
Software Reliability Measurement Experiences Conducted in Alcatel Portugal

Rui Loureno, Alcatel Portugal, S.A.

Abstract

Sofhvare Reliabz.lity measurement is essential for
examining the degree of qualz.ty or relz"abilz.ty of a
developed sojiware system. This paper describes the
experz`ments conducted at Alcatel Portugal, concerning
the use of Sofiware Reliabilz.ty models. The results are
general and can be used to monitor sofiware relz"abilz.ty
growth in order to attain a certain qualz`ty withz.n
schedule. A method based on the analysis of the trend
exhibz"ted by the data collected is used to z.mprove the
predictions. The results show that-.
. It is dicultfor the models to reproduce the observed

faz"lure data when changes in trend do notfoLLow the
models assumptions.

. The Laplace trend test is a major toolfor guz.ding the
partitionz.ng of failure data according to the
assumptions of models relz.abz`Iz.ty growth.

. Predz-ctz`on yields good results over a -time period of a
few months, showing that reliabilitY modeling is a
major tooLfor test/maz"ntenance planning and foLlow
up.

Wtroduction

Software reliability models are used to monitor, evaluate
and predict the quality of software systems. Quantitative
measures provided by these models are a key help to the
decision-making process in our organization.
Since a lot of resources are consumed by software
development projects, by using software reliability
models, our goal is to optimize the use of these resources,
in order to achieve the best quality with lower costs and
optimized schedules.
They enable us to estimate software reliability measures
such as:
. The number of failures that will be found during

some time period in the future
. How much time will be required to detect a certain

number of failures
. What is the mean time interval between failures and

what resources are needed (testing + correction) to
achieve a given quality level

. To perform comparative analysis: "how does my
product compare with others"

With respect to the software life cycle, the phases
requiring careful reliability evaluation are:
. Test: To quantify the efficiency of a test set and

detect the saturation instant i.e., the instant when the
probability of test failure detection becomes very
low.

. Qualification: To demonstrate quantitatively that the
software has reached a specified level of quality.

. Maintenance: To quantify the efficiency of
maintenance actions. At the starting of operational
life, the software might be less reliable as the
operational environment changes. Maintenance
actions restore the reliability to a specified level.

Data requirements needed to implement
these models

To implement these software reliability models, a process
needs to be set up in order to collect, verify and validate
the error data needed to be used as an input"
Since we are using a defect management tool to submit,
manage and track defects detected during the software
development life cycle phases mentioned above, it is
therefore relatively easy for us to retrieve error data from
the software defects database.
This way, it is possible to collect historical and actual
error data from projects, in the form of time intervals
between failures and/or number of failures per time unit,
as software reliability models usually request.
Normally, the following data needs to be available before
we start using the models:
. The fault counts per time unit (where repeated

failures are not counted)
. The elapsed time between consecutive failures
. The length of each time unit used
. The effort spent on test per time unit

ModeBng approach

The basic approach here is to model past failure data to
predict future behavior. This approach employs either the
observed number of failures discovered per time period,
or the observed times between failures of the software.
The models used therefore, fall into two basic classes,
depending upon the types of data the model uses:

1. Failures per time period

QuaTlC'2001 / 169

2. Times between failures

These classes are, however, not mutually disjoint. There
are models that can handle either data type. Moreover,
many of the models for one data type can still be applied
even if the user has data of the other type, applying data
transformations procedures.
For example, one of the models we use with more success
is the S-shaped (SS) reliability growth model. For this
model, the software error detection process can be
described as an S-shaped growth curve to reflect the
initial learning curve at the beginning, as the test team
members become familiar with the software, followed by
a growth and then leveling off as the residual faults
become more difficult to uncover.
Like the Goel Okamoto COO) and the Rayleigh models,
that we also use very often, they can be classified as
Poisson type models (the number of failures per unit of
time is an independent Poisson random variable). Their
performance depends basically on 2 parameters:
. One that estimates the total number of software

failures to be eventually detected.
. Another that measures the efficiency with which

software failures are detected.
In order to estimate the models parameters, we use the
tool CASRE: Computer-Aided Software Reliability tool.
This is a PC based tool that was developed in 1993 by the
Jet Propulsion Laboratory for the U.S. Air Force~

Models assumptions

The modeling approach described here is primarily
applicable from the testing phase onward. The software
must have matured to the point that extensive changes are
not being routinely made. The models can't have a
credible performance if the software is changing so fast
that gathering data on one day is not the same as
gathering data on another day. Different approaches and
models need to be considered if that is the case.
Another important issue of the modeling procedure, is
that we need to know the inflection points, i.e.. the points
in time when the software failures stop growing and start
to decrease. Reliability growth models cannot follow
these trend variations, thus our approach consists of
partitioning the data into stages subsequent to applying
the models. Inflection points are the boundaries between
these stages. A simple way to identify inflection points is
by performing trend tests, such as the Laplace trend test
[3].
The use of trend tests is particularly important for models
such as the S-shaped, on which predictions can only be
accurate as long as the observed data meet the model
assumption of reliability decay prior to reliability growth.
The model CS-shaped) cannot predict future reliability
decay, so that when this phenomenon occurs, a new

analysis is needed and the model must be applied from the
time period presenting reliability decay.
However, this is not the only way of looking at the
problem. Assuming that the error detection rate in
software testing is proportional to the current error
content and the proportionality depends on the current test
effort at an arbitrary testing time, a plausible software
reliability growth model based on a Non-Homogeneous
Poisson Process has also been used.

How to obtain predictions of future
reliability

In a predictive situation, statements have to be made
regarding the future reliability of software, and we can
only make use of the information available at that time. A
trend test carried out on the available data helps choose
the reliability growth model(s) to be applied and the
subset of data to which this (or these) model(s) will be
applied.
As mentioned before, the models are applied as long as
the environmental conditions remain significantly
unchanged (changes in the testing strategy, specification
changes, no new system installation...).
In fact even in these situations, reliability decrease may be
noticed. Initially, one can consider that it is due to a local
random fluctuation and that reliability will increase
sometime in the near future. In this case predictions are
still made without partitioning data. If reliability keeps
decreasing, one has to find out why and new predictions
may be made by partitioning data into subsets according
to the new trend displayed by the data.
If significant changes in the development or operational
conditions take place, great care is needed since reliability
trend changes may result, leading to erroneous
predictions. New trend tests have to be carried out.
If there is insuf6cient evidence that a different phase in
the programs reliability evolution has been reached,
application of reliability growth models can be continued.
If there is an obvious reliability decrease, reliability
growth model's application has to be stopped until a new
reliability growth period is reached again. Then, the
observed failure data has to be partitioned according to
the new trend.

Number of models to be appEed

With respect to the number of models to be applied,
previous studies indicated that there are not "universally
best" models. This suggests that we try several models
and examine the quality of prediction being obtained from
each of them and that even doing so, we are not able to
guarantee obtaining good predictions.
During the development phases of a running project, it is
not always possible to apply several models, because of
lack of time, experience, and analytical and practical

170 t QuaTIC'2001

tools. Usually people only apply one, two or three models
to their data. Analysis of the collected data and of the
environmental conditions helps us understanding the
evolution of software reliability, and data partitioning into
subsets helps us improve the quality of the predictions.

Models caRbratJon and appBcation

The models may be calibrated either after each new
observed data (step-by-step) or periodically after
observation of a given number of failures, say y, (y-step-
ahead). Stepby-step prediction seems more interesting.
However, one needs to have a good data collection
process set up to implement this procedure, since data
might not always be available immediately. In operational
life, longer inter-failure times allow step-by-step
predictions.
Since we have a database with error data from running
projects in our organization (the defects are collected
from the test phase onwards), we have a forma\ procedure
to regularly retrieve, analyse and verify this data.
Then we use a periodical approach, to make predictions,
which can be summarized as follows:
. Every week, we retrieve error data from the projects

we are interested in evaluate software reliability.
. We analyze and validate this data and look for

possible trends, in order to select the best data set that
could be used for doing predictions.

. If models assumptions are met, we apply the models,
validate them and analyze the results they provide.

. Then we collect feedback from people involved in
the projects and, if necessary. take actions that help in
improving products reliability.

Laplace trend test

The Laplace trend test [3] is used to determine the
software reliability trend using data on failures relating to
software:
. Time interval between failures, or
. Number of failures per time unit.
This test calculates an indicator u(n), expressed according
to the data (time interval between failures or number of
failures per time unit). A negative u(n) suggests an overall
increase in reliability between data item 1 and data item n.
A positive u(n) suggests an overall decrease in reliability
between data items I and n. Therefore, if we notice an
increase (decrease) in u(n) then we have a period of local
reliability decrease (growth).
The Laplace trend test is straightforward and much faster
to use than models. The reliability study can be stopped at
this stage if it is believed that the information obtained
has, indeed, answered the proposed questions. Of course,
the obtained information is restricted to:
. Increase in reliability,

. Decrease in reliability,

. Stable reliability.

Case study

We are going to apply the previously described
methodology to the software validation phase of one of
the software projects currently in the maintenance phase
in our company.
The project in question is a large telecom network
management system, with more than 350 000 source lines
of code. The volume and complexity of this software
system make it difficult, if not impossible, to eliminate all
software defects prior to its operational phase. Our aim
was to evaluate quantitatively some operational quality
factors, particularly software reliability, before the
software package started its operational life.
The software validation phase for this project is a 4 step
testing process I) integration test, 2) system test, 3)
qualification test and 4) acceptance test. The first 3 steps
correspond to the test phases usually defined for the
software life cycle. Acceptance test consists of testing the
entire software system in real environment, which
approaches the normal operating environment. It uses a
system configuration (hardware and software) that has
reached a sufficient level of quality after completing the
first 3 test phases described above,
After the validation phase has started, software errors
detected by the test team were submitted into the defects
database.
Failure reports that had at least one of the following
characteristics were rejected:
. Failures not due to software, but data, documentation

or hardware
. Reports related to an improvement request
. Results in accordance to specifications
. Reports failures already accounted for
In order to collect the test effort spent per time unit on a
given project, we used data existent in another database
specially created to collect manpower figures.
Our goal was to evaluate:
. The number of failures that still remained in the

software, after half of the test"planned time was
completed

. The time-point when 95% of all software failures
existing in the software (forecasted by the models)
were found

. The mean time between failures achieved by the end
of system, qualification and acceptance tests

. The amount of test effort (testing + correction) still
needed to achieve the target of 95% of software
defects found.

When we first decided to apply these models, we were
half the way through the system test phase. At that time
we were interested in determine the number of defects

QuaTIC 2001 / 171

remaining in our application so we could re evaluate our
test strategy. The first approach consisted in considering
the entire set of software failures collected up to that time,
to model the software reliability.
To meet this goal, we selected a set of models that used
failures per time period as an input The S-shaped (SS)
and the Broof;:s/MOdey (BM) models were chosen,
independently of the severity (critical, major and rninor),
of the observed failures.
Figure 1 shows that the models had difficulty in
modelling the entire [ailure process.

1800 ` -

Figure 1: BM and SS models fxttfng to the fust data set

Despite the fitting and adjustment problems observed, we
can notice two different behaviours in the software
models predictions. The SS model presents a more
"optimistic" vision of the failure process than the BM.
These differences are often observed. and to identify
which model was trustworthy for predictions, some expert
judgement was needed, since validation statistics, namely
the residue and the Chi-Squared statistics, were not
enough to help us deciding.
The following table summarizes the models results:

Notice that the total number of failures predicted by the
BM model was extraordinary big. This didn't mean that
we didn't consider this model prediction. Instead of using
ifs asymptotic measures, we only considered the

predictions for the next 20 time units, which revealed
more accurate.
After these results have been analysed, the project team
agreed that the system test had serious chances to be
delayed, so they had to re think their test strategy.
Later on in the project, right after the qualification test
phase has started, the questions were whether if the
software would be ready for shipping by the end of this
phase and in case it didn`t, how much effort (testing +
corrections) was still required to achieve the target of
95% of all defects forecasted found. It was an important
decision to be made and the conclusions couid have
serious implications in the project schedule.
In order to improve the accuracy of the new predictions
we decided to restrict the data set to be used by applying
the Laplace trend test.
As it can be seen in figure 2 the Laplace trend test
graphic allowed us to observe periods of local reliability
growth and decrease in the data.

Figure 2: Laplace trend test applied to the
observed failure data.

Considering the models assumptions, the periods selected
for a new reliability evaluation were P2 for the SS model,
since we can notice that there is a decrease in reliability
followed by a reliability growth period, and PI for the GO
and BM models, since there is only reliability growth
observed.
By running the models again we noticed that the deviation
was significantly reduced, thus improving the reliability
evaluation (see figure 3).

172 / QuaTIC`2001

defects found. Figure 4 and table 3 below summarize the
147 -

results obtained by using this model,

Figure 3: SS and BM models fitting to the data by using

P2 and Pl data sets as inputs, respectiveJy

The validation statistics told us that that the observed
residues were now lower, which gave us more confidence
in the models results.
The following table summarizes the new results observed:

Figure 4: SSM model fitting to P2 data set adjusted

set

adjusted

As it can be seen, the model fitting is quite accurate and
reasonably adapted to the failure data observed. These
results were a major help to the project team, who was
able to make more accurate decisions based on the results
provided by this model.
As it was mentioned before, expert judgement provided
by people from the projects, plays an essential role in the
process of deciding which model results to select. Unless
we are pretty shore about the stability of our product, i.e.,
we know that we shouldn't expect too many defects in the
near future, and the test environment is not suppose to
change much, we can not rely significantly on these
results.

Conclusions

Software reliability models are an important aid to the
test/maintenance planning and reliability evaluation,
However, it is well known that no particular model is
better suited for predicting software behaviour for all
software systems in any circumstances. Our work helps
the already existing models to give better predictions
since they are applied to data displaying trends in
accordance to their assumptions,

Based on these results, plus the expert judgement
provided by the project team we considered the S-shaped
model values for reference (optimistic view).
However there was still a question that needed an answer
How much test effort sciJl had to be spenc in order the
software could be 95% error free? To answer to that
question a different model with a different approach was
needed. Since tesc effort is clear2y correlated with the
defects found during the test phases, we decided to use
test effort inputs, in the S-shaped model instead of
calendar time,
To include the test effort data in the model, we had to
restrict the data range to the period from where we had
reliable effort data figures. By doing so, it was possible
for us to evaluate with the same model, the remaining
failures in the software and the test effort needed to find a
given amount of defects in the software system.
We decided to apply this new model Cs-shaped modified -
SSM) to the da set containing , suggest by e

pJace end tt (s 68e 2). th a few adjustmen
in order for the test eo to reBect more accurately e

QuaTIC 2001 / 173

With respect to the application of the proposed method to
the failure data of our network management project 2
models, namely, the S-shaped and Brooks/Motley, have
been analysed according to their predictive capabilities.
The results obtained show that:
. The trend test help partition the observed failure data

according to the assumptions of reliability growth
models; it also indicates the segment of data from
which the occurrence of future failures can be
predicted more accurately;

. The prediction approach proposed for the validation
phases yields good results over a time period of a few
months, showing that reliability modeling constitutes
a major aid tool for test/maintenance planning and
follow up.

References

[II Derriennic H., and Gall G-, "Use of Failure-Intensity Models
in the Software Validation Phase for Telecommunications",
IEEE Trans~ on Reliability, Vol. 44, No. 4, December 1995.
pp. 658-665.

[2] GoeI A.L, and Okumoto K., �Time dependent error
detection rate model for software and other performance
measures", IEEE Trans- on Reliability, Vol. R-'28~ No~ 3,
August 2979, pp. 206 212.

[3] Kanoun K.. Martini M.R.B., and Souza J.M., "A Method for
Software Reliability Analysis and Prediction Application to
the TftOPICO-R Switching System", IEEE Trans. on
Software Engineering, Vol. 2 7. No. 4, April 2991, pp. 334
344.

[4} Lyn M.R., "Handbook of Software Reliability Engineering",
Published by IEEE Computer Society Press and McGraw-
Hill Book Company.

[5] Yarnada S.. Hishitani J., and Osaki S.. �.Software Reliability
growth with a Weibull Test Effort: A Model &
Application", IEEE Trans. on Reliability, Vol. 42, No, l,
March 1993, pp. 2 OO- 206.

174 / QuaTIC'2OOI

