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Abstract. Component-Based Software Engineering has been recognized
as an effective practice for dealing with the increasing complexity of the
software for vehicular embedded systems. Despite the advantages it has
introduced in terms of reasoning, design and reusability, the software
development for vehicular embedded systems is still hampered by constel-
lations of different processes, file formats and tools, which often require
manual ad hoc translations. By exploiting the crossplay of Component-
Based Software Engineering and Model-Driven Engineering, we take ini-
tial steps towards the definition of a seamless chain for the structural,
functional and execution modeling of software for vehicular embedded
systems. To this end, one of the entry requirements is the metamodels
definition of all the technologies used along the software development.
In this work, we define a metamodel for an industrial component model,
Rubus Component Model, used for the software development of vehicular
real-time embedded systems by several international companies. We fo-
cus on the definition of metamodeling elements representing the software
architecture.
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1 Introduction

During the last decades, industrial requirements on vehicular embedded systems
have been constantly evolving causing an enlargement of the related software
complexity: it has been estimated that current vehicles have more than 70 em-
bedded systems running up to 100 million lines of code [14]. In this context, tra-
ditional software development processes have revealed strong limitations. On the
one hand, industry needs efficient processes for reducing software development
cost and time-to-market. On the other hand, most of the vehicular embedded
systems present real-time properties, which have to be taken into account from
the early stages of the development.

Component Based Software Engineering (CBSE) [15] has been acknowledged
as an effective practice for dealing with the increasing software complexity. It
promotes the development of the system at higher level of abstraction relying on
the definition and reuse of atomic unit of composition, i.e., components. Also,
CBSE allows to annotate components, at design time, with real-time properties
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and constraints, e.g., worst-case execution time, enabling pre-run-time analysis,
e.g., end-to-end response time and delay analysis [15].

Several component-based development processes have been introduced for
improving the vehicular embedded systems software development. EAST-ADL,
together with its follow-up initiatives, is the de facto standard for the soft-
ware development of vehicular embedded systems. Among other contributions,
EAST-ADL has standardized the terminology and promoted separation of con-
cerns through a top-down development process, which makes use of four differ-
ent abstraction layers. Despite the great initial reception, EAST-ADL is rarely
adopted as it is. For instance, considering modern vehicle development, e.g., ve-
hicles product line, it is very unlikely that vehicles are developed from scratch
using top-down approaches. Contrariwise, they are mostly developed using a
bottom-up strategy, reusing pre developed and tested components. In this con-
text, the process defined by EAST-ADL finishes to hamper the software devel-
opment, as the concepts used in each layer are designed for hiding non necessary
information at higher and lower layers. While this can be effective within a top-
down strategy - where the artifacts are enriched as they move forward towards
the development layers - it is counterproductive when used within a bottom-up
strategy - where low-level information, such as component’s real time proper-
ties, need to be available at the earlier development stages. Also, the industrial
vehicle software development is hindered by manual ad hoc translations, needed
to integrate legacy systems and external tools: automation and tools integra-
tion have been acknowledged, by several projects !, as key factors when dealing
with extensive architectures as those for vehicular embedded systems. Informa-
tion management, interoperability and traceability issues can not be fully solved
using CBSE, as the discipline itself was not defined towards such aspects [15].

Model-Driven Engineering (MDE) is a discipline which promotes the sepa-
ration of concerns by using different models for different concerns [16]. Unlike
CBSE, MDE establishes precise relationships among models for the automatic
generation of new models, change propagation and model-synchronization [16].
In this respect, MDE enhances software development targeting important de-
velopment issues, such as information management, traceability, integration and
interoperability [17].

We propose to exploit the crossplay of MDE and CBSE for realizing a seam-
less chain for the structural, functional and execution modeling of software for
vehicular embedded systems. To this end, we believe one of the entry require-
ments is the metamodels definition of all the technologies used along the software
development. In this work we define a metamodel for the Rubus Component
Model (RCM), a component model (CM) used in the development of resource-
constrained real-time vehicular embedded systems, focusing on the metamodel-
ing elements representing the software architecture. As a proof of concept, we
show a model transformation from RCM to AUTOSAR (RCM2AUTOSAR).

The rest of the paper is organized as follows. Section 2 presents the context
of this work. Section 3 introduces the RCM metamodel. Section 4 shows the

! OSLC: http://open-services.net ; CRYSTAL: http://www.crystal-artemis.cu
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RCM2AUTOSAR transformation while Section 5 discusses some related works.
Finally, Section 6 draws conclusions and future works.

2 Context

In this section we present the context of this work by describing the four ab-
straction layers used in the software development of vehicular embedded systems.
Additionally, we give some insights about RCM and the accompanying tool suite.

EAST-ADL

AUTOSAR 1

Vehicle level R(}M
Analysis level - ( !
Design level
Implementation level

Fig. 1. The four abstraction layers as introduced by the EAST-ADL specification

2.1 Abstraction levels

EAST-ADL standardized a top-down development process composed of four dif-
ferent abstraction layers. Despite the top-down strategy is rarely used in industry,
the abstraction layers and the related terminology have been fully adopted. The
four abstraction levels are shown in Figure 1.

Vehicle level The vehicle level captures all the information regarding what
the system is supposed to do. Feature models can be used for showing what
the system provides and, eventually, how the product line is organized in terms
of available assets. Feature models can be complemented with requirements.
The vehicle layer is also known as End-to-End level as it serves to capture
requirements and features on the end-to-end vehicle functionality.

Analysis level In the analysis level, vehicle functions are expressed using formal
notations. The functionality are defined in terms of behaviors and interfaces. Yet,
design and implementation details are omitted. At this stage, high level analysis
for functional verification can be performed.

Design level In this level, the analysis-level artifacts are refined with more
design-oriented details. While the analysis level does not differentiate among
software, middleware abstraction and hardware architecture, the Design level
explicitly separates this areas of the system implementation. Also, software func-
tions to hardware allocation is expressed in this layer.

Implementation level In the implementation layer, the design-level artifacts
are refined with implementation details. At this stage CMs, e.g., AUTOSAR,
RCM, can be used to model the systems in terms of components and interactions
among them. The output of this layer is a complete software architecture used
for the code synthesis.
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2.2 The Rubus Concept

Rubus [10] is a collection of methods, theories and tools for model- and component-
based development of resource-constrained embedded real-time systems; it is de-
veloped by Arcticus Systems in collaboration with Mé&lardalen University. It is
mainly used for the development of control functionality in vehicles by several
international companies. The Rubus concept is based around the RCM[11] and
its development environment Rubus-ICE [10]. Rubus-ICE includes:

— The Rubus Analysis Framework, for expressing real-time requirements and
properties while modeling the system architecture;

— The Rubus Code Generator and Run-Time System, for synthesizing the code
from the specified architecture;

— The Rubus SIMulation Model (RSIM), for simulating and testing the archi-
tecture at all the different hierarchical levels, e.g., components, Electronic
Control Units (ECUs), subsystems, complete distributed system;

— The Rubus Execution Platform, for optimizing the run-time architecture.

With respect to the aforesaid four layers architecture, RCM is currently used
in the implementation level as alternative/complement to AUTOSAR .

3 Providing a Metamodel to RCM

In this section, we present the RCM metamodel. ? focusing on the metamodel
definition of the architectural elements. For reading sake, we present the meta-
model in three sections: Section 3.1 introduces the metamodel backbone, Section
3.2 introduces the metamodel elements for the data flow while Section 3.3 intro-
duces the metamodel elements for the control flow.
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[ H system | node [ Node target [ H Target | E Behavior [E runTimeprofile |
e | T activeTarget : EString L em'r%j
pn TimeProfil
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Fig. 2. Metamodel fragment for the backbone architectural elements

3.1 Backbone

Figure 2 shows the metamodel backbone. The top element is System, which
acts as a container for the whole architecture. System, as all the elments in
the metamodel, inherits from the abstract element NamedElement. A System
element contains one or more Node(s). A Node is a hardware and operating-
system independent abstraction of a Target and groups the software architecture
elements which realize a certain function. Its attribute active Target defines which

2 In this work, we do not seek to explain RCM; the interested reader may refer to [11]
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Target, among those specified, is active for a certain Node. A Target is a hardware
and operating-system specific instance of a Node, which models the deployment
of the software architecture, that is, it contains all the functions which have to
be deployed on the same ECU. A Node can be realized by different Targets,
depending from which hardware and operating system are considered for the
deployment, i.e., PowerPC with Rubus Operating System, Simulated target with
Windows operating system. A Target might contain one or more Mode(s). A
Mode represents a specific application of the software, i.e., start-up mode, low
power mode. A Mode might contains Circuit(s) and Assembly(ies). A Circuit
is the lowest-level hierarchical element which encapsulates basic functions. It is
composed by an Interface, which collects its data and triggering ports (Section
3.2 and Section 3.3), and one, or more, Behavior(s). A Circuit has the run-
to-completion semantic, which means that, upon triggering, it reads data from
the input ports, executes its behavior and writes data on the output ports. Its
attribute activeBehavior specifies which Behavior, among those defined, is active.
A Behavior represents the code to be executed. It has one attribute, entry, and
it is composed by one or more RunTimeProfile(s), which define the Behavior
execution and run-time properties for a specific platform. Interface might be
composed by several State(s). A State is used for preserving data among the
different executions of a behavior. A State has two attributes: initial Value, and
dimension. An Assembly is used for grouping different Circuits or Assemblies; it
does not add any semantic.

3.2 Data elements

As aforesaid, RCM explicitly separates the data and the control flow. Figure 3(a)
shows a metamodel fragment containing the architectural elements for modeling
the data flow. PortData models a generic data port. Data ports are used for
modeling data communication among Circuits or Assemblies. PortData is an
abstract element. PortDataln and PortDataOut specialize PortData and repre-
sent input and output data port, respectively. PortDataOut has a on-to-many
relationship with PortDataln, dataOutToDataln, meaning that a value on the
data output port can be fed to several input ports.

3.3 Triggering elements

Figure 3(b) shows a metamodel fragment containing the architectural elements
for modeling the control flow. PortTrig models a generic trigger port. PortTri-
gIn and PortTrigOut specialize PortTrig; they represent trigger input and output
ports, respectively. Trigger ports are used for specifying precedence and control
over the architectural elements. A trigger output port generates trigger signal
upon the completion of the related Circuit. When receiving a trigger signal, a
trigger input port triggers the execution of the related Circuit’s Behavior. Any
trigger signal after the first received is meaningless, therefore ignored. PortTrig,
PortTrigln and PortTrigOut are abstract. PortTrigln is specialized by PortTrig-
InMode, PortTrigInAssembly and PortTrigInInterface. Similarly, PortTrigOut is
specialized by PortTrigOutMode, PortTrigOutAssembly and PortTrigOutInter-
face. A Mode is composed by, at least, one PortTrigInMode and one PortTrigOut-
Mode; PortTrigOutMode has a one-to-many relationship with PortTriglnMode,
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Fig. 3. RCM metamodel fragments

meaning that a trigger output port can trigger more than one trigger input
port. Similarly, Interface is composed by exactly one PortTrigInInterface and, at
least, one PortTrigOutInterface. Also, PortTrigOutInterface has a one-to-many
relationship with PortTrigInlnterface. Finally, an Assembly might contain Port-
TriglnAssembly and PortTrigOutAssembly, where a PortTrigOutAssembly has
a one-to-many relationship with PortTriglnAssembly.

4 RCM2AUTOSAR transformation

In this section, we describe the RCM2AUTOSAR transformation. Figure 4(a)
depicts a RCM model of a single node real time system composed by three
Circuits, Sensor, Processor and Actuator.

Sensor has one trigger input port, IT, one trigger output port, OT, and one
data output port, SensorOut. Similarly, Processor has two trigger ports and two
data ports, and Actuator has two trigger ports and a data port. Intuitively, the
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model describes a vehicle function in which data are sensed, processed and fed
to the actuator for the stimulation 3.

oo B B
3ms}rr oTL{E b oT—>1 T > oT {3
SensorOut (> (O Processorin  ProcessorOut (> {2 Actuatorin

Sensor Processor Actuator

(a) RCM model of a single-node real time system

v @ platform: fresource/MODELS2014 /complete_metamodel /System.xmi
¥ <> System System
¥ <4 Node Node

¥ 4 Target Target ¥ 4 Circuit Processor ¥ 4 Circuit Actuator
¥ 4 Circuit Sensor ¥ 4 Interface Interface ¥ 4 Interface Interface
¥ 4 Interface Interface < Port Trig Out Interface OT < Port Trig Out Interface OT
<> Port Trig Out Interface OT < Port Trig In Interface IT < Port Trig In Interface IT
<> Port Trig In Interface IT < Port Data Processorin < Port Data In Actuatorin
<> Port Data SensorOut < Port Data ProcessorOut

(b) RCM model serialization
Fig. 4. RCM model and its serialization

Although trivial, the transformation is used for miming typical scenarios in
the software development of vehicle embedded systems. With models as that
depicted in Figure 4(a), manual translations might still appear feasible; never-
theless, in reality, vehicle embedded systems are composed by over 70 embedded
systems and thousands components [14]. Also, the transformation is used for
proving the validity of the metamodel introduced in the Section 3. Figure 4(b)
shows the textual serialization of the model.

Algorithm 1 shows the metacode for the RCM2AUTOSAR transformation.
The algorithm mainly consists of two relationships between RCM and AU-
TOSAR elements, which are: Circuit to Software Component, and PortData
to PortClientServer 4. The former relationship exploits a naming convention for
better translating the elements avoiding flattening the RCM model. The two
involved metamodels do not have the same expressiveness, which means that
the underneath relationship is partial. Indeed the are some elements of RCM
which are ignored from the transformation. Figure 5 shows the serialization of
the AUTOSAR model obtained as a result of the transformation.

5 Related Works

The embedded system research community and the vehicular industry have fo-

cused more and more on the definition of component-based technologies for

embedded vehicular systems. Hereafter, we present and discuss some attempts
targeted towards the development of resource-constrained vehicular real-time
systems.

3 The model contains triggering elements not presented in this work, i.e., clock and
trigger terminator elements. The reader can assume they are responsible for trigger-
ing the circuits and terminating the control flow, respectively.

4 The explanation of the AUTOSAR metamodel is outside the foucs of this work. The
interested reader may refer to the [1].
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Algorithm 1 RCM2AUTOSAR transformation

1: new Virtual FunctionBus V F' B,
2: for each Clircuit ¢ in a Target t do
3:  switch c.name do

4 case (1) //c.name ends in Sensor
5 new SensorSoftwareComponent sc;
6: sc.name = c.name;
7 case (2) //c.name ends in Actuator
8 new ActuatorSoftwareComponent sc;
9: sc.name = c.name;
10: case (default)
11: new SoftwareComponent sc;
12: sc.name = c.name;
13:  for each Interface i in c do
14: for each PortDataln di in i do
15: new RequiredPortClientServer rp;
16: rp.name = di.name;
17: end for
18: for each PortDataOut do in i do
19: new ProvidedPortClientServer pp;
20: pp.name = do.name;
21: pp.recetver = do.dataOutToDataln;
22: end for
23:  end for
24: end for

v '&‘ platform: /resource/MODELS2014 /AUTOSAR/System.xmi
¥ <> System System

¥ 4 Sensor Software Component Sensor ¥ <> Actuator Software Component Actuator
4 Provided Port Client Server SensorOut 4 Required Port Client Server Actuatorin
¥ <4 Software Component Processor < Virtual Function Bus VFB

4 Required Port Client Server Processorin
<4 Provided Port Client Server ProcessorOut

Fig. 5. Serialization of the obtained AUTOSAR model

5.1 EAST-ADL/AUTOSAR

AUTOSAR [1] is an industrial initiative to provide standardized software ar-
chitecture for the development of embedded software for the vehicular domain.
Within AUTOSAR, the software architecture is defined in terms of Software
Components (SWCs) and Virtual Function Bus (VFB). VFB handles the vir-
tual integration and communication among SWCs, hiding the low-level imple-
mentation details. Compared with RCM, EAST-ADL/AUTOSAR describes the
software at a higher level of abstraction. It has no ability to specify and handle
timing information at design time, such as component worst case execution time.
AUTOSAR does not distinguish between data and control flow, as well as be-
tween inter and intra node communication. Contrariwise, RCM was specifically
designed taking timing requirements into account. As shown in Section 3, RCM
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clearly separates data and control flow; also, it has been recently extended with
special network interface components for modeling inter-node communication
[2]. The AUTOSAR sender receiver communication mechanism is very similar
to the RCM pipe-and-filter communication mechanism. In short, AUTOSAR
focuses on hiding the information which RCM highlights.

5.2 TIMMO/TIMMO-2-USE

TIMMO [3] is a large EU research project, which aims to provide AUTOSAR
with a timing model [4]. To this end, it provides a predictable methodology and
language TADL [5] for expressing timing requirements and constraints. TADL is
inspired by MARTE [6], which is an UML profile for model-driven development of
real-time and embedded systems. The TIMMO predictable methodology makes
use of the EAST-ADL and AUTOSAR interplay, where the former is used for the
software structural modeling, while the latter is used for the implementation. Al-
though the TIMMO project has been evaluated upon prototype validators, from
the best of our knowledge, there is no concrete industrial implementation of
the TIMMO project. TIMMO-2-USE [7] follows-up on the TIMMO project. It
presents a major redefinition of TADL and new functionality for supporting the
AUTOSAR extensions regarding timing model. Arcticus Systems has been in-
volved in TIMMO-2-USE project as one of the industrial partners. Both TIMMO
and TIMMO-2-USE attempt to annotate AUTOSAR with a timing model. This
may be hard to accomplish as AUTOSAR aims at hiding implementation details
of execution environment and communication using the Virtual Function Bus,
as shown in Section 4. That is, at the modeling level, there is no information
in AUTOSAR to express low level details, e.g., linking information, which is
necessary to extract the timing model from the software architecture. There is
no focus in these initiatives on how to extract this information from the model
or perform timing analysis or synthesize the run-time framework.

5.3 ProCom

ProCom [8] is a two-layered component model for the development of distributed
embedded systems. It is the result of a research project conducted at Malardalen
University. The upper layer, ProSys, models the system and concurrent sub-
systems communicating by means of asynchronous messages. The lower layer,
ProSave, models each subsystem in terms of functional components implemented
as a piece of code. Being inspired by RCM, ProCom presents several similarities
with it. Both CMs have passive components, clearly separate the control flow
from the data flow and use the pipe-and-filter communication mechanism for
components interconnection. However, ProCom does not differentiate between
intra- and inter-node communication which is unlike RCM. As for AUTOSAR,
also ProCom hides communication details, making hard the extraction of timing
model and the execution of timing analysis [12].

6 Conclusions and Future Works

In the last decades, CBSE has enhanced the software development for vehicu-
lar embedded systems. Nevertheless, industry needs to move further towards a
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seamless development chain for reducing software development costs and time-to-
market. In this respect, one of the major challenge is the definition of a method-
ology and accompanying technologies. In this work we proposed the adoption
of a methodology exploiting the crossplay of MDE and CBSE and took initial
steps towards the realization of the aforesaid seamless chain. We i) motivated the
usage of RCM within the vehicular domain, by highlighting its unique features
against existing CMs, ii) formalized a metamodel based on RCM and ii) proved
the metamodel validity by means of the RCM2AUTOSAR model transforma-
tion. The formalization of the metamodel not only serves as base for embracing
the MDE vision, but it also aims in restoring the separation of concerns which
has been lost during the evolution of the RCM. For sake of space we omitted a
comparison between RCM and its metamodel. As future works, we will investi-
gate further metamodel refinements targeting the enhancement of vehicular tool
chaining while preserving the current expressive power. The RCM2AUTOSAR
transformation outlines the potential benefits gained in having a proper meta-
model for RCM, in terms of automation, interoperability and traceability. As
future investigation direction we will also, together with our industrial partners,
cover the identification of additional languages used along the software devel-
opment for the vehicular embedded systems, with the aim of formalizing their
metamodels and hence enable model transformations for supporting a more ex-
tensive tool chain.
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