
Towards Automating the Analysis of Integrity
Constraints in Multi-level Models

Esther Guerra and Juan de Lara

Universidad Autónoma de Madrid (Spain)
{Esther.Guerra, Juan.deLara}@uam.es

Abstract. Multi-level modelling is a technology that promotes an incre-
mental refinement of meta-models in successive meta-levels. This enables
a flexible way of modelling, which results in simpler and more intensional
models in some scenarios. In this context, integrity constraints can be
placed at any meta-level, and need to indicate at which meta-level below
they should hold. This requires a very careful design of constraints, as
constraints defined at different meta-levels may interact in unexpected
ways. Unfortunately, current techniques for the analysis of the satisfia-
bility of constraints only work in two meta-levels.
In this paper, we give the first steps towards the automation of mecha-
nisms to check the satisfiability of integrity constraints in a multi-level
setting, leveraging on “off-the-shelf” model finders.

1 Introduction

Multi-level modelling [3] is a promising technology that enables a flexible way
of modelling by allowing the use of an arbitrary number of meta-levels, instead
of just two. This results in simpler models [4], typically in scenarios where the
type-object pattern or some variant of it arises.

While multi-level modelling has benefits, it also poses some challenges that
need to be addressed in order to foster a wider adoption of this technology [10].
One of these challenges is the definition and analysis of constraints in multi-level
models. In a two-level setting, constraints are placed in the meta-models and
evaluated in the models one meta-level below. This enables the use of “off-the-
shelf” model finders [1, 6, 12, 13, 16] to reason about correctness properties, like
satisfiability (is there a valid model that satisfies all constraints?). However, con-
straints in multi-level models can be placed at any meta-level and be evaluated
any number of meta-levels below, which may cause unanticipated effects. This
makes the design and reasoning on the validity of constraints more intricate.

In this paper, we present the first steps towards a systematic method for the
analysis of a basic quality property in multi-level modelling: the satisfiability of
integrity constraints. We base our approach on the use of “off-the-shelf” model
finders, which are able to perform a bounded search of models conforming to
a given meta-model and satisfying a set of OCL constraints. Since the state-
of-the-art model finders only work in a two-level setting, we need to “flatten”
the multiple levels in a multi-level model to be able to use the finders for our

63

purposes. This process has two orthogonal dimensions, which account for the
number of meta-levels provided to, and searched by, the finder. Thus, we discuss
alternative flattening algorithms for different analysis scenarios. As a proof of
concept, we illustrate our method through the analysis of MetaDepth multi-
level models [9] using the USE Validator [13] for model finding.
Paper organization. Section 2 introduces multi-level modelling as designed
in the MetaDepth tool. Section 3 presents properties and scenarios in the
analysis of multi-level models. Section 4 discusses strategies for flattening multi-
level models for their analysis with standard model finders. Section 5 describes
the use of a model finder to analyse MetaDepth models. Last, Section 6 reviews
related research and Section 7 draws some conclusions and future works.

2 Multi-level modelling

We will illustrate our proposal using a running example in the area of domain-
specific process modelling, while the introduced multi-level concepts are those
provided by the MetaDepth tool [9]. The example is shown in Fig. 1 using
MetaDepth syntax (left) and a graphical representation (right). For the textual
syntax, we only show the two upper meta-levels of the solution.

The main elements in a multi-level solution are models, clabjects, fields, ref-
erences and constraints. All of them have a potency, indicated with the @ symbol.
The potency is a positive number (or zero) that specifies in how many meta-levels
an element can be instantiated. It is automatically decremented at each deeper
meta-level, and when it reaches zero, the element cannot be instantiated in the
meta-levels below. If an element does not define a potency, it receives the potency
from its enclosing container, and ultimately from the model. Hence, the potency
of a model is similar to the notion of level in other multi-level approaches [3].

As an example, the upper model in Fig. 1 contains a clabject Task with
potency 2, thus allowing the creation of types of tasks in the next meta-level (e.g.,
Coding), and their subsequent instantiation into concrete tasks in the bottom
meta-level (e.g., c1). Task defines two fields: name has potency 1 and therefore
it receives values in the intermediate level, while startDay has potency 2 and is
used to set the start day of specific tasks in the lowest meta-level.

In MetaDepth, references with potency 2 (like next) need to be instantiated
at potency 1 (e.g., nextPhase), to be able to instantiate these latter instances at
level 0. The cardinality of a reference constrains the number of instances at the
meta-level right below. Thus, the cardinality of next controls the instantiations
at level 1, and the cardinality of nextPhase the ones at level 0.

Constraints can be declared at any meta-level. In this case, the potency
states how many meta-levels below the constraint will be evaluated. Constraint
C1, which ensures uniqueness of task names, has potency 1, and therefore it will
be evaluated one meta-level below. Constraint C2 has potency 2, and hence it
states that two meta-levels below, the start day of a task must be less than the
start day of any task related to it by next references. C2 needs to refer to the
instances of the instances of the reference next, two levels below, but the (direct)

64

1 Model ProcessModel@2 {
2 Node Task {
3 name@1 : String[0..1];
4 startDay : int;
5 next : Task[∗];
6

7 C1@1: $ Task.allInstances()−>excluding(self)−>
8 forAll(t | t.name<>self.name) $
9 C2: $ self.references(’next’)−>forAll(r |

10 self.value(r)−>forAll(n |
11 self.startDay < n.startDay)) $
12 }
13 }
14

15 ProcessModel SEProcessModel {
16 abstract Task SoftwareEngineeringTask {
17 final : boolean = false;
18 C3: $ self.startDay>0 $
19 }
20

21 Task Coding : SoftwareEngineeringTask {
22 name = ’Coding’;
23 nextPhase : SoftwareEngineeringTask[1..∗]{next};
24 C4: $ self.final = false $
25 }
26

27 Task Testing : SoftwareEngineeringTask {
28 name = ’Testing’;
29 nextPhase : Testing[∗]{next};
30 C5: $ self.final implies self.nextPhase−>size()=0 $
31 C6: $ Coding.allInstances()−>exists(c |
32 c.startDay = self.startDay) $
33 }
34 }

Task

next
* name@1: String[0..1]

startDay: Integer

SoftwareEngineeringTask: Task

Coding: Task Testing: Task

final: boolean=false
nextPhase:
next

1..*

nextPhase:
next

*

c1: Coding

t1: Testing

@2

@1

@0

name=‘Coding' name=‘Testing'

C2: self.references('next')->forAll(r |

 self.value(r)->forAll(n|

 self.startDay < n.startDay))

C3: self.startDay>0

final=false

startDay=1

final=false

startDay=1

C1@1: Task.allInstances()->excluding(self)->forAll(t |

 t.name <> self.name)

C6: Coding.allInstances()->exists(c |

 c.startDay = self.startDay)

C5: self.final implies

 self.nextPhase->size()=0

C4: self.final=false

c2: Coding

final=false

startDay=5

t2: Testing

final=true

startDay=5

?

Fig. 1. Running example in MetaDepth syntax (left) and diagram (right).

type of the instances two levels below is unknown beforehand because it depends
on the elements created at level 1. In the example, it means that C2 cannot make
use of nextPhase to constrain the models at level 0. Instead, to allow the access
to indirect instances of a given reference, MetaDepth offers two operations:

– references returns the name of the references that instantiate a given one. For
example, self.references(’next’) evaluated at clabject c1 yields Set{’nextPhase’},
as the type of c1 defines the reference nextPhase as an instance of next.

– value returns the content of a reference with the given name. For example,
self.value(’nextPhase’) evaluated in clabject c1 yields Set{c2,t2}.

In the intermediate meta-level, constraints C3, C4, C5 and C6 have potency 1,
and thus they need to be satisfied by models at the subsequent meta-level. The
purpose of C3 is to enforce positive starting days, where note that the feature
startDay is defined one meta-level above. C4 ensures that Coding tasks are not
final, while C5 requires final Testing tasks to have no subsequent tasks. Finally,
C6 is an attempt to enable some degree of parallelization of tasks, where the
modeller wanted to express that any coding task should have a testing task
starting the same day.

65

The lower meta-level in the figure is an attempt (with no success) to instan-
tiate the model with potency 1. The modeller started adding the coding tasks c1

and c2 at days 1 and 5. Then, to satisfy the constraint C6, he added two testing
tasks starting at days 1 and 5 as well. Coding tasks must be followed by some
other task to avoid they are left untested (controlled by the cardinality 1..* of
nextPhase), and the start day of consecutive tasks must be increasing (controlled
by constraint C2). Thus, the modeller connected the tasks as shown in the figure
to satisfy these constraints. However, then, he realised that the coding task c2

needed to be followed by some other task. Connecting c2 with t2 is not a valid
solution because this would violate constraint C2. Therefore, how can he connect
the testing tasks to the coding tasks to satisfy all constraints? The next section
explains how model finders can help in this situation.

3 Analysis of multi-level models: properties and scenarios

A meta-model should satisfy some basic properties, like the possibility of creating
a non-empty instance that does not violate the integrity constraints. Several
works [7] rely on model finding techniques to check correctness properties of
meta-models in a standard two meta-level setting, like:

– Strong satisfiability: There is a meta-model instance that contains at least
one instance of every class and association.

– Weak satisfiability: There exists a non-empty instance of the meta-model.
– Liveliness of a class c: There exists some instance of the meta-model that

contains at least one instance of c.

Model finding techniques can also be helpful in a multi-level setting. If we
consider level 0 in Fig. 1, a model finder can help model developers by providing
a suitable model completion, or indicating that no such completion exists. At
level 1, it can help to check the consistency of the integrity constraints at levels
1 and 2 through the analysis of the abovementioned correctness properties. At
level 2, it can provide example instantiations for levels 1 and 0, to ensure that
potencies of the different elements at the top-most level work as expected.

However, model finders work in a two-level setting (i.e., they receive a meta-
model and produce an instance). To enable their use with several meta-levels,
we need flattening operations that merge several meta-levels into one, which can
then be the input to the finder. The flattening operations must take into account
how many meta-levels are going to be used in the analysis (depth of model), as
well as the number of meta-levels in the generated snapshot (height of snapshot).

Fig. 2 shows the different scenarios we need to solve for the analysis of multi-
level models. Fig. 2(a) is the most usual case, where only the definition of the top-
most model is available, and we want to check whether this can be instantiated
at each possible meta-level below (2 in the case of having an upper model with
potency 2). Thus, in the figure, the depth of the model to be used in the analysis
is 1, while the height of the searched snapshot is 2. As standard model finders

66

@2 depth of

model:1

(a) (b) (c) (d)

@1

@0
height of

snapshot:2

@2
depth of

model:2
@1

@0 height of

snapshot:1

@2
depth of

model:1

@1

@0

height of

snapshot:1

@2
depth of

model:1

@0 height of

snapshot:1

 gap: 1 @1

Fig. 2. Different scenarios in the analysis of a multi-level model.

only provide snapshots of models residing in one meta-level, we will need to
emulate the generation of several meta-levels within one.

In Fig. 2(b), the models of several successive meta-levels are given, and the
purpose is checking whether there is an instance at the next meta-level (with po-
tency 0) satisfying all integrity constraints in the provided models. This situation
arises when there is the need to check the correctness of the constraints intro-
duced at a meta-level (e.g., @1) with respect to those in the meta-levels above
(e.g., @2). This scenario would have helped in the analysis of the constraints at
levels 2 and 1 in Fig. 1. In Fig. 2(b), the depth of the model to be used in the
analysis is 2. Thus, we will need to flatten these two models into a single one,
which can be fed into a model finder for standard snapshot generation.

Fig. 2(c) corresponds to the scenario that standard model finders are able to
deal with, where a model is given, and its satisfiability is checked by generating
an instance of it. However, the meta-model to be fed into the solver still needs
to be adjusted, removing constraints with potency bigger than 1.

Finally, in Fig. 2(d), only the top-most model is available, and the designer
is interested just in the analysis of the lowest meta-level. This can be seen as
a particular case of scenario (a), where after the snapshot generation, the in-
termediate levels are removed. This scenario is of particular interest to verify
the existence of instances at the bottom level with certain characteristics, like
a given number of objects of a certain type, or to assess whether the designed
potencies for attributes work as expected.

4 Flattening multi-level models for analysis

In this section, we use the running example to show how to flatten the depth of
models to be used in the search, and how to deal with the height of the searched
snapshot. Scenarios where both the height and depth are bigger than one are
also possible, being resolved by combining the flattenings we present next.

4.1 Depth of analysed model

To analyse a model that is not at the top-most meta-level (like in Fig. 2(b),
where the goal is analysing level 1), we need to merge it with all its type models
at higher levels. This permits considering all constraints and attributes defined
at such higher levels. For simplicity, we assume the merging of just two meta-
levels. Fig. 3(a) shows this flattening applied to the running example: levels 1
and 2 are merged, as the purpose is creating a regular instance at level 0.

67

First, the flattening handles the top level. All its clabjects (Task in the exam-
ple) are set to abstract to disable their instantiation. All references are deleted
(next), as only the references defined at level 1 (nextPhase) can be instantiated
at level 0. All attributes are kept, as if their potency is bigger or equal than the
depth (2) plus the height (1), they still can receive a default value. Constraints
with potency different from 2 (C1) are deleted as they do not constrain the level
we want to instantiate (level 0). As the figure shows, the notion of potency does
not appear in the flattened model. This can be interpreted as all elements having
potency 1.

Then, the model at potency 1 is handled. For clabjects, the instantiation
relation is changed by inheritance. In this way, SoftwareEngineeringTask is set to
inherit from Task instead of being an instance of it. This is not required for Coding

and Testing, as they already inherit from SoftwareEngineeringTask. This flattening
strategy allows clabjects in level 1 to naturally define all attributes that were as-
signed potency 2 at level 2 (startDay), and receive a value at level 0. For attributes
that receive a value at level 1, we need to emulate their value using constraints.
Thus, in the example, we substitute the slot name from Coding and Testing, by
constraints C7 and C8. The attributes, references, and constraints defined by the
clabjects at level 1 are kept. Finally, we generate two operations references and
value to emulate the homonym MetaDepth built-in operations by collecting
the knowledge about reference instantiation statically. That is, they encode that
nextPhase in Coding and Testing are instances of next. As a result of this flattening,
we can use a model finder to check whether there is a valid instance at level 0.

4.2 Height of snapshot generation

In this scenario, we need to emulate the search of a set of models spawning
several meta-levels. For simplicity, we assume the scenario in Fig. 2(a), aimed at
generating two models in consecutive levels from a meta-model with potency 2.

A possible strategy is to split each clabject C with potency 2 into two classes
CType and CInstance holding the attributes, references and constraints with po-
tency 1 and 2, respectively, and related by a reference type. However, this solu-
tion gets cumbersome if C is related or inherits from other clabjects, and requires
rewriting the constraints in terms of the newly introduced types and relations.

Another possibility is to proceed in two steps: first a model of potency 1 is
generated, which is promoted into a meta-model that can be instantiated into a
model of potency 0. However, this solution may require rewriting the constraints
with potency 2 in terms of the types generated at potency 1. Moreover, it does
not consider all constraints at a time, which may result in different attempts
before two valid models at potencies 1 and 0 are obtained.

Instead, we propose the flattening in Fig. 3(b), which adds a parent abstract
class Clabject that makes explicit typical clabject features, like ontological typing
and potency. All constraints are kept, but they need to be changed slightly to
take into account their potency. Thus, C1 is added the premise self.potency=1 im-

plies... so that it gets only applicable to tasks with potency 1, and similar for con-
straint C2 for tasks at potency 0. To emulate the potency of attributes, they are

68

Task

name: String[0..1]

startDay: Integer

SoftwareEngineeringTask

Coding Testing

final: boolean=false
nextPhase

*

nextPhase

*

C7:

self.name= 'Coding'

C8: self.name=‘Testing'

operation references (r:String) : Set(String) =

 if (r='next') then Set{'nextPhase'}

 else Set{} endif

C2:

self.references('next')->forAll(r |

 self.value(r)->forAll(n|

 self.startDay < n.startDay))

C3: self.startDay>0

operation value (r:String) : Set(Task) =

 if (r='nextPhase') then

 self.nextPhase

 else Set{} endif

Task
next

*

name: String[0..1]

startDay: Integer[0..1]

Clabject

potency: int

type 0..1
C9: self.potency>=0 and self.potency<=1

C10: not self.type.oclIsUndefined() implies

 self.potency = self.type.potency - 1
instance

C11: (self.potency=0 implies self.instance->size() = 0) and

 (self.potency<1 implies not self.type.oclIsUndefined())

*

C12: self.potency < 1 implies self.name.oclIsUndefined()

C13: self.next->forAll(n |

 (self.potency = n.potency) and

 ((not self.type.oclIsUndefined())

 implies self.type.oclAsType(Task).next->

 exists(ntype | ntype = n.type)))

operation references (r:String) : Set(String)=

 if (r='next') then Set{'next'} else Set{} endif

operation value (r:String) : Set(Task)=

 if (r='next') then self.next else Set{} endif

C2: self.potency=0 implies

 self.references('next')->forAll(r |

 self.value(r)->forAll(n|

 self.startDay < n.startDay))

C1: self.potency=1 implies

 (Task.allInstances()->excluding(self)->

 forAll(t | t.name <> self.name))

(a) Scenario with depth=2 and height=1. (b) Scenario with depth=1 and height=2.

C6: Coding.allInstances()->exists(c |

 c.startDay = self.startDay)

C5: self.final implies

 self.nextPhase->size()=0

C4: self.final=false

Fig. 3. Flattenings for different depths and heights.

set to optional (cardinality [0..1]), and we add constraints ensuring that the at-
tributes are undefined in the meta-levels where they cannot be instantiated. For
example, name has originally potency 1, and hence it can only receive a value in
tasks of potency 1 (constraint C12). Constraint C13 ensures that references (like
next) do not cross meta-levels and are correctly instantiated
at every meta-level. The latter means that, if two tasks at
potency 0 are related by a next reference, then their types
must be related via a next reference as well. While this does
not fully captures the instantiation semantics as there is no
explicit “instance-of” relation between references with differ-
ent potencies, it suffices our purposes. Finally, constraints C9

to C11 ensure correct potency values for types and instances.
As an example, the figure to the right shows a snapshot with
height 2, generated by USE from the definition in Fig. 3(b).

5 Automating the analysis of constraints

Next, we illustrate our method by checking the satisfiability of MetaDepth
multi-level models with the USE Validator [13] for model finding. The checking
includes the following steps: (1) flattening of multi-level model according to the
selected scenario; (2) translation of flattened model into the input format of USE;
(3) generation of snapshot with the USE Validator tool; and (4) translation of the
results back to MetaDepth. We will demonstrate these steps for the running
example, considering the scenario in Fig. 2(b), i.e., we start from models at
potency 2 and 1, and check their instantiability at potency 0.

Fig. 3(a) shows the merging of levels 1 and 2 for the running example, while
part of its translation into the input format of USE is listed below. The USE

69

Validator does not currently support solving with arbitrary strings, but they
must adhere to the format ’string<number>’. Thus, we translate strings to this
format, where ’next’ is substituted by ’string0’ (lines 12 and 27), ’nextPhase’ by
’string1’ (lines 28 and 31), and so on.

1 model ProcessModel
2

3 abstract class Task
4 attributes
5 name : String
6 startDay : Integer
7 operations
8 references(r:String) : Set(String) = Set{}
9 value (r:String) : Set(Task) = Set{}

10 constraints
11 inv C2:
12 self.references(’string0’)−>forAll(r |
13 self.value(r)−>forAll(n |
14 self.startDay < n.startDay))
15 end
16

17 abstract class SoftwareEngineeringTask < Task
18 attributes
19 final : Boolean
20 constraints
21 inv C3: self.startDay > 0
22 end

23

24 class Coding < SoftwareEngineeringTask
25 operations
26 references(r:String) : Set(String) =
27 if (r=’string0’)
28 then Set{’string1’}
29 else Set{} endif
30 value(r:String) : Set(Task) =
31 if (r=’string1’)
32 then self.nextPhase
33 else Set{} endif
34 constraints
35 inv C4: self.final=false
36 inv C7: self.name = ’string2’
37 end
38

39 ...
40

41 association Coding nextPhase between
42 Coding[∗]
43 SoftwareEngineeringTask[1..∗] role nextPhase
44 end

If we try to find a valid instance of this definition, we discover that the only
model satisfying all constraints is the empty model. Thus, the model at level 1 is
neither weak nor strong satisfiable. Revising the constraints at level 1, we realise
that C6 does not express what the designer had in mind (that for any coding
task, there should be a testing task starting the same day), but it expresses the
converse (i.e., for each testing class, a coding class exists). One solution is moving
constraint C6 from class Testing to Coding, modified to iterate on all instances of
Testing (i.e., Testing.allInstances()...). If we perform this change, the resulting model
becomes satisfiable, and the USE Validator generates the snapshots in Fig. 4.

Weak satisfiability is checked by finding a valid non-empty model. The USE
Validator allows configuring the minimum and maximum number of objects and
references of each type in the generated model. If we set a lower bound 1 for
class Testing, we obtain the instance model shown in the left of Fig. 4. Strong

Fig. 4. Showing weak (left) and strong (right) satisfiability of the running example.

70

Coding.allInstances()−>exists(c1,c2|
Testing.allInstances()−>exists(t1,t2|

c1.final = false and
c2.final = false and
t1.final = false and
t2.final = true and
c1.startDay = 1 and
c2.startDay = 5 and
t1.startDay = 1 and
t2.startDay = 5 and
c1.nextPhase−>includes(c2,t2) and
t1.nextPhase−>includes(t2)))

Fig. 5. Encoding of incomplete model at level 0 (left). Complete valid instance (right).

satisfiability is checked by finding a model that contains an instance of every class
and reference. By assigning a lower bound 1 to all types, the USE Validator finds
the model to the right of Fig. 4.

If the scenario to solve is completing a partial model, like the one at the
bottom level of Fig. 1, we need to provide a seed model for the search. This can
be emulated by an additional constraint demanding the existence of the starting
model structure. Fig. 5 shows the OCL constraint representing our example
model at level 0 (left), as well as the complete valid model found by USE (right).

6 Related work

Some multi-level approaches have an underlying semantics based on constraints,
like Nivel [2], which is based on WCRL. This allows some decidable, automated
reasoning procedures on Nivel models, but they lack support for integrity con-
straints beyond multiplicities.

There are several tools to validate the satisfiability of integrity constraints in
a two-level setting. We have illustrated our method with the USE Validator [13],
which translates a UML model and its OCL constraints into relational logic, and
uses a SAT solver to check its satisfiability. UML2Alloy [1] follows a similar ap-
proach. Instead, UMLtoCSP [6] and EMFtoCSP [12] transform the model into a
constraint satisfaction problem (CSP) to check its satisfiability, and ocl2smt [16]
translates it into a set of operations on bit-vectors which can be solved by SMT
solvers. The approach of Queralt [14] uses resolution and Clavel [8] maps a subset
of OCL into first-order logic and employs SMT solvers to check unsatisfiability.
HOL-OCL [5] is a theorem proving environment for OCL. In contrast to the
enumerated tools, it does not rely on bounded model finding, but it is able of
proving complex properties of UML/OCL specifications. All these works con-
sider two meta-levels, and could be used to solve the multi-level scenarios in
Section 3, once they have been translated into a two-level setting. Other works
use constraint solving for model completion [15], also in a two-level setting.

Altogether, the use of model finders to verify properties in models is not
novel. However, to the best of our knowledge, ours is the first work targeting the
analysis of integrity constraints in multi-level models.

71

7 Conclusions and future work

In this paper, we have proposed a method to check the satisfiability of constraints
in multi-level models using “off-the-shelf” model finders. To this aim, the method
proposes flattenings that depend on the number of levels fed to the finder and
the height of the generated snapshot. The method has been illustrated using
MetaDepth and the USE Validator.

Currently, we are working towards a tighter integration of the USE validator
with MetaDepth, providing commands to e.g., complete a given model. We
also plan to analyse other properties, like independence of constraints [11].
Acknowledgements. This work has been funded by the Spanish Ministry of
Economy and Competitivity with project “Go Lite” (TIN2011-24139).

References

1. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: a challenging model
transformation. In MoDELS, volume 4735 of LNCS, pages 436–450. Springer, 2007.

2. T. Asikainen and T. Männistö. Nivel: a metamodelling language with a formal
semantics. Software and Systems Modeling, 8(4):521–549, 2009.

3. C. Atkinson and T. Kühne. The essence of multilevel metamodeling. In UML,
volume 2185 of LNCS, pages 19–33. Springer, 2001.

4. C. Atkinson and T. Kühne. Reducing accidental complexity in domain models.
Software and Systems Modeling, 7(3):345–359, 2008.

5. A. D. Brucker and B. Wolff. HOL-OCL: a formal proof environment for UML/OCL.
In FASE, volume 4961 of LNCS, pages 97–100. Springer, 2008.

6. J. Cabot, R. Clarisó, and D. Riera. UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming. In ASE, pages 547–548, 2007.

7. J. Cabot, R. Clarisó, and D. Riera. On the verification of UML/OCL class diagrams
using constraint programming. Journal of Systems and Software, 93:1–23, 2014.

8. M. Clavel, M. Egea, and M. A. G. de Dios. Checking unsatisfiability for OCL
constraints. Electronic Communications of the EASST, 24:1–13, 2009.

9. J. de Lara and E. Guerra. Deep meta-modelling with MetaDepth. In TOOLS,
volume 6141 of LNCS, pages 1–20. Springer, 2010.

10. J. de Lara, E. Guerra, R. Cobos, and J. Moreno-Llorena. Extending deep meta-
modelling for practical model-driven engineering. Comput. J., 57(1):36–58, 2014.

11. M. Gogolla, L. Hamann, and M. Kuhlmann. Proving and visualizing OCL invariant
independence by automatically generated test cases. In TAP, volume 6143 of
LNCS, pages 38–54. Springer, 2010.

12. C. A. González, F. Büttner, R. Clarisó, and J. Cabot. EMFtoCSP: a tool for the
lightweight verification of EMF models. In FormSERA, 2012.

13. M. Kuhlmann, L. Hamann, and M. Gogolla. Extensive validation of OCL models
by integrating SAT solving into USE. In TOOLS (49), volume 6705 of LNCS,
pages 290–306. Springer, 2011.

14. A. Queralt and E. Teniente. Verification and validation of UML conceptual schemas
with OCL constraints. TOSEM, 21(2):13, 2012.

15. S. Sen, B. Baudry, and H. Vangheluwe. Towards domain-specific model editors
with automatic model completion. Simulation, 86(2):109–126, 2010.

16. M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler. Verifying
UML/OCL models using boolean satisfiability. In DATE, pages 1341–1344. IEEE,
2010.

72

