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Abstract
Metrics are useful mechanisms for improving

the quality of soji`vvare products and also for
determim.ng the best ways ro help practitioners and
researchers. UnfortunateLy, almost all the metrics
put forward focus on program characteristz`cs
disregardz.ng databases. However, databases are
becomz`ng more compLex, and it is necessary to
measure schemata complexity in order to understand,
monz.tor, control, predict and z.mprove database
development and ma"zntenance projects. In fizz's
paper, we will present dierent measures in order to
measure the complexz-ty that aJTects the
maintainabz"Iz.ty of the relational, object-relatz`onal
and active database schemas. However it is not
enough to propose the metrics, a formaL validatz.on
is also needed for know!ng thez.r mathematz.caL
characteristics. We wz.II present the two main
tendencz.es in metrics formal validation, axz`omatz.c
approaches and measurement theory" However,
research !nto sofiware measurement is needed
from a theoretz`caL but also jrom a practical point of
view ( (121). For thz`s reason, we wz`LL also present
some of the experz�ments that we have developedfor
the dijferent ia`nds of databases.

1.IntroducBon

Software engineers have been proposing large
quantities of metrics for software products,
processes and resources ([l0], [23], [37]). Metrics
are useful mechanisms for improving the quality of
software products and also for determining the best
ways to help practitioners and researchers ([26]).
Unfortunately, almost all the metrics put forward
focus on program characteristics (e"g" McCabe
([21]) cyclomatic number) disregarding databases
([34]). As far as databases are concerned, metrics
have been used for comparing data models rather
than the schemata itself. Several authors ([2], [16],
[17], [18], [32], [33]) have compared the most well
known models such as  NIAM and relational
using different metrics. Although we think this
work is interesting, metrics for comparing schemata
are needed mostly for practical purposes, like

choosing between different design alternatives or
giving designers limit values for certain
characteristics (analogously to value 10 for Mc
Cabe complexity of prograrns). Some recent
proposals have been published for conceptual
schemata ([20], [24], [28]) but for conventional
databases, such as relational ones, nothing has been
proposed, excepting normalization theory.

Databases are becoming more complex, and it is
necessary to measure schemata complexity in order to
understand, monitor, control, predict and improve
database development and maintenance projects. In
modem Information Systems (IS), the database has
become a crucial component, so there is a need to
propose and study some measures to assess its
quality.

Database quality depends on several factors:
functionality, reliability, usability, efficiency,
maintainability and portability ([15]). Our focus is
on maintainability because maintenance accounts
for 60 to 90 percent of life cycle costs and it is
considered the most important concern for modem
IS departments ([1l], [22], [29]).

The International Standard, ISO/IEC 9126,
distinguishes five subcharacteristics for
maintainability: analysability, changeability,
stability, testability and compliance. Analysability,
changeability and testability are in turn influenced
by complexity ([191). However, a general
complexity measure is "the impossibLe holy grail"
([9]), i.e" it is impossible to get one value that
captures all the complexity factors of a database
,Henderson-Sellers ([14]) dis6nguishes three types
of complexity: computational, psychological and
representational, nd for psychological complexity
he considers three components: problem
complexity, human cognitive factors and product
complexity. The last one is our focus and for our
purposes the product will be databases.

Our goal is to propose internal measures for
databases, which can characterise their complexity
helping to assess database maintainability (the
external quality characteristic). In the next section
we will present the framework followed to define
and validate database metrics.

Section three summarizes the proposed metrics
for relational, object-relational and active
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databases. In section four the formal validation of
some of these metrics is described. Some empirical
validations are presented in section five and
conclusions and future work will be presented in
sections six and seven respectively.

2. A Framework for Developing and
Validating Database Metrics.

As we have said previously, our goal is to
define metrics for controlling database
maintainability. However, metrics definition must
be done in a methodological way, so it is necessary
to follow a number of steps co ensure the reliability
of the proposed metrics. Figure 2 presents the
method we apply for the metrics proposal.

(such as [37] or [36]) specify a general
framework in which measures should be
defined. Measurement theory gives clear
definitions of terminology, a sound basis
of software measures, criteria for
experimentation, conditions for validation
of software measures, foundations of
prediction models, empirical properties of
software measures, and criteria for
measurement scales.
Empirical vaBdaOon. The goal of this
step is to prove the practical utility of the
proposed metrics~ Although there are
various ways of performing this step,
basically we can divide the empirical
validation into experimentation and case
studies. Experimentation is usually made
using controlled experiments and the case
studies usually work with real data. Both
of them are necessary, the controlled
experiments as a first approach and the
case studies for backing up the results .

METRIC
~ ~,~ .--. ~ . .

Figure 2. Steps followed in the definition and
validation of the database metrics

In this figure we have three main activities:

Metrics definition The first step is the
proposal of metrics. Although it looks
simple, it is an important one in ensuring
metrics are correctly defined. This
definition is made taking into account the
specific characteristics of the database we
want to measure and the experience of
database designers and administrators of
these databases.
TheoreBeal validation. The second step is
the formal validation of the metrics. The
formal validation helps us to know when
and how to apply the metrics. There are
two main tendencies in metrics validation:
the frameworks based on axiomatic
approaches and the ones based on the
measurement theory. The goal of the first
ones is merely definitional. The most well-
known frameworks of this type are those
proposed by [351, [3] and [251. The
measurement theory-based frameworks

In this section, we present the different metrics
that we have proposed for relational. object
relational and active databases. For each kind of
database, a brief summary of its main
characteristics is given and an example using
ANSI/ISO SQL:1999 code is used to illustrate the
calculation of the proposed metrics.

Metrics for Rela6onul Databases
Traditionally, the only indicator used to

measure the "quality" of relational databases has
been the normalization theory, with which [13]
propose to obtain a normalization ratio. However,
we think that normalization is not enough to
measure complexity in relational databases, so we
propose the following four metrics in addition to
normalization ([5]):

Number of aun.buzes (NA)
NA is the number of attributes in all the tables

of the schema.

Depth Referential Tree (DRT)
DRT is defined as the lenooth of the longest

referential path in the database schema. Cycles are
only considered once.

80 / QuaTIC2001



Number of Foreign Keys (NFK)
The  NFK  metric  is  defined  as  the  number  of

foreign keys in the schema.

Cohesion of the schema (COS)
COS is defined as the sum of the square of the

number                   of tables in each unrelated subgraph of the
database schemata that is:

|USj 2 |US|                                          number of unrelated subgraphs
COS - .S  JV7 USi -   NTUSi   number   of   tables   in   the

z=1  `  related                        subgraph "i"

We apply the previous metrics to
the following example (suppliers-and-parts
database) taken from [61:

CREATE TAELE S
( S#               S#,

SNAME      NAME,
STATUS    STATUS,
CITY          CITY,
PRIMARY KEY (S#));

CREATE TABLE P
( P#                    P#
PNAME           NAME,
COLOR             COLOR,
WEIGHT          WEIGHT,
CITY                CITY,
PRIMARY KEY (P#));

CREATE TABLE SP
( S#                      S#,
P#                      P#,
QTY                  QTY,
PRIMARY KEY (S#, P#),
FOREIGN             KEY

NCES S,
FOREIGN             KEY

REFERENCES P);

In this schema the value of the metrics are: NA
= 12, DRT = 1, NPK = 2, COS = 9.

Metrics for Object-Relotional Databases
An object-relational database schema is

composed of a number of tables related by
referential integrity, which have columns that can
be defined over simple or complex (user-defined)
data types. We define the next metrics for object-
relational databases ([4J):

Schema Si~e (SS)
We define the size of a system as the sum of the

size of every table (TS) in the schema:

(S#)

(P#)

This    relational    database    schema    can    be
represented as

a relational graph (see figure 3).

The table size (TS) measures the size not only
in terms of the simple columns (defined using
simple domains) bot also in terms of complex
columns (defined using user-defined classes).
Formally it can be defined as the sum of the total
size of the simple columns (TSSC) and the total
size of the complex columns (TSCC) in the table.
TSSC is simply the number of simple columns in
the table (considering that each simple domain has
a size equal to one). TSCC is defined as the sum of
complex columns size (CCS). The size of a
complex column is no more than the size of the
class hierarchy above the columnand is defined as
weighted by the number of complex columns which
use the hierarchy. Finally, the size of a class
hierarchy is defined as the sum of the size of each
class on the hierarchy. For more details about the
precise definition of this metric see [4J.

Complexz"ty of references between tables (DRT,
NFK)

In object-relational databases, other
characteristics of relational databases are preserved.
Metrics related with the referential integrity, such
as NI:;K and DRT proposed in the previous section,
can also be used.

We can apply these metrics to the following
example:

S

SP

P

CREATE TYPE project AS (
name       CHAR(10),

budget     FLOAT);Fiooure 3. Relational graph for the example
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CREATE TYf E employee AS (
emp_num              INTEGER,
level                       INTEGER,
salary_base            FLOAT,
proj                        project)
method calc_salary()

RETURNS DECIMAL(72));

Let us assume that all methods have a
cyclomatic complexity equal to 1. In table 1, we
present the value of the size of each data type.

Table 1. Size values of the data types

Then, the values for the other metrics are: SHC
= 6, CCS = 3, TSCC = 6, TSSC - 2, TS = 8, SS -
8.

Mebies for Active Databases
When measuring active databases, we can make

use of the notion of a triggering graph as defined in
[I]. A triggering graph is a pair <S, L> where S
represents the set of ECA rules, and L is a set of
directed arcs where an arc is drawn from Si to Sj if
Sis action causes the happening of an event
occurrence that participates in Sjs events. This
notion of triggering graph is modified by [71 in two
aspects. Firstly, arcs are weighted by the number of
potential event occurrences produced by the
triggering rule Ci.e. Si) that could affect the rule
triggered off (i.e. Sjs event). Secondly, the nodes
S are extended with the set of transactions T. A
transaction is an atomic set of (database) actions
where any of these actions could correspond to an
event triggering one or more rules. Therefore, T
nodes will have outgoing links but never incoming
links, as we assume that a transaction can never be
triggered from within a rules action or another
transaction.

The active database could be characterised by the
following triggering graph measures ([8]):

. NA the minimum number of anchors
required to encompass the whole set of
potential causes of Si. An anchor is a
transaction node of the triggering graph,

which has a link (either directly or
transitively) with at least one cause of Si.
D, the distance. This measure corresponds to
the length of the longest path that connects
Si with any of its anchors.
TP, the triggering potential. Given a
triggering graph < S, L >, and a node of the
graph, rule Si, the number of causes of Si, is
the sum of weights of the incoming arcs
arriving at Si. The triggering potential for a
rule R is the quotient between the number of
potential causes of Si, and Sis event
cardinality~

CREATE TRIGGER ONE
AFTER DELETE ON TABLE3
FOR EACH ROW
WHEN (OLD.NUMBER=3)
BEGIN

DELETE FROM TABLE4 WHERE TABLE4.S#=:TABLE3"J#;
END ONE;
CREATE TRIGGER TWO
AFTER DELETE ON TABLE4
FOR EACH ROW
WHEN COLD.NAME=.SMITH)
BEGIN

DELETE FROM TABLE5 WHERE TABLE4.S#=:�OLD.S#:
END TWO;

For trigger ONE, NA = I, TP = I and D = I, for
trigger TWO, NA = 1, TP = 1, and D = 2.

4. Metrics Formaf VaRdation

There are two main tendencies in metrics
validation: the frameworks based on axiomatic
approaches and the ones based on the measurement
theory. The goal of the first ones is merely
definitional~ On this kind of formal framework, a
set of formal properties is defined for a given
software attribute and it is possible to use this
property set for classifying the proposed measures.

The most well-known frameworks of this type
are those proposed by [351, [3], and [25]. The main
goal of axiomatisation in software metrics research
is the clarification of concepts to ensure that new
metrics are in some sense valid. The measurement
theory based frameworks (such as [37} or {36])
specify a general framework in which measures
should be defined, Measurement theory gives clear
definitions of terminology, a sound basis of
software measures, criteria for experimentation,
conditions for validation of software measures,
foundations of prediction models, empirical
properties of software measures, and criteria for
measurement scales. The discussion of scale types
is important for statistical operations.

In this section, we will present the results of the
formal verification of the presented metrics with

Name data
type

SHOT SADT
SAS + CAS

DTS

ROJECT 0 2+O 2
EMPLOYE I 3+2 6
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results of an experimentation depend on careful,
rigorous and complete experimental design. A
claim that a measure is valid because it is a good
predictor of some interesting attribute can be
justified only by formulating a hypothesis about the
relationship and then testing the hypothesis ([10]).

In the rest of this section, we summarize
different experiments that we have done with some
of the metrics discussed in this chapter. All of these
initial experiments require further experimentation
in order to validate the findings. However, these
results can be useful as a starting point for future
research.

A complete description of the experiments can
be found in [5] for relational database metrics, in
[27] for object-relational ones and in [8] for active
ones.

Relational experiment
Our objective was to demonstrate that the

metrics related with referential integrity (DRT and
) can be used for measuring the complexity of

the relational database schema, which influences in
the relational database understandability. The
participants of this study were computer science
students at the University of Castilla-La Mancha
(Spain), who were enrolled in a two-semester
databases course. Based on the results of this
experiment, we concluded that the number of
foreign keys in a relational database schema is a
more solid indicator of its understandability than
the length of the referential tree. This metric is not
relevant by itself, but can modulate the effect of the
number of foreign keys in a database system

Object-relational experiment
Five object-relational databases were used in

this experiment with an average of 10 relations per
database. Five subjects participated in the
experiment. All of them were experienced in both
relational databases and object-oriented
programming. To analyze the usefulness of the
metrics, we used two techniques: C4.5 ([30]), a
machine learning algorithms, and RoC ([31]), a
robust Bayesian classifier. In conclusion, both the
techniques discover that the table size is a good
indicator for the understandability of a table. The
depth of the referential tree is also presented as an
indicator by C4.5 but not clearly by RoC. The
number of foreign keys does not seem to have a
real impact on the understandability of a table.

Active experiment
Our objective was to assess the influence of D

and TP in rule interaction understandability.
However, such understanding could be influenced

R
E    NFK
L

V
E    DRT

N

A     NA
L

COS

BRIANO ET
AL(1996)

ZUSE(1998)

COMPLEXHY ABOVE THE ORDINA

LENGT ABOVE THE ORDINAL

SLZ ABOVE THE ORDINA

512 RATIO

SS SIZ ABOVE THE ORDINA

TS SIZE ABOVE THE ORDINA

NA COMPLEXITY ABOVE THE ORDINA

TP NOT
CLASSIPIAB

ABOVE THE ORDINA

D LENGT ABOVE THE ORDINA

Table 4. Summary of metrics formal validation

With the axiomatic approach results we can
know, for example for relational databases that we
need some metrics for capturing cohesion and
coupling and covering all the characteristics
defined by the framework From the measurement
theory results we can know what kind of
operations it is possible to make with the defined
metrics, the statistics that it is possible to apply to
them etc.

5. Metrics Empirical VaBdaHon

In the past, empirical validation bas been an
informal process relying on the credibility of the
proposer. Often , when a measure was identified
theoretically as an effective measure of complexity,
practitioners and researchers began to use the
metric without questioning its validity. Today,
many researchers and practitioners assume that
validation of a measure (from a theoretical point of
view) is not sufficient for widespread acceptance.
They expect the empirical validation to demonstrate
that the measure itself can be validated. Useful

|
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by how the reasoning is conducted. As rules can be
seen as cause-and-effect links, two questions can be
posed by the user: "what effects can a rule produce
(forward reasoning)?" or "how can an effect be
produced (backward reasoning)?". The participants
of the experiment were final-year computer science
students at the University of the Basque Country,
who were enrolled in an advance database course
The students were already familiar with relational
database, and some laboratories were previously
conducted on the definition of triggers. For the
forward experiment, we concluded that the
triggering potential in a database schema is a solid
indicator of its understandability, and that the
distance is not relevant by itself and cannot
modulate the effect of the triggering potential. For
the backward experiment we concluded that both
metrics are solid indicators of its understandability.

All the experiments described need to be
replicated in order to obtain more consistent results.
However, controlled experiments made in a
laboratory are useful as a starting point but present
some problems such a the large number of variables
that can cause differences- Therefore, it is
convenient to also run case studies working with
real data.

6. Conclusions and Future Work

Databases are becoming more complex, and it is
necessary to measure schemata complexity in order
to understand, monitor, control, predict and
improve database development and maintenance
projects. Database metrics could help designers,
choosing between alternative semantically
equivalent schemata, to select the most
maintainable one and understand their contribution
to the overall IS maintainability.

We have put forward different measures (for
internal attributes) in order to measure the
complexity that affects the maintainability (an
external attribute) of the relational, object-relational
and active database schemas.

However it is not enough to propose the
metrics, a formal validation is also needed for
knowing their mathematical characteristics. We
have presented the two main tendencies in metrics
formal validation, axiomatic approaches and
measurement theory. Although the information
obtained from both techniques is different, the final
objective is the same, to obtain objective
mathematical information of the metrics we are
working on.

However, as we have indicated previously,
research into software measurement is needed
also from a practical point of view. We have

presented some of the experiments that we have
developed for the different kinds of databases.
Nevertheless controlled experiments have problems
(like the large number of variables that causes
differences) and limits (they do not scale up, are
done in a class in training situations, are made in
vitro and face a variety of threats of validity).
Therefore it is convenient to run multiple studies,
mixing controlled experiments and case studies. For
these reasons, a more in depth empirical evaluation
is under way in collaboration with industrial and
public organizations in "rear situations.
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