A Process Model for Specifying System Behaviour with UML

Ana Moreira, Jozo Aradjo and Femando Brito e Abreu

Departamento de Informatica
Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa

2825-114 Caparica, PORTUGAL
TEL: + 351-21-2948536; FAX: + 351-21-2948541
{amm, ja, fbal @di.fct.unl.pt

Abstract

Software development projects grew a reputation for poor
guality. This situation is in part due to the lack of
appropriate mechanisms to idemify and express
functional requirements in a flexible yet rigorous fashion.
UML is a siandard modelling language that is able to
specify applications in different levels of abstractions as it
provides a wide range of notations. Among them, we have
collaborations that serve to realise use cases, a powerful
abstraction concept. The behaviour part of a
collaboration is rendered using sequence or collaboration
diagrams. However, the lack of abstraction and
refinement mechanisms compromises the understand-
ability and modularity of a specification. In general, we
can say that abstraction and refinement mechanisms help
obtaining a more maintainable system. Our aim is to
provide abstraction and refinement mechanisms
accomplished by proposing a modelling process.

Keywords:
collaborations

UML, sequence diagrams,

Introduction

It is often the case that software projects fail to
meet user expectations. When looking for root causes of
this sorrow state we often come across the problem of
inadequate reguirements elicitation and evolution. Thus, it
is of utmost importance the availability of powerful
formalisms to help expressing functional requirements
iteratively and incrementally.

The Unified Modelling Language (UML) provides several
concepts, techniques and respective notations to be used
at different levels of abstraction throughout the
development process [2). For example, at a higher
abstract level use cases, as proposed by Jacobson, are
used 1o describe the outwardiy visible requirements of a
system [8]; they describe functional requirements of a
system, are used in the requirements analysis phase of a

project and contribute to test plans and user guides [13].
Use cases are a fundamental tool to help identify a
complete set of user requirements. A use case describes a
complete transaction, including error situations and
exceptions, and normally involves several objects and
messages. Software developers are easily seduced by the
simplicity and potential of use cases; they claim that use
cases are an easily understood technique for capturing
requirements.

Use cases are “a society of classes, interfaces and other
elements that work together to provide some cooperative
behaviour” [2]. They can be refined through
collaborations, each consisting of two parts: the structural
and the behavioural ones. The structural part is specified
in a class diagram. The behavioural part is rendered using
one or more interaction diagrams, like, for example,
sequence diagrams. A sequence diagram shows how
messages exchanged among considered objects are
ordered in time.

In general, abstraction and refinement mechanisms
help obtaining more maintainable systems. Sequence
diagrams are limited since they only provide one level of
abstraction. Besides, there is no explicit support, in UML,
to their refinement. The inability to represent refinement
in those diagrams compromises the understandability and
modularity of a specification, and as such, the overall
quality of this kind of behaviour models.

The aim of this paper is to investigate the specification
steps from uses cases to sequence diagrams, proposing a
process to mode) our findings. This process should
include a mechanism to support refinement of sequence
diagrams. The process should be iterative and
incremental. The availability of a complete set of detziled
use cases and collaborations is not mandatory before we
start drawing sequence diagrams and their refinements.
We can start with the subset of the best understood and
more representative informal requirements, define its use
cases and respective collaborations, and specify the initial

QuaTIC 2001 / 215



sequence diagrams for each collaboration, and then start
their refinement.

In Section 2 we describe the process model.
In Section 3 we apply the process to a case
study. In Section 4 we discuss some related
work. Finally, in Section 5, we draw some
conclusions.

The process
Our goal is to investigate how sequence diagrams can

be refined so that we can specify, step by step, the
behaviour of a system using UML. Qur idea is to propose

a process that derives object-oriented specifications for
the behaviour part of collaborations, starting from a use
case model. Each collaboration is translated into a set of
sequence diagrams, each one offering a partial view of the
objects involved in that transaction. The full integration of
all these views gives the complete functionality of the
systern.

The process, depicted in Figure 1, is composed of three
main tasks: define the use case model, specify the
collaborations and specify the formal model or build a
prototype. In the next sections we describe each task in
terms of its subtasks.

3 Informat
Requirements ldenufy

(=1

F s
hd

<lie

aciers & use

Build tse

diagrams

Deflne use case modet

Deseribe
acrors & vse
cases

F 3
h

Identify aad
descnbe
seenaries

Specify collaborations

Identify
eollaborations

Build & refine
icquence
diagrams

| Hicati Specity formal model/
. F°’"‘1£tp°e‘;;fa ony Q—pl Bulld a prototype

Figure 1. The process model

The process is iterative and incremental. We do not
propose that a complete set of use cases and collaborations
be found and described before we start drawing sequence
diagrams and their refinements. Instead, we can start with
the subset of the informal requirements we understand
better, define its use cases and respective collaberations,
specify the initial sequence diagrams for primary scenarios
and from here refine them as shown in Section 4. In later
iterations we deal with the secondary scenarios.

Task 1: Define the use case model

To define the use case model we need to start by
identifying the actors and corresponding use cases of the
system. An actor represents a coherent set of roles that
users of the use cases play when interacting with the use
cases [2]. A use case is a description of 2 set of sequences
of actions that a system performs that yields an observable

216 7 QuaTIC 2001

result of value 1o an actor. The major subtasks of this task
are: identify actors and use cases; describe actors and use
cases; identify and describe scenarios; build the use case
diagram.

Subtask 1.1: Identify actors and use cases. The first
subtask is 10 identify the actors of the system. Actors are
anything that interfaces with our system. Some examples
are pecple, other software, hardware devices, data stores
or networks. Each actor assumes a role in a given use case.
Then we need to go through all the actors and identify use
cases for each one. Use cases describe things actors want
the system to do. In the UML a use case is always started
by an actor, however there are sitwations where we have
found it useful to initiate use cases from inside the system.
These situations usually appear when the functionality is
time reiated.



Subtask 1.2: Describe actors and use cases. Having
identified all the actors and use cases, we have to describe
them. Each use case must include details about what has to
be done to accomplish the functionality of the use case.
These include the basic functionality, but also alternatives,
error conditions, preconditions and post conditions. The
use case may include conditionals, branching and loops.

In the first iteration we can start by giving a
name and a brief description, one or two
sentences long, to each actor and use case. In
later iterations we can describe each use case
using natural language, scenarios, or pseudo-
code. (The Rational Unified Process gives a
basic format for a use case [9].) We prefer to
use scenarios, described as a list of numbered
steps. A scenario is a particular path of execution
through a use case.

Subtask 1.3: Identify and describe scemnarios. Use cases
can be fully described using a primary scenario and
several secondary scenarios, depending on the use case
complexity. The primary scenario represents the main path
of the use case, ie. the optimistic view. If everything goes
well, then what happens is the primary scenario. The
secondary scenarios describe altermative path, including
error conditions and exception handling. Therefore, one
important step here is to identify and describe, for each use
" case, its primary and secondary scenarios. The initial
iterations should handle only primary scenarios, leaving
secondary scenarios for later iterations.

Subtask 1.4: Build the use case diagram. The use case
mode] shows the system boundaries, the actors and the use
cases. Actors may be related between themselves and with
the use cases they activate. Some use cases can also be
related to other use cases.

A use case diagram uses four types of relationships:
generalization, include, extend and association. While
generalization is 2 relationship that can be used between
actors and between use cases, include and extend are
relationships between use cases. On the other hand, an
association is the communication path between an actor
and a use case. Actors that have similar roles, and
therefore activate (are associated with) the same subset of
use cases, can inherit from each other, so that the
complexity (number of associations from actors to use
cases) of the diagram can be alleviated. Include allows the
insertion of additional behaviour into a base use case that
explicitly describes the insertion. Extend allows the
insertion of additional behaviour into a base use case that
does not know about it [12].

Task 2: Specify the collaborations

The second task is composed of the two main subtasks:
identify collaborations; build and refine sequence
diagrams.

Subtask 2.1: Identify collaboratioms. Having specified
the use cases we can start identifying and associating
collaborations to realise them. The collaborations will
realise the use cases through class diagrams and
interaction diagrams (i.e. sequence and collaboration
diagrams). We associate a collaboration to each use case
and start modelling it using a sequence diagram. The new
objects identified in each sequence diagram will originate
a corresponding class in the class diagram. Therefore, the
class diagram can be built in parallel with the sequence
diagrams. The collaboration diagrams can then be
generated from each sequence diagram by using any
CASE tool such as the Rational Rose 2000 [11].

Subtask 2.2: Build and refine sequence diagrams. Each
sequence diagram draws a scenario. In the first iterations
we only deal with the primary scenarios, leaving the
secondary scenarios for later iterations, when the main
functionality of the system is already specified.

The different levels of abstraction of sequence diagrams
depend on the kind of objects that we want to have at each
level. We propose that the most abstract level contains
only one object that represents the system. The next level
contains boundary objects, the next one contains control
objects and, the final one, provides the entity objects.

Having this in mind, we can follow the steps below to
refine each sequence diagram of a collaboration:

e Consider the systern as a black box, represented in
the diagram as an object, and identify the
interactions between it and the users (actors) that
activate the scenario; ‘

e  Look at the object that represents the whole system
and “open” it to show a boundary object and again
an object that represents the rest of the system
{constituted of control and entity objects); -

¢ Draw another sequence diagram where we show
the boundary and the control objects, and the
object that represents all the entity objects;

+ Finally, another sequence diagram has to be drawn
to show the entity objects.

Each of the sequence diagrams above can have levels of
abstraction in terms of the "granularity” of messages, i.e.,
a message can be refined into a subsequence of messages
between two objects.

Other refinements include, for example, the refinement
of the boundary object into its component objects, if any.
Entity objects can also be complex objects that we may
want 1o decompose in later iterations.

QuaTIC’2001 / 217



Task 3: Specify the formal model/Build the
prototype

At this point we can follow different directions,
depending on the organization interests and the application
being built. One alternative is to keep specifying the
systemn building a formal, or at least rigorous, model. We
have been working on that line of research, by formaljzing
the UML models using LOTOS [3], Object-Z [6], SDL
(7. The formalisation process 1is not always
straightforward and depends on the * skills and
familiarisation with the formal description techniques of
the analysts involved in the specification. Therefore,
derivation rules should be provided to generate a
corresponding formal specification of a collaboration, in
order 10 encourage and speed the formalisation process.

Another different perspective is to build a prototype of
the future system by using an evolutionary approach. The
main advantages are to accelerate the delivery of the
systemn and stimulate the user engagemnent with the system.
Here we can use high-level languages for prototyping as
for example Smalltalk, Lisp, Prolog and 4GL.

Applying the process to a case study

To exemplify the process described in the previous
section consider the case study we have chosen [4].
"In a road traffic pricing system, drivers of authorised
vehicles are charged at toll gates automatically. They
are placed at special lanes called green lanes. For that,
a driver has to install a device (a gizmo) in his vehicle.
The registration of authorised vehicles includes the
owner’s personal data and account number (from
where debits are done automatically every month),
and vehicle details. A gizmo has an identifier that is
read by sensors installed at the toll gates. The
information read by the sensor will be stored by the
system and used to debit the respective account. The
amount to be debited depends on the kind of the
vehicle.

When an authorised vehicle passes through a green
lane, a green light is turned on, and the amount being
debited is displayed. If an unauthorised vehicle passes
through it, a yellow light is turned on and a camera
takes a photo of the plate (that will be used to fine the
owner of the vehicle).

There are green lanes where the same type vehicles
pay a fixed amount (e.g. at a toll bridge), and ones
where the amount depends on the type of the vehicle
and the distance travelled (e.g. on 2 motorway). For
this, the system must store the entrance toll gate and
the exit tol] gate.”

218 / QuaTIC 2001

Define the use case model

A use case model shows a set of actors and use cases
and the relationships among them; it addresses the static
use case view of a system. In our example, the actors
identfied are:

o Vehicle-driver: thus comprises the vehicle, the gizmo

installed on it and its owner;

» Bark: this represents the entity that holds the vehicle
owner’s account;

» Operator: this may change the values of the
system, and ask for monthly debits.

The use cases identified are:

e Register a vehicle: this is responsible for registering 2
vehicle and communicate with the bank to
guarantee a good account;

o Pass a single tollgate: this is responsible for reading
the vehicle gizmo. checking on whether it is a good
one. If the gizmo is ok the light is turned green,
and the amount to be paid is calculated and
displayed; if the gizmo is not ok, the light turns
yellow and a photo is taken.

e Pass a two-point tollgate: this can be divided into two
parts. The in toll checks the gizmo, turns on the
light and registers a passage. The out toll also
checks the gizmo and if the vehicle has an entrance
in the system, tums con the light accordingly,
calculates the amount to be paid (as a function of
the distance travelled), displays it and records this
passage. (If the gizmo is not ok, or if the vehicle
did not enter in 2 green lane, the behaviour is as in
the previous case.)

o Pay bill: this, for each vehicle, sums up all passages
and issues a debit to be sent to the bank and a copy
to the vehicle owner.

Having identified and briefly described use cases, we
need to identify their primary scenarios. Each use case is
composed of a primary scenario, obviously. and several
secondary scenari¢s. For example the use case “pass a
single toll gate” has the primary scenario “pass single toll
gate ok and the secondary scenarios “pass single toll gate
without a gizmo” and “pass single toll with an invalid
gizmo”. In this paper we will use the primary scenario to
illustrate the process. Figure 2 shows the primary scenario
“pass single toll gate ok™.



1. The use case starts when the vehicle-driver
passes a single toll.

2 The single tollgate reads the gizmo identifier.
3 The system verifies the gizmo identifier.

4. The system turns the light ereen, calculates
the amount to be paid and displays it.

5. The system stores the usage details and the
use case ends.

Figure 2. “Pass single tollgate ok” primary scenario

Secondary scenarios are described in 2 similar way. The
set of all use cases can represented in a use case diagram,
where we can see the existing relationships between use
cases and the ones between use cases and actors. Figure 3
shows the use case diagram of the road traffic system.

>3

Registervehicle 7 Bank

C|> il : COperalor
/\\Payam &
VehicleCriver ©
\ PassSingleToliGate

DO

PassTwoPeintTolGate

Figure 3. The use case diagram of the Road Traffic
Pricing System

Later versions of the use case diagram could show
relationships between use cases, in patticular some of the
use cases share a common set of events in the beginning
{which could be shown by adding an extra use case related
to the original use cases with the “include™ relationship).
Extend relationship could also be applied to deal with
error situations, for example.

Specify collaborations

Collaborations realise uses cases, through a realisation
relationship (represented by =2 dashed arrow). To
exemplify this, we choose the use case
PassSingleTecllGate, which deals with the three
scenarios already mentioned in the previous section. The

primary scenario deals with authorised vehicles and the
two secondary scenarios deal with non-authorised
vehicles. The associated collaboration for that is
PassSingleTollGateManagement. Figure 4 shows
the realisation of the use case by that collaboration.

PassSingleTollGate PassSingleTollGateManagement
Figure 4. The realisation of the use case for vehicle
passing a single tollgate

In the next Section, we show in detail the
process concerning the refinement of sequence
diagrams.

Build and refine sequence diagrams. In a sequence
diagram, objects are shown as icons whose naming
scheme takes the form obiectName:ClassName.
However, the name of the class can be omitted, as in
Figure 5. Amrows represent the messages. Messages are
nurmnbered and may carry arguments. between brackets.

Figure 5 shows the initial sequence diagram for the
primary scenario authorised vehicles, passing a single toll
(PassSingleTollGateOk), with the actor :VehicleDriver
and the object that represents the collaboration. The
system reads the gizmo and, if this is OK, the actor
VehicleDriver sees the light green and the amount to be
paid in the display. This represents the externally visible
behaviour of the systern.

Figure 5. Initial sequence diagram

O

R

: VehicleDriver

PassSingleToll
GateManagernent

| 1: Read |

2: (green) ‘

3: {amount)

As a rule of thumb, boundary objects receive all the
events to the system. The system outputs are also made
available through this type of objects. In the first iteration,
and to start with, we can only represent the interaction
point, without having to detail the exact boundary objects.

QuaTIC 2001 / 219



Figure 6 shows the sequence diagram with the boundary
object SingleToll.

A

(VehicleDriver
1:Read

;. SingleToll

Lgcntgl& Daa

2: CheckGizmo J

3: RtnCheckGizme \ ‘
4 (green)
!
|
1

<___,__,.

5: DisplayAmeuntiamount) - :
6: (amount) !F i

|
I

[
|
I

Figure 6. Sequence diagram with boundary object

Boundary objects should only be responsible for
accepting inputs to the system or displaying outputs from
the system. Therefore, we need a control object whenever
we have complex functionality to deal with. Note that
control objects are not always needed. As a rule, we may
just ignore them to start with, and then add them if the
boundary objects handle the major decisions of the

collaboration. Other strategy is to accept a control object

no matter the complexity of the functionality of the
collaboration, and in a *validation step” remove the ones
that we see as unnecessary, removing all those that only
play the role of intermediary, ie., those that receive an
event and delegate that same event, without processing it.
We will follow this strategy. Figure 7 shows the sequence
diagram with a2 boundary and a contro] object.

220 / QuaTIC’2001

X

sunsnnces [ 52 N
:VehgleDrver | ToR Processor I
ﬁ 1. Read
e L 2: CheckBizmo{id) l .
> % Chock@izmo(id)
e e

I i
i [ 4: RtnCheckGizmele k)>‘1;

5; RInG heckBizmo

l
10 {green; | 1

|
111:Di=pluy.&mounl(umnunl)‘ i J
12: tamouny)| "= =
5

[ [13: AddUaage(id, amouny

Figure 7. Sequence diagram with boundary and
control objects

Now we need to deal with the DataManagement
object. Having dealt with the two external layers
(boundary and conwol) we have to identify the entity
objects, 1.e., the key abstractions of the system. Entity
objects hold the information that must be provided for the
completion of the functionality of the scenario. Figure 8
shows the sequence diagram with the entity objects.

From here we could jump to task 3 (specify the formal
model or build the prototype}. In later iterations we could
add still more detail to the sequence diagram. In particular,
there is more we can do about boundary objects. We know
that a toll gate has to have a sensor to detect the vehicles
and to read their id number. We can also see that a light
may be turned green or yellow, depending on whether we
are authorised users or unauthorised ones. Also, we see the
amount to be paid being shown on a display. Finally, if we
want 1o deal with unauthorised vehicles, a camera should
photograph their plate numbers. Therefore, single toll gate
is composed of: sensor, light, display, camera. Figure 9
refines the previous sequence diagram by incorporating
these objects. As we are dealing with the primary scenario
we do not need to represent the camera object in this
diagram.

In summary, after the sensor reads the gizmo, this must
be checked to see if it is valid; the toll gate tumms the light
green and shows the amount that will be debited from the



vehicle’s owner bank account. The amount must be
calculated according to the type of the vehicle and
displayed. Finally, the passage must be recorded in usage
details.

Specify the formal model/Build a

prototype

The objective of this work is not to describe the
formalisation process or to build the prototype. In the
former alternative, the approach described in [1], which
formalises collaborations using Object-Z, can be applied
here. An evolutionary prototype can be built by using
adequate tools, e.g. 4GL.

el
A

Gate
Processpr

. Singlefell

_VehicleDriver

Al 1. Read ] 5 Bhackai L
L s Sy : CheckGizmo(id) |

3: Check Gizmalid) k

Related work

There is some work that describes a process to specify
system behaviour. Dano er al. [5] present an approach
based on the concept of use case to support the
requirements engineering process. This is a “domain
expert-oriented” where the domain expert actively
participates in the specification of the use cases. These are
described by tables and Petri nets. Rolland and Archour
[10] have developed CREWS. This is a2 model of use case
together with a guidance process for authoring use cases.
The approach involves contextual description of the use
cases and writing and refining scenarios. Sendall and
Strohmeir [14] describe an approach that supplements use
case descriptions with operation schemas. These are
declarative specifications of system operations written in
OCL [15].

| -Gizmo :| :Vehicle!| -Prge || sUsage |
Details | |: Tabe ! Details J

\
} | 4 Rincheckaizmeo(oky
|

<
5: RinChec kG izmo(ok) i

|
.
T |

6 Ge«Type(id)l

7: RtnGetTypeltype) |
1}

9: AnGelPrc e{amount)
|

10; {green) |

11: DisplayAmount(amount)

12. (amount)

e

[

!

|
13: AddUs agedd, amount}

i
8 GetPrice(type) Lr
[
|
;
'
i

|
|
|
l
!
|
l
|
i
I
|
l

|
i i !
| | I T
| ! | |
! | I i
| 1 |

Figure 8. Sequence diagram with boundary, control and entity objects

QuaTIC 2001 / 221



5 . i = ye 5 T
e [T [ [ AL e e
I LN Fih:nd "1" 2: Chaak ) E e X ‘ | | [
o 4 L9
] i ‘ gnmcmuanmn(nﬁr: I i ‘
l l &: AE bagkQiznofok) | : ’ | [ ‘
<————“ ; 1:ocﬂm(ld‘) -
| T < R
| g
: GetPricel -
| l I 1?)::Ind-?r|::‘:mu% >|-1‘| ‘
| oo
12 (ﬂml) ‘l“ e ta: & | J I |
15! (amount) [ 14 DinplayAm oun|( s ount) .Tl i ‘ E |
'6'—_—‘U & J J e AaJUuaou(lu. -rllmml) \ \
| | I
i A ; \ ] [ I l
|

Figure 9. Refined sequence diagram showing the Single Toll components

Our previous work [1] shows the formalisation of
use cases and respective collaboration using
Object-Z, but refinement is not considered.

Related areas of interest are the transformation
of dynamic models and the construction of
supporting tools. In [17] he proposes a mechanism
to transform sequence diagrams into state charts. In
[16] work has been done where the Maude system
(based on rewriting logic) is used to automate
transformations of  UML behaviour models, and
can be applied to our process.

Conclusions and future work

The process described m this paper provides a
systematic way to specify the behaviour of 2
system, starting from use cases, identfying
collaborations. and describing the respective
sequence diagrams. These are refined to different
levels of abstraction according to the kind of
objects represented in each level. This improves
the work of the analyst as he/she can look at the
system from different levels of abstraction,
enhancing the communication among the different
members of the development team. The outcome is

222 / QuaTIC*2001

a quality result is a better quality for the
specification.

For future work we are planning to formalise
and automate the refinement process. The
formalisation is important if we want to guarantee
consistency the different levels of abstraction of
the diagrams. The automation is essential as
updating the models is 2 highly time-consuming
and error-prone activity if done manually. Other
related area of interest is the mansformation of
dynamic models. We are investigating, for
example, how sequence diagrams can be
transformed into state diagrams.

References

[1] Aradjo, J. and Moreira, A.: "Specifying the
Behaviour of UML collaborations Using Object-
Z", America Conference on Information Sysicms,
Long Beach, California, August 2000.

[2] Booch, G., Rumbaugh, I. and Jacobson, I.: The
Unified Modeling Language User Guide, Addison-
Wesley, Reading, Massachusetts, 1998.

[3] Brinksma, E.: LOTOS: a Formal Description
Technique Based on Temporal Observational
Behaviour, 1SO 8807, 1988.



(4]

(3]

[6]

(71

(81

(9]

[10]

(11]

(12]

[13]

(14]

f15]

[16]

[17]

Clark, R. and Moreira, A.: Constructing Formal
Specifications from Informal Requirements,
Software Technology and Engineering Practice,
IEEE Computer Society, Los Alamitos, California,
July 1997, pp. 68-75.

Dano, B., Briand, H. and Barbier, F.: "An
Appreoach Based on the Concept of Use Case to
Produce Dynamic Object-Oriented Specifications”,
Proceedings of the 3rd IEEE Intemnational
Symposium on Requirements Engineering, 1997.
Duke, D., King. P, Rose, G. A. and Smith, G.:
"The Object-Z Specification Language,” Technical
Report 91-1, Department of Computing Science,
University of Queensland, Australia, 1991.
Ellsberger, J., Hogrefe, D. and Sarma, A.: SDL,
Prentice-Hall, 1997,

Jacobson, I Object-Oriented Software
Engineering -~ a Use Case Driven Approach.
Addison-Wesley, Reading Massachusetts, 1992.
Jacobson, L., Booch, G. and Rumbaugh, J.: The
Unified Software Development Process, Addison-
Wesley, 1999.

Rolland C. and Achour., B.. “Guiding the
Construction of Textual Use Case Specifications™.
Data and Knowledge Engineering Journal, Vol. 25,
N° 1-2, North-Holland, March 1998.

ROSE, CASE tool,
http.//www rational.com/products/rose.
Rumbaugh, I.. Jacobson. 1. And Booch, G.: The
Unified Modeling Language Reference Manual,
Addison-wesley, 1999.

Schneider, G. and Winters, J. P.: Applying Use
Cases — A Practical Guide. Addison-Wesley, 1998.
Sendall, S. and Strohmeier, A.: “From Use Cases
to Systern Operation Specifications™. UML 2000 —
Advancing the Standard, Lecture Notes in
Computer Science, Vol 1939, Springer-Verlag,
October 2000.

Warmer, J. and Kleppe, A.: The Object Constraint
Language: Precise Modeling with UML, Addison-
Wesley, 1998.

‘Whittle, J., Aradjo, J., Aleman, J.L.F., and Toval,
A.: Rigorously Automating Transformations of
UML Behaviour Models, Workshop on Dynamic
Behaviour, UML 2000, York, October 2000.
Whitde, J. apnd Schumann, J.: Generating
Statecharts from Scenarios, Proceedings of the
International Conference on Software Engineering,
Limerick, Ireland, 2000.

QuaTIC'2001 / 223



