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Abstract. Multi-level modeling has become a popular paradigm as it
allows for a natural and easy-to-understand representation of various
real-word hierarchies. To date, several approaches have been proposed
on how multi-level models should be represented and constructed — how-
ever, their continuous evolution and consistency has received consider-
ably less attention. Consistency checking is critical to efficient and effec-
tive modeling—especially to understand the impact of model changes.
Multi-level modeling adds another dimension because it allows for both
model and metamodel changes over multiple levels. This paper discusses
the key challenges for consistency checking in multi-level modeling en-
vironments and outlines an incremental and highly flexible approach for
addressing these challenges effectively without being limited to a spe-
cific modeling paradigm. A prototype implementation of the approach
has been developed; preliminary evaluation results suggest that the ap-
proach scales and provides instant consistency information during multi-
level modeling.

1 Introduction

By applying model-driven engineering (MDE) approaches, practitioners raise
the level of abstraction in software and systems engineering. This allows for eas-
ier communication and more efficient development processes as models become
first class development artifacts that are used as blueprints for (semi-)automatic
generation of the desired system. However, it has been shown that traditional
two-layer approaches, in which a domain-specific language is used to model a
specific instance of the domain, suffers from a lack of support for expressing the
often complex hierarchies that occur in real-world domains. Even though there
exist workarounds for handling such hierarchies in common two-layer modeling
languages and tools (e.g., in UML), the solutions are usually not generic and
often counter-intuitive. Multi-level modeling allows for modeling arbitrary deep
hierarchies by allowing specific models to serve both as domain-specific instance
models of a certain domain and the domain language of another instance model—
a more specialized domain. Although it has been shown that multi-level modeling
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Fig. 1: Pet Store Web Shop Example (based on [4]).

makes models more intuitive to construct and read, it is still an open question
in the research community how exactly model construction should be done and
which methods should be used. Therefore, to date there exist various multi-level
modeling approaches, paradigms, and tools (e.g., [1-3]). However, there is an
important aspect that has been widely overlooked in multi-level modeling so
far: the need for consistency checking in models. While it is well acknowledged
that in MDE consistency checking is a crucial factor for building valid mod-
els efficiently, this has not been addressed sufficiently in multi-level modeling
approaches. Although some approaches do define well-formedness constraints,
these constraints typically define the semantics for a specific modeling paradigm
only; there is usually no support for user-defined, domain-specific consistency
rules.

In this paper, we outline the dimensions of consistency checking in multi-level
modeling environments and present a generic and paradigm-agnostic approach
that addresses these challenges, allowing modelers to easily write domain-specific
consistency rules that check both syntax and semantics. While the approach is
based on the general principles of incremental consistency checking for tradi-
tional two-level models, these concepts have been adapted and extended in order
to handle multi-level models efficiently.

2 Multi-level Modeling Example

To illustrate the issues of consistency checking in multi-level modeling environ-
ments we use a standard example which is well known in the multi-level modeling
community: the pet store web shop ontology [4]. As shown in Fig. 1, the example
is modeled using the paradigm of clabjects [2] (the actual clabject metamodel
is omitted for space reasons). Therefore, there are two levels in the linguistic
dimension: the clabject metamodel at level L, and the instance model at level Ly
in which clabjects are used to model various ontological levels. In the ontological
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dimension, there are three levels. The level 0; defines the concept of a PetType,
which has an attribute named ReqSkill which indicates the required skill level
a prospective owner of a specific pet should exhibit in order to take good care of
it. Different types of pets are then defined at level 05. Specifically, the two types
Dog and Cat are defined. For each of these two types, two subtypes (or special-
izations) are defined through inheritance: MediumDog and SmallDog for the pet
type Dog as well as HairyCat and GroomedCat for the pet type Cat. Finally,
for each specialized kind of dog or cat, there is a single animal available: Roxy,
Angel, Ginger, and Pepper. Since these animals are instances of the specialized
kinds, they are modeled at level 03.

3 Dimensions of Consistency Checking in Multi-level
Modeling

Let us now discuss the different dimensions of consistency checking that are re-
quired in the example. Specifically, there are three major dimensions: i) linguistic
conformance, ii) ontological conformance, and iii) evolution.

3.1 Checking Linguistic Conformance

As shown in Fig. 1, the example spans across two linguistic levels: Ly and L. All
model elements, regardless of the ontological level they reside on, must conform
to the metamodel defined in Ly. In the example, the metamodel to which all
model elements at L; must conform is that of the clabject modeling paradigm.
Therefore, at L; it must be checked whether model elements are syntactically
correct and whether they obey clabject semantics. For example, a syntactic con-
sistency rule would be that every model element (e.g., the clabject Dog) must
have a name and a potency assigned. This potency must be reduced by 1 with
every instantiation (e.g., the clabject Dog must have a potency of 2 because it
is an instance of PetType, which has a potency of 3)—this is an example for
a consistency rule checking modeling-paradigm-specific semantics. A formaliza-
tion of these syntax and semantics rules that could be checked by a standard
consistency checker, is depicted in Listing 1.1 (lines 1-4). The rule is written in
OCL. However, note that checking semantics is necessary regardless of the used
modeling paradigm; it would also be necessary if, for instance, the example was
modeled with powertypes [1].

3.2 Checking Ontological Conformance

The second dimension we discuss is that of ontological conformance. In partic-
ular, this dimension has three major areas of interests: level-specific syntax and
semantics, weak typing, and the handling of advanced modeling concepts such
as inheritance.
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context Clabject inv:

self .name<>null and
self.potency<>null and
self.potency = type.potency —1;

context PetType inv: self.ReqSkill>=0 and self.ReqSkill <=10;
context Dog inv: self.ReqSkill >=5;

context Cat inv: self.ReqSkill >=3;

context MediumDog inv: self.ReqSkill >=7;

Listing 1.1: Consistency Rules for Linguistic and Ontological Conformance.

Level-specific Syntax and Semantics. This involves checking whether a
model at a given ontological level is semantically and syntactically conforming
to its ontological metamodel (i.e., to its parent ontological level). Since domain-
specific syntax rules do not differ significantly from linguistic syntax rules (e.g.,
lines 1-4 of Listing 1.1), we omit a detailed discussion here for space reasons. An
example for domain-specific semantics could be the field ReqSkill, originally
defined in PetType at level 0;, which must remain within a range of 0-10. A
value of 0 indicates that the animal does not need any care at all and 10 indicates
that the animal requires extensive care on a daily basis. A corresponding OCL
consistency rule is shown in 1.1 (line 6). It must be ensured that all model
elements at level 03 have an appropriate value set.

However, there might be additional semantic rules added at level 0,. For
example, the range of skill levels required for handling a dog should be greater
than or equal to 5 because dogs must be walked at least twice a day and they
also tend to adopt undesired behavioral patterns if not handled correctly. For
cats, on the other hand, the required skill level should be no smaller than 3 as
they require, for instance, feeding at a regular basis. The corresponding OCL
consistency rules are shown in Listing 1.1 (lines 7 and 8, respectively).

Moreover, there might be more specific requirements for certain kinds of dogs
and cats. For instance, medium sized dogs may have a minimum skill level of
7 because they are harder to keep under control than small dogs due to their
increased strength compared to small dogs. This is expressed in the rule shown in
Listing 1.1 (line 9). Again, these domain-specific semantics have to be enforced
at level 0.

Therefore, different semantics are defined at different ontological levels. De-
pending on the followed modeling paradigm, it might be possible that each onto-
logical level defines its own semantics, or each level might only refine the seman-
tics defined at the levels above. Either way, it is required that at each ontological
level conformance rules regarding syntax and semantics can be defined—which
is typically not possible with existing consistency checking approaches.

Weak Typing. In multi-level modeling paradigms, type hierarchies across on-
tological levels are usually modeled by using concepts defined in the linguistic
level Ly. Typically, references between model elements are used to model in-
stantiations and similar relations. For instance, the type Clabject may have a
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reference instanceof that points to another Clabject and models instantia-
tions. However, similar concepts exist in most—if not all-—multi-level modeling
paradigms. In order to write consistency rules for individual ontological levels, it
is necessary to use these references to discover the ontological type of an element.
Unfortunately, consistency checkers often work with linguistic types rather than
with ontological types (i.e., they use runtime type information of objects). Thus,
they are only capable of checking linguistic conformance (e.g., they may only
check instances of Clabject, but not modeled instances of Cat).

Advanced Modeling Concepts. Similar to weak typing, there are advanced
modeling concepts such as inheritance that are typically only handled at the
linguistic level by consistency checkers. For example, above we discussed the
semantics constraint that dogs require a minimum skill level of 5. Indeed, this
should be checked not only for direct instances of Dog, but also for instances of
the defined subtypes MediumDog and SmallDog (i.e., Roxy and Angel). However,
a standard consistency checker would not be able to handle such modeled in-
heritance (similar to modeled instantiation) as it would typically only consider
inheritance at the linguistic level (e.g., if at the level L, there was a specialization
of Clabject, semantics defined for standard clabjects would also be checked for
instances of the specialized clabjects). Moreover, at different ontological levels
there might be different understandings of inheritance and thus different se-
mantics attached, and at some levels it might be undesired to have available
such modeling concepts at all. Thus, relying on a single understanding of inher-
itance that is defined at the top linguistic level—again, regardless of the actual
paradigm used—is insufficient; it is required to support the explicit definition of
concepts such as inheritance at ontological levels.

3.3 Handling Evolution

The third dimension that must be considered when checking consistency in multi-
level modeling environments is evolution. While handling evolution is also neces-
sary when checking traditional two-level models, multi-level modeling allows for
evolution scenarios that are usually not present in two-level environments. Specif-
ically, these scenarios are: i) dynamic type changes, and ii) dynamic changes of
inheritance-relations. The scenarios can occur in multi-level modeling because of
the weak typing and the flexible handling of concepts such as inheritance that
is used for modeling ontological levels.

Let us consider a change in an inheritance-relation in our pet store example:
the type SmallDog could be modeled as a specialization of MediumDog instead
of Dog by simply changing the target of the inheritance reference. This would
mean that model elements of the type SmallDog at 03 must not only conform
to semantic rules defined for instances of the types Dog and SmallDog, but also
to rules defined for instances of the type MediumDog. Moreover, note that in
multi-level modeling the ontological type of a model element can be changed
quite easily. The ontological type of Angel, for example, could be changed from
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SmallDog to HairyCat by just changing the corresponding reference. This would
mean that of the previously described rules only the allowed range of the required
owner skill level (defined for PetType at level 0;) would be applicable to Angel.

Generally, for both change scenarios, syntax and semantics that a model el-
ement must conform to may change (i.e., a changed set of rules must be applied
by a consistency checker). Such changes may be performed quite frequently due
to the low cost and the typical way of how models are constructed by engineers.
Therefore, it is crucial that these changes are handled efficiently—engineers typ-
ically expect modeling tools to immediately provide feedback after changes in a
model have been performed.

3.4 Existing Support for Consistency Checking in Multi-level
Modeling

To date, there exists a variety of consistency checking approaches (e.g., [5—11])—
we now briefly summarize how they support the three dimensions of consistency
checking in multi-level modeling environments. Generally, linguistic conformance
can be checked sufficiently. Some approaches also handle evolution efficiently
(e.g., [5]). However, checking ontological conformance and handling dynamic
changes of types and inheritance at the ontological level is typically not sup-
ported by existing approaches. This is especially the case when requiring user-
definable consistency rules.

4 Consistency Checking in Multi-level Modeling
Environments

To address the issue of missing support for the dimension of ontological con-
formance checking, including the efficient handling of weak typing and dynamic
changes of inheritance, we propose a novel approach to consistency checking
in multi-level modeling environments that relies on a unification of linguistic
and ontological levels. The approach allows for arbitrary and domain-specific
consistency rules to be defined and applied at all modeled levels. It is paradigm-
agnostic, thus supporting any multi-level modeling paradigm.

4.1 Linguistic and Ontological Dimension Unification

The cornerstone of our approach is the unification of ontological and linguistic
levels. This allows a consistency checker to be employed for checking linguistic
and ontological conformance alike. To achieve unification, the multi-level model-
ing paradigm, which is defined at level L,, is transformed to a model at the newly
added ontological level 0q. Thus, in our approach all levels of interest are of onto-
logical nature, with the used multi-level modeling paradigm being the top-most
ontological level. The result of this transformation for our running example is
shown in Fig. 2. Again, please note that we use clabjects in the illustration but
any modeling paradigm is supported at 0y. For modeling L; (i.e., 0o—03 in Fig. 2),
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Fig. 2: Paradigm-agnostic Multi-level Modeling Scenario in the DesignSpace.
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Fig. 3: DesignSpace Core Metamodel with Multi-level Consistency Checking.

which differs from L, in Fig. 1, a new metamodel—called the DesignSpace Core
Metamodel (DSCM)—is used that has been defined specifically for the purpose of
flexible, multi-level modeling with consistency checking. This metamodel, which
is depicted in Fig. 3, is based on a subset (hence “Core”) of the metamodel for
flexible modeling used in our previous work on the DesignSpace [12] modeling
environment that was enhanced with concepts to support multi-level consistency
checking.

The DesignSpace Core Metamodel is sufficiently generic to model arbitrary
data structures using the simple concept of nodes (type Node) that can provide
named properties (type Property). Instantiation is modeled using the reference
type. The modeled instances of a node can be retrieved through the reference
instances. The DSCM can be used to model any multi-level modeling paradigm
at the level 0p. In Fig. 2, the running example from Fig. 1 is modeled using
DesignSpace concepts (simplified for readability reasons).
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Note that consistency rules (type Rule), which can be used to check both
syntax and semantics constraints (attribute condition), can be defined for any
node (reference context), regardless of its ontological level. Our approach fol-
lows the principle of incremental consistency checking (e.g., [5]). There is a spe-
cific type (RuleApplication) that is used to model an individual application
of a consistency rule. However, the way how rules are applied in a multi-level
modeling environment differs significantly from two-level modeling approaches.
Moreover, the metamodel must allow for the dynamic definition of (ontological)
metamodel semantics. We will discuss these two aspects next, beginning with
rule application strategies.

4.2 Rule Application Strategies

Applying consistency rules in multi-level models differs significantly from two-
level models. In two-level models, rules are typically defined for a metamodel
element and are then applied for all instances of that element. For example,
a rule defined for the metamodel element Clabject in Fig. 1, such as the one
defined on Listing 1.1, is applied to every single instance; i.e., every element at
level L. For multi-level modeling, this strategy is no longer sufficient due to the
existence of multiple ontological levels and advanced rule application strategies
are required.

Recall the semantics we discussed in Section 3 and the corresponding con-
sistency rules shown in Listing 1.1 (lines 6-9), where the valid range of required
owner skill levels was defined for different model elements (e.g., PetType at 04
and Dog at 0y) and checked at level 03. Because of the used clabject modeling
paradigm, checking rules that are defined at an arbitrary ontological level x at
the level z + 1 does not make sense—the distance between the ontological level
at which the rule is defined and at which it is applied can vary.

Moreover, note that there may be rules that should be checked not only
at a single level, but at multiple levels—depending on the modeling paradigm.
While the clabject paradigm requires attributes to have actual values assigned
if, and only if, the attribute’s potency is 1, other paradigms may require that
an attribute has a value assigned starting with a certain ontological level y. If
the type containing the attribute is then, for example, refined at level y + 1,
the attribute must still be set, yet it may have a different value assigned. Thus,
the rule should be applied at the levels within the range of [y; y + 1]. Generally,
it should therefore be possible to define for a rule a range of levels at which it
should be checked (i.e., an interval [a;b] where a,b € NT).

Finally, there might be consistency rules that are defined at an ontological
level z and that should be applied at all subsequent levels z + i where i € N*.
Therefore, there should be the possibility of defining rule application ranges such
as [z + 1;00]. Note that using such ranges semantically makes the ontological
level at which the rule is defined (i.e., z) semantically to a linguistic level. In our
example in Fig. 2, it is possible to check linguistic conformance to the modeling
paradigm by defining consistency rules that express paradigm semantics at level
0o and using a rule application range of [1; o).
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Our approach supports all discussed rule application strategies. The strategy
can be choosen for each consistency rule individually, typically depending on the
used modeling paradigm. In the DSCM, rule application strategies are defined
using the type Interval. Similar to cardinalities in UML, using -1 instead of a
positive integer allows the definition of an unbounded interval (e.g., [1; —1]).

4.3 Definition of Metamodel Semantics

As we have discussed above, advanced modeling concepts such as inheritance
may be realized differently at different ontological levels. To support level-specific
semantics, the DSCM included the type MetamodelSemantics. Specifically, for
any node the metamodel semantics can be specified to define which properties are
used to identify the node’s respective super- and subtypes. For example, in Fig. 2
the property super models inheritance at 05. This allows consistency checkers
to use a generic mechanism to dynamically discover metamodel semantics at
any ontological level, and it enables dynamic changes of metamodel semantics
at all times in flexible modeling tools. The latter is also beneficial for supporting
incremental checking of constraints.

4.4 Efficient Evolution Handling

A key feature of multi-level modeling is the flexibility modelers have during mod-
eling. Not only may modeled instances change, but also metamodels may change
at all times. Therefore, it is of crucial importance that dynamic changes (e.g.,
type changes, changes in inheritance hierarchy) are processed efficiently so that
modelers get immediate feedback. The DSCM in Fig. 3 includes the core con-
cepts of incremental consistency checking [5] which were adapted for supporting
multi-level modeling scenarios. In particular, notice the type RuleApplication
which models a specific validation of a consistency rule on a specific instance (the
contextElement) of the validated rule’s context. During such a validation, a
scope is built that contains all elements relevant by any means for the valida-
tion (i.e., any element that was accessed). This scope is used to find affected
rule application whenever evolution takes place. A detailed explanation of the
concept can be found in [5] and we omit a detailed discussion for space reasons.
However, note that—in contrast to standarad consistency checking approaches—
type-hierarchies and metamodel semantics are also Elements that are accessed
dynamically when searching for locations to apply rules or when searching the
rules to be applied to a specific model element. Thus, types and metamodel se-
mantics can be part of rule application scopes. This means that dynamic type
or inheritance hierarchies changes can also be handled efficiently (i.e., it can be
determined easily which rule applications may be affected after such a change).

4.5 Prototype Implementation

A prototype implementation of the approach has been developed that is based on
the DesignSpace [12] modeling framework and an adapted version of the Model /-
Analyzer [5] consistency checker. A preliminary performance analysis suggests
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that required adaptations for multi-level modeling (e.g., rule application mecha-
nism) do not impose performance drawbacks compared to the two-level version of
the consistency checker. However, a detailed analysis of the performance effects
is part of future work.

5 Conclusions and Future Work

In this paper we have discussed the dimensions of consistency checking in multi-
level modeling and outlined a paradigm-agnostic approach that handles these
dimensions and provides the well-known advantages of incremental consistency
with domain-specific, user-definable rules. A prototype implementation of the
approach demonstrated its feasibility. A complete validation of the approach,
including scalability and applicability studies as well as a detailed description
of key algorithms for handling changes unique to multi-level modeling, will be
done in future work.
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