve the information about the objects going
through the ranked list in a top down way. The benefit of the ranked list is that this
approach can be pursued until some limiting criterion is reached (e.g. time, number of
URIs, used bandwidth, etc.).
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4 Approaches

To solve the task we described in Section 3, we are considering five approaches based
on three different paradigms: (a) making use of the semantics in schema information
for RDFS vocabularies, (b) supervised machine learning and (c) Information Retrieval
inspired approaches making use of the discriminativeness of RDF predicates.

4.1 Schema Semantics

Many of the vocabularies used to model data on the LOD cloud are based on RDFS (or
even more expressive languages). This means we can find schematic information about
the predicates and RDF types used to model the entities and their relationship. One
such type of information is rdfs:range which provides the type of objects referenced by
predicates.

The schema semantics approach makes use of this information in order to be able to
prioritise fetching URIs which have been referenced by a predicate with an rdfs:range
of RDF types related to locations. To this end, we collected schema information about
predicates and checked their rdfs:range definitions. If the types defined there semanti-
cally represent locations (e.g. dbpedia:Place and all it subclasses) we consider them as
relevant, otherwise as not relevant.

Formally, this provides us with a set of predicates PL for which we can infer that the
objects they link to are locations. Accordingly, we declare an object o as relevant (i.e.
assign a label of l = 1) if we observe a statement (x, p, o) ∈ R, where p ∈ PL. When
operating in the ranking setting, we simply sort the objects in a way, that all objects
with a label l = 1 are ranked higher than the ones with a label l = 0.4

4.2 Supervised Machine Learning

In this case we tackle the task of focused exploration as a learning problem. The learning
task is based on observation of predicates used to express relations to object entities
and observations of whether the object entities actually did or did not provide geo-
coordinates. Using statistical learning methods, we then infer which combinations of
predicates are more likely to lead to location entities in L than others.

As features of the objects we use types of predicates that are used to reference
them. These represent binary features of predicates being used or not used to refer
from a subject URI to an object URI. To formalise the approach, let us define the set
of predicates as {p1, p2, p3, . . . , pm}. Assume now, we have got an object x which is
referenced by some predicates pi with i ∈ I ⊂ {1, 2, 3, . . . ,m}. Accordingly we can
represent an object x by a feature vector (p1, p2, p3, . . . , pm) where pi = 1 if i ∈ I and
pi = 0 if i /∈ I .

We employed a Naive Bayes classifier which can deal with large datasets, high
number of features and the binary categorial type of the features. We investigated two
variations. When classifying an object, the first variation of the Naive Bayes classifier
is using information about both: presence and absence of predicates. This means we

4 Among the objects with the same label we use a random ordering.
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are also able to infer information about the relevance of the object if certain predicates
are not used to refer to it. The second variation makes use only of the predicates ac-
tually observed for a concrete object. Formally, we can distinguish the two different
approaches by their underlying probabilities:

Pall (x∈L |(p1, . . . , pm)) ∝
∏
i∈I

P (pi=1 |x∈L)·
∏
i/∈I

P (pi=0 |x∈L)·P (x∈L) (2)

Pobserved (x∈L | (p1, . . . , pm)) ∝
∏
i∈I

P (pi=1 | x∈L) · P (x∈L) (3)

The probabilities are estimated from training data using a Maximum Likelihood
estimator and Laplace smoothing [4].

When addressing the classification variation of our task, we can compute for a given
object x both probabilities P (x∈L | (p1, . . . , pm)) and P (x /∈L | (p1, . . . , pm)) and
assign x to the category with the higher probability. For the ranking task we need to
combine both probabilities into a single ranking score. In this case we use the odds

O (x∈L | (p1, . . . , pm)) =
P(x∈L|(p1,...,pm))
P(x/∈L|(p1,...,pm))

as score for ranking.

4.3 Information Retrieval Inspired Approach

The last two approaches are heuristics inspired by tf-idf measures from the domain
of Information Retrieval. The ingredients here are twofold. First, we want to measure
how often a predicate is used to link to a relevant URI. For this we use a frequency
that mimics the term frequency (tf ) measure in tf-idf. Second, we want to distinguish
how discriminative a predicate is on a dataset level. A predicate which appears very
frequently and references to nearly all objects cannot discriminate very well. This fol-
lows the idea of the inverse document frequency (idf ) of terms in Information Retrieval
systems.

We define the predicate relevance frequency (prf) measure for a predicate as:

prf(p) = c(p, L) (4)

where c(p, L) gives the number of links with predicate p which lead to a relevant
object URI. The higher the prf value of a predicate p, the more often p has lead to
a relevant object. This should indicate the importance of the predicate p for finding
relevant objects. An alternative to prf is to normalise the frequency in order to remove a
bias towards very frequent predicates. This leads to the predicate relevance ratio (prr):

prr(p) =
c(p, L)

c(p, ∗)
(5)

where the normalisation term c(p, ∗) gives the overall number of links with predi-
cate p.
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As second measure we define the inverse predicate frequency (ipf) for p as:

ipf(p) = log
(
c(∗, ∗)
c(p, ∗)

)
(6)

where c(p, ∗) is again the overall number of links with predicate p and c(∗, ∗) gives
the entire number of links in the training dataset. The higher the ipf value of a predicate
p, the less often it is used to reference an object URI. The more often the predicate is
used, instead, the lower the ipf value. In particular, a predicate that is used for all objects
is not discriminative at all and will get an ipf value of 0.

We then combine these measures into prf-ipf and prr-ipf weights for a predicate p:

wprf-ipf(p) = prf(p) · ipf(p) wprr-ipf(p) = prr(p) · ipf(p) (7)

When ranking an entity it is assigned a score ρ which corresponds to the aggregated
prr-ipf or prr-ipf weights of all its predicate features. For the classification interpretation
of the task, we need to define a threshold θ for the score. All entities with a score above θ
will be considered as relevant, all entities with a score below θ are labeled as irrelevant.
Also the threshold is derived from the training data. To this end, we compute the mean
relevance score ρrel of all actually relevant objects in the training data. In the same way
we determine the mean relevance score ρirrel of irrelevant data. This two values serve
as reference points for a simple nearest centroid classifier, which corresponds to using
a final threshold θ = ρrel+ρirrel

2 .

5 Evaluation

In this section we address the question of how well the approaches presented in Sec-
tion 4 perform in our focused exploration task for geospatial entities on Linked Data.

5.1 Dataset

For evaluation purposes we constructed a dataset of entities with geolocations and the
entities they refer to. We started from the owl:sameAs links between LinkedGeoData
and DBPedia which provides us with 99,951 entities of locations in DBPedia. These
entities constitute our seed dataset. For each of these entities we want to explore the
context for finding further entities with geo-coordinates.

In the seed data we observed a total of 1,728,633 outgoing links which refer to
URIs. We then excluded all references based on owl:sameAs links, as they would not
lead to new information. Likewise we excluded schema information defined by rdf:type
statements. Furthermore, we filtered out some types of links (foaf:homepage, dbpe-
dia:wikiPageExternalLink, foaf:isPrimaryTopicOf, foaf:depiction) which lead to URIs which
do not represent Linked Data entities but lead to HTML Web documents or other file
formats on the Web. This left us with 425,338 distinct URIs of entities which were
candidates for an exploration5. As features of the objects we considered all predicates

5 Please note that the number of links leading to these entities is even higher, as several entities
are referenced by more than one link predicate.
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which appeared in incoming links to these 425,338 URIs. We only removed rare pred-
icates, i.e. which appeared with less than 10 of the URIs. This lead to a total of 353
different predicates which served as features.

All of the 425,338 URIs were dereferenced and we retrieved the Linked Data de-
scription of the modeled entities. As part of the descriptions we identified a total of
128,171 entities with geo-locations. Thus, for this explored data we were able to pro-
vide a gold standard of relevant objects based on these descriptions.

5.2 Evaluation Methodology and Metrics

We address the task of focused exploration in both possible ways of interpretation: as
ranking task and as classification task. For the ranking task we derived receiver operat-
ing characteristic (ROC) curves and computed the area under curve (AUC) as a metric
to evaluate effectiveness. For the classification task we present the results in the form
of a confusion matrix and compute Precision, Recall, F1 and Accuracy. As the ma-
chine learning and the Information Retrieval models need training data we perform a
cross validation. Specifically we use a 10-times 10-fold cross validation approach. The
results we present in the following are average values over the ten iterations.

5.3 Results

We start to look at the performance under the ranking aspect of the focused exploration
task. Figure 3 shows the ROC curves of all considered approaches. We can see that
the trained models perform far better than the model based on schema semantics. The
curves of the Naive Bayes (NB) models and the prf-ipf -model are all relatively close
to each other indicating a similar performance. Furthermore all curves start with a very
steep inclination and than flatten out at a value close to one. To better see the minor
differences we have enlarged the top left corner of the plot. There we can see that the
Naive Bayes models are slightly better than the Information Retrieval inspired models.
Among the two it is difficult to declare a better approach as the ROC curves cross and
overlap.

When considering focused exploration as a classification task, we observe a sim-
ilar behaviour. In Table 1 we see confusion matrices for all of the approaches6. The
approach based on schema semantics performs relatively poor in identifying relevant
objects. The total number of true positive classification is far lower than for all other
approaches. The approaches making use of a Naive Bayes classifier perform very well.
Most instances are classified correctly, the rate of false classifications is below 2% on
our dataset. Also prf-ipf an prr-ipf show a good performance. Regarding the types of
mistakes made, the two approaches have a opposing behaviour. While prf-ipf is less
prone to erroneously label an irrelevant object as relevant (fewer false positives), prr-
ipf misses less relevant documents (fewer false negatives).

Table 2, finally summarises the performance of the approaches with the aggregated
average measures for Recall, Precision, F1, Accuracy and AUC over the full ten iter-
ations of the 10-fold cross validation. For each of the measures we have marked the

6 The confusion matrices were chosen randomly from one the ten iterations in the cross-
validation. However, the numbers are very stable over all iterations.
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Figure 3. ROC curves of all approaches for the ranking task. The upper left corner of
the plot is enlarged to illustrate details.

Table 1. Confusion Matrices of Approaches

Schema Semantics
Ground truth

Relevant Irrelevant

C
la

ss Relevant 15,227 3,528
Irrelevant 112,944 293,639

NB (all predicates)
Ground truth

Relevant Irrelevant

C
la

ss Relevant 126,993 6,831
Irrelevant 1,178 290,336

NB (observed predicates)
Ground truth

Relevant Irrelevant

C
la

ss Relevant 127,446 7,624
Irrelevant 725 289,543

prf-ipf

Ground truth
Relevant Irrelevant

C
la

ss Relevant 109,107 2,753
Irrelevant 19,064 294,414

prr-ipf

Ground truth
Relevant Irrelevant

C
la

ss Relevant 127,818 10,454
Irrelevant 353 286,713

best performance in bold. Furthermore, we marked the results where we had a signif-
icant improvement over the second best method at confidence level of ρ = 0.01. The
aggregated values basically confirm the observations made above. In general, when con-
sidering the measures F1, Accuracy and AUC, the Naive Bayes classifier making use
of all predicates performs best. In application scenarios, where a high Recall is of im-
portance, instead, the prr-ipf approach achieves the best results with more than 99.7%.
When focusing on Precision, prf-ipf performs best and demonstrated the highest values.
More than 97% of the objects predicted to have geo-coordinates actually did provide
such information. In a setting where we want to focus on promising items this might be
the kind of performance the end user is looking for.
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Table 2. Average performance of approaches († indicates significant improvements at
confidence level ρ = 0.01)

Method Recall Precision F1 Accuracy AUC

Schema Scemantics 0.1188 0.8119 0.2073 0.7262 0.5552
NB (all predicates) 0.9906 0.9491 † 0.9694 † 0.9812 0.9970
NB (observed predicates) 0.9943 0.9436 0.9683 0.9804 0.9968
prf-ipf 0.8512 † 0.9754 0.9091 0.9487 0.9958
prr-ipf † 0.9973 0.9240 0.9592 0.9745 0.9769

One explanation for the very high accuracy in general might also be the dataset.
Given that we started the exploration from location entities on DBPedia and Linked-
GeoData, the overall dataset was biased towards entities from DBPedia. Hence, we in-
tend to extend the evaluation to see if the quality of the supervised approaches remains
at a comparable level, when using larger and even more diverse datasets.

6 Related Work

Previous work related to this paper can be found in three areas, each of which will be
described below: (a) Extraction of geographic entities provides a starting point for our
approach. The fields of (b) focused crawling on the WWW and (c) machine learning
applied to Linked Data in general each share some similarities with our classification
and ranking task, although differences do exist.

6.1 Extraction of Geographic Entities

Work done in the TRIDEC project [7] examined how geographic databases such as
Geonames, OpenStreetMap and GooglePlaces could be used to avoid the need for error
prone named entity recognition and thus increase the overall precision when geoparsing
large volumes of Twitter reports for crisis mapping. This work directly compared crisis
maps from Twitter with official post-disaster environment agency impact assessments,
highlighting just how accurate maps based on large-scale geospatial report crowd sourc-
ing can be. We are building on this approach within the REVEAL project and extending
it by adding a Linked Data contextual lookup capability to provide better report sum-
maries for end users and evidence for a knowledge-based trust model to improve the
trust and credibility of reported data.

6.2 Focused Crawling on the WWW

The problem of prioritising (or classifying) outgoing edges of a graph without further
knowledge about the linked node has been studied in the field of focused Web crawl-
ing for some time [2]. Although the approach described in this paper is not directly
a crawling task, a focused crawler faces similar problems: Given a Web document, it
must determine the order in which to follow outgoing links. This decision has to be
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made without having seen the content of the linked document. The only information
available is the current document’s content as well as anchor texts and URIs of outgo-
ing links. This scenario is similar to our proposed approach where we only know the
current entity (including triples that describe it) and predicates of outgoing links.

To address this prediction problem, some focused crawlers utilize supervised ma-
chine learning classification. Chakrabarti et al. [2] and Diligenti et al. [3] present ap-
proaches that use Naive Bayes classifiers. There is however a difference in the features
being used compared to our setting: While Web crawlers are restricted to textual fea-
tures (like tf-idf -weighted vector representations of documents), our machine learning
approach uses a binary predicate type feature vector that can leverage the semantic
information of Linked Data. Pant and Srinivasan [10] compare different classification
schemes for focused crawling and evaluate performance of Naive Bayes classifiers,
SVMs and neural networks in this scenario. Micarelli and Gasparetti [?] give a survey
of focused crawling in general and adaptive variants in particular. Ahlers and Boll [1]
propose a crawler with geospacial focus that addresses the related task of retrieving Web
pages containing location information. Besides the differences in features, this differs
from our approach in that the crawler uses a lookahead to also follow pages that lead to
locations indirectly. For our task we are only interested in directly linked resources.

6.3 Machine Learning over Linked Data

Machine learning approaches have been applied to Linked Data in the past for the task
of predicting (or rather suggesting) additional properties that could be relevant to a re-
source. This problem is different from the one we address in this paper though, in that
the properties of the examined resource are known in advance. In our scenario, the only
information we have to make a prediction is the predicate that is used to link to the
resource. Oren et al. [9] address the problem of predicting predicates with a classifier
that uses containment and resemblance similarity metrics to generate a ranking of sug-
gested predicates, in addition to a co-occurrence-based approach based on association
rule mining. Nickel et al. [8] present a machine learning approach to Linked Data based
on the factorisation of a sparse tensor, building on the idea “that reasoning can often
be reduced to classifying the truth value of potential statements”. This technique can
be used to predict unknown triples for a resource, as well as for the retrieval of similar
resources. Furthermore there have been efforts to use machine learning for statistical
schema induction, i. e. gathering ontological knowledge from RDF datasets [12].

7 Summary and Conclusions

In this paper we addressed the task of focused exploration of Linked Open Data. We
motivated the task from a concrete use case setting of exploring Linked Data entities
with geo-coordinates and provide a formalisation of the task under two points of view:
(a) as a classification task and (b) as a ranking task. We then present five different ap-
proaches based on the paradigms of using schema semantics, of performing statistical
learning and by adapting weights from the field of Information Retrieval. In an em-
pirical evaluation we compared the performance of all approaches and observed high
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levels of accuracy when using machine learning techniques for implementing a focused
exploration task.

As future work we will investigate the idea of focused exploration also for additional
use cases and types of information. We will also investigate adaptive methods which
adjust to new data and continue to learn while they discover new entities.
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