
Low–exponential algorithm for counting the

number of edge cover on simple graphs

J. A. Hernández-Serv́ın1, J. Raymundo Marcial-Romero1, Guillermo De Ita
Luna2

1 Facultad de Ingenieŕıa, UAEM
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Abstract. A procedure for counting edge covers of simple graphs is
presented. The procedure splits simple graphs into non-intersecting cy-
cle graphs. This is the first “low exponential” exact algorithm to count
edge covers for simple graphs whose upper bound in the worst case is
O(1.465575(m−n) × (m + n)), where m and n are the number of edges
and nodes of the input graph, respectively.
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1 Introduction

A graph is a pair G = (V,E), where V is a set of vertices and E is a set of edges
that associates pairs of vertices. The number of vertices and edges is denoted by
v(G) and e(G), respectively. A simple graph is an unweighted, undirected graph
containing no graph loops or multiple edges. Through the paper only simple
finite graphs will be considered, where G is a finite graph if |v(G)| < ∞ and
|e(G)| < ∞. An edge cover of a graph G is a set of edges C ⊆ EG, such that
meets all vertices of G. That is for any v ∈ V , it holds that Ev ∩C 6= ∅ where Ev

is the set of edges incident to v. The family of edge covers for the graph G wil be
denoted by EG. The problem of computing the cardinality of EG is well known to
be ♯P-complete problem. In [4], however, have designed to what they call a fully
polynomial time approximation scheme (FPTAS) for counting edge covers of a
simple graphs; same authors have extended the technique to tackle the weighted
edge cover problem in [3]. In this paper, we study a novel algorithm for counting
edge covers taking into account that there exists a time polynomial algorithm
for non-intersecting cyclic graphs [2]. Having said that, the technique is basically
to reduce a simple graph into a sequence of non-intersecting cyclic graphs. The
complexity of the algorithm is also studied. Although, the complexity of our
proposed algorithm remains exponential its complexity is comparatively low to
the ones reported in the literature.



2 Splitting simple graphs

A subgraph of a graph G is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E.
If e ∈ E, e can simply be removed from graph G, yielding a subgraph denoted
by G\e; this is obviously the graph (V,E− e). Analogously, if v ∈ V , G\v is the
graph (V − v, E′) where E′ ⊆ E consists of the edges in E except those incident
at v. A spanning subgraph is a subgraph computed by deleting a number of edges
while keeping all its vertices covered, that is if S ⊂ E is a subset of E, then a
spanning subgraph of G = (V,E) is a graph (V, S ⊆ E) such that for every
v ∈ V it holds Ev ∩ S 6= ∅.

A path in a graph is a linear sequence of adjacent vertices, whereas a cycle in
a graphG is a simple graph whose vertices can be arranged in a cyclic sequence in
such a way that two vertices are adjacent if they are consecutive in the sequence,
and are nonadjacent otherwise [1]. The length of a path or a cycle is the number
of its edges.

An acyclic graph is a graph that does not contain cycles. The connected
acyclic graphs are called trees, and a connected graph is a graph that for any two
pair of vertices there exists a path connecting them. The number of connected
components of a graph G is denoted by c(G). It is not difficult to infer that in
a tree there is a unique path connecting any two pair of vertices. Let T (v) be
a tree T with root vertex v. The vertices in a tree with degree equal to one are
called leaves.

2.1 The cycle space

A cycle basis is a minimal set of basic cycles such that any cycle can be written
as the sum of the cycles in the basis [5]. The sum of cycles Ci is defined as
the subgraph C1 ⊕ · · · ⊕ Ck, where the edges are those contained in an odd
number of Ci’s, i ∈ {1, ..., k} with k ∈ N arbitrary; the sum is again a cycle.
The aforementioned sum gives to the set of cycle or cycle space C the structure
of a vector space under a given field k. The dimension of the cycle space C is
dimk C = |B| where B is a basis for C. In particular, if G is a simple graph the
field is taken to be k = F2, which is the case concerning this paper. Thus the
field F2 will be used through the entire paper to describe cycle space of graphs.
The technique proposed in this paper, assumes that if the graph has cycles, it is
always possible to calculate a cycle basis for the cycle space of the graph. The
cycle basis to be considered in this paper can easily be constructed by using the
well known depth first search algorithm (DFS) [1]. The proccess of getting a
spanning tree for G by DFS algorithm will be denoted by 〈G〉. By using depth
first search an spanning tree or forest T = 〈G〉 can be constructed for any graph
G. The cycle basis are the unique cycle formed with edges in the cotree T̄ = G\T
and edges in T . The dimension of CG is therefore |T̄ |.

2.2 Non-intersecting cycle graph or basic graphs

In this paper we define basic graphs or non-intersecting cycle graphs as those
simple graphs G with dim CG 6= 0 in such a way that any pair of basic cycles
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are edge disjoints. Let B = {C1, ..., Ck} a basis for the cycle space CG; if Ck =
(Vk, Ek) let us define the sequence of intersections of the edge sets {Ei} as

Bp =
⋃

i1 6=···6=ip

[Ei1 ∩ · · · ∩ Eip ] (2.1)

for any Ip = {i1, ..., ip} ⊆ {1, ..., k}, it is clear that Ei1 ∩ · · · ∩ Eip = Eiσ(1)
∩

· · · ∩ Eiσ(p)
for any permutation σ ∈ Sp; where Sp is the symetric group of

permutations. The number of different terms to consider in Equation (2.1) is
given by k!/(k − p)!p! which is the number of different combinations of the
index set Ip. Thus, we can establish the conditions of whether a graph G has
not an intersecting cycle basis. If the graph G is not acyclic and B2 = ∅ then
dimG ≥ 1 so G is called a basic graph. Let e ∈ E be an edge and define ne

as the maximum integer such that e belongs to as many as ne edge sets Ei. In
other words, ne = max{p|Bp 6= ∅}.

2.3 Splitting a graph into basic graphs

Computing edge covers for simple graphs lies on the idea of splitting a given
graph G into acyclic graphs or basic graphs. It will be shown, that calculating
edge covers for simple graphs can be reduced to the computation of edge covers
for acyclic graphs or basic graphs thus being able to fully compute |EG|. The
definition below describes in detail the process of splitting a graph into smaller
graphs, which eventually leads to a decomposition of simple graphs into acyclic
graphs or basic graphs.

Definition 1. For a given graph G = (V,E),

1. the split at vertex v ∈ V is defined as the graph G⊣ v = (V ′, E′) where
V ′ = (V − {v}) ∪

⋃

w∈Nv
{w′} and E′ = (E − Ev) ∪

⋃

w∈Nv
{ww′} with

w′ /∈ V ,
2. the subdivision operation at edge e = uv ∈ E is defined as the graph G⊥e =

(V ∪ {z}, (E − e) ∪ {uz, zv}) with z /∈ V , and z can be written either as uv

or vu.
3. If e = uv ∈ E is an edge, G/e will denote the resulting graph after performing

the following operation
(((G\e)⊥S)⊣u)⊣v

where S = Eu ∪ Ev − {e}. The subdivide operation (G\e)⊥S means tacitly
(· · · ((G\e)⊥f)⊥g · · · )) where f, g, ... ∈ S.

Above definition can be easily extended to subsets V ′ = {v1, ..., vr} ⊆ V , E′ =
{e1, ..., es} ⊂ E, that is G ⊣ V ′ = (· · · ((G ⊣ v1) ⊣ v2) · · · ) ⊣ vr; analogously,
G⊥E′ = (· · · ((G⊥e1)⊥e2) · · · )⊥es. It must be noted, that the order on which
the operations to obtain G/e are performed is unimportant as long as one keeps
track of the labels used during the process.

Example 1. Consider the star graph W4, therefore
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Fig. 1: The split and subdivision operation

If H , Q are graphs not necessarily edge or vertex disjoint we define a formal
union of H and Q as the graph H ⊔Q by properly relabelling VH and VQ; this
can be accomplished by defining VH⊔Q = {(u, 1)|u ∈ H} ∪ {(u, 2)|u ∈ Q}. The
edge set EH⊔Q could be defined as follows: if a, b ∈ VH⊔Q such that a = (u, i),
b = (v, j) for some i, j ∈ {1, 2} and u, v ∈ VH ∪ VQ then ab ∈ EH⊔Q if and only
if uv ∈ EH ∪ EQ and i = j. Others labelling systems might work out just fine,
as long as they respect the integrity of graphs H and Q. To recover the original
graphs, we define the projections πX , as πH(H ⊔Q) = H and πQ(H ⊔Q) = Q;
that is the projections πX revert the relabelling process to the original for both
graphs H and Q.

Definition 2. Let G = (V,E) be a simple graph. Let us define the split operator
⊔e as

(i) the graph ⊔eG = G\e ⊔G/e, that is the graph G splits into the graph G\e
and the graph G/e if e ∈ E. If e /∈ E then ⊔eG = πG(G\e ⊔ G/e) =
πG(G ⊔G) = G.

(ii) if H, Q are arbitrary graphs then ⊔e(H⊔Q) = ⊔eH⊔⊔eQ with e ∈ EH∪EQ.

Example 2. Figure (2) shows an example of how a simple graph can be decom-
posed into acyclic graphs.

2.4 Edge covering sets for simple graphs

The following lemma and propositions summarizes the main properties of the
split operator ⊔e, necessary for the calculation of the edge covering sets for simple
graphs. The first result is regarding the dimension of the cycle spaces CG/e and
CG for an edge e in the cotree of G. The proposition is rather simple in the
sense that the resulting graph after applying G/e its dimension must diminishes
certain amount which allow us to conclude that the operator ⊔ will split the
graph G into non-intersecting cyclic graph.

Proposition 21 Let G be a simple graph, B a fundamental cycle base, e = uv ∈
T an edge in the cotree of G. If be = |Bu ∪ Bv| where Bu = {C ∈ B|u ∈ C} and
Bv = {C ∈ B|v ∈ C} then

1. If e ∈ T̄ then be + dim CG/e = dim CG.
2. If e ∈ T we have that (G/e)\〈G/e〉 ⊂ T̄ .
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Fig. 2: Example of the splitting process provided by Definiton (2) applied to the
star graph W4 with five spokes. It clearly shows the process step by step and
how the family Gij of acyclic graphs is built from Definiton (2).

Proof. Every fundamental cycle containing either u or v must disappear under
the operation G/e then those edges in T that do not contain u or v are the only
ones that contribute to the dimension of the graph G/e, therefore dim CG/e =
dim CG − be.

The proposition above allow us to explicitly calculate the number of connected
components into which the graph G/e is being decomposed, on the other hand
is providing a rather efficient way of testing whether or not G/e is a non-
intersecting cyclic graph. The lemma below assumes that the graph in consid-
eration is not connected, that is G has multiple conected components, thus we
must consider an spanning forest for G instead of its spanning tree.

Lemma 1. Let G = (V,E) be a simple graph, F , F are an spanning forest and
its corresponding coforest for G, respectively; let us choose an edge e = uv ∈ EG

and consider the split ⊔eG of G. If ae = |(Eu ∪ Ev) ∩ F | then

(i) If e ∈ F then c(G\e) = c(G) and c(G/e) = c(G)+dF (u)+dF (v)+ae−be−3.

(ii) It holds that dim CG\e = dim CG − 1 and dim CG/e < dim CG.
(iii) There exists a bijective map ε : E⊔eG

→ EG. That is, if S is an edge
covering set for G\e or G/e then ε(S) is an edge covering set for G, which
is equivalent to EG = EG\e ∪ ε(EG/e). Thus, |EG| = |EG\e|+ |EG/e|.
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The family EG\e accounts for those edge covering sets S for G on which e /∈ S
whereas EG/e stands for those edge covering sets where e is always a member.

Let S ⊆ E be a subset of edges, from Definiton (2)(i) the split of G along
S, denoted by ⊔SG, is recursively defined in terms of the sequence of splits
Gij = ⊔eiG(i−1)j = G(i−1)j\ei⊔G(i−1)j/ei, i ∈ {1, ..., |S|} in particular for i = 1
we define G11 = G00\e1 ⊔ G00/e1 where G00 = G. By setting φ(i) = 2i−1 − 1
and for 0 ≤ j ≤ φ(i) we have therefore,

⊔SG = G|S| =
⊔

0≤j≤φ(|S|)

[

G|S|j

]

=
⊔

0≤j≤φ(|S|)

[

G(|S|−1)j\e|S| ⊔G(|S|−1)j/e|S|

]

(2.2)

To short up the notation, we make G∗
tj = G(t−1)j ∗ et, Etj = EGtj

and E∗
tj =

EG(t−1)j∗et
= EG∗

tj
with ∗ ∈ {\, /}; under this notation we have that Gtj =

G
\
tj ⊔ G

/
tj . In general, the graph Gtj is disconnected, if we denote by Gtjs its

connected components then Etjs will denote the family of edge covering sets for
each graph Gtj . For any given spanning tree T for a simple graph G, let us
make t = |T | = dim CG, Hj =

∐

s∈Stj

Etjs for some set Stj ⊆ N, where
∐

denotes

the cartesian product and the projections will be denoted by πsj , for every s, j.
Every edge covering set of a graph G induces a subgraph; if S ⊆ EQ by definition
S meets all vertices of G then the induce graph of S becomes (VG, S). For the
rest of the paper the family of edge covering sets, like Eijs will also denote the
family of induced graphs by this sets. Therefore, the calculation of edge cover for
a graph G is equivalent to calculate the induced graphs by edge covering sets,
since most of the operations to be performed are graph operation like vertex
splitting and edge subdivision.

Theorem 1. Let G be a finite, connected simple graph, T an spanning tree for
G and T denotes its cotree and t = |T | then

(i) the family {G
\
tj , G

/
tj}, appearing in the expansion ⊔TG, are all acyclic

graphs or non-intersecting cycle graphs for all j satisfying 0 ≤ j ≤ φ(t).
(ii) If G∗

tjs denotes the connected components of G∗
tj , then G∗

tjs are edge and
vertex disjoint for every j, and G∗

tj =
⊕

s∈Stj

G∗
tjs for some set of indices

Stj ∈ N.
(iii) For every j, 0 ≤ j ≤ φ(t) there exist bijections εt :

⋃

j Etj −→ Et, εtj :

Etj −→ E(t−1)j such that E(t−1)j = E
\
(t−1)j ∪ εtj [E

/
(t−1)j ] and therefore Et =

εt

[

⋃

j Etj

]

.

(iv) Let H = (H1, ..., H |St|j) ∈ Hj be a vector of graphs of the cartesian prod-
uct of family Etjs of induced graphs by edge covering sets, then Etj =
⋃

H∈Hj
[
⊕

s∈Stj
πjs(H)] and

Et = εt

(

⋃

0≤j≤φ(t)

⋃

Hj∈Hj

[

⊕

s∈Stj

πjs(Hj)
])

.
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For every q, 1 ≤ q ≤ t, there exist bijections εq

Eq
εq
−→ Eq−1

εq−1
−→ · · ·

ε2−→ E1
ε1−→ EG (2.3)

in such a way that if ε = ε1 ◦ · · · ◦ εq then EG = ε(Et) and

|EG| =
∑

j

|Etj | =
∑

j

[

∏

s∈Stj

|Etjs|
]

. (2.4)

3 The splitting algorithm

The algorithm for counting edge covers is based on the reduction Definiton (1).
The operation of computing an spanning forest of a given graph G is denoted
by 〈G〉; by abuse of notation 〈G〉 also denotes the spanning forest. Its co-forest
is therefore F̄ = E − 〈G〉. Algorithm 1 decompose a graph into non-intersecting
independent graphs (a forest).

3.1 Time Complexity of the splitting Algorithm

Let G = (V,E) be the input graph of the algorithm Split, m = |E|, n = |V |. It
can be said that the maximum number of intersecting cycles in G is not greater
than nc = m− n because, at most, only one cycle is not an intersecting cycle.

The step 3 has time complexity O(nm logm). The step 6 has time complexity
O(m+n). The recursive application of the algorithm (steps 9 and 12) generates
an enumerative tree EG. This reduction generates two new graphs H = (V1, E1)
and Q = (V2, E2) from G.

The time behaviour of the algorithm resides on steps 9 and 12, which cor-
responds with the number of intersecting cycles on the graph associated with
each node of EG. If nc denotes the maximum number of intersecting cycles in a
graph associated with a node of EG, then the time complexity of the algorithm
can be expressed by the recurrence:

T (nc) = T (nc− 1) + T (nc− 3) (3.1)

such recurrence ends when nc = 1.
This recurrence has the characteristic polynomial p(r) = r3 − r2 − 1 which

has the maximum real root r ≈ 1.46557. This leads to a worst-case upper bound
of O(r(m−n) ∗ (m+ n)) ≈ O(1.465571(m−n) ∗ (m+ n)). We believe that it is the
first non trivial upper bound obtained for the #Edge Covers problem.

Conclusions

Sound algorithms have been presented to compute the number of edge covers for
graphs. It has been shown that if a graph G has simple topologies: paths, trees
or only independent cycles appear in the graph; then the number of edge covers
can be computed in polynomial time over the graph size.
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Algorithm 1 Procedure that decompose a graph G into ⊔G compose of basic
or acyclic graphs.

1: procedure Split(G) {Decomposition of G into basic or acyclic graphs}
2: Input: G = (V,E)
3: Output: ⊔SG
4: Select an edge e = uv ∈ E such that e ∈ Bp(G) 6= ∅ for some p. {Notice that if the

edge e exists can be found in O(nm logm).}
5: if e exists then
6: Calculate ⊔eG = G\e ⊔ G/e by applying the splitting reduction rule over e

generating H and Q
7: end if

8: if B2(H) 6= ∅ then

9: Split(H)
10: end if

11: if B2(Q) 6= ∅ then

12: Split(Q)
13: end if

14: return ⊔SG {S is the set of edges where the splitting proccess is applied. By
Theorem (1)(iv) we have that |EG| =

∑
j
|Etj | and |Etj | can be calculated by the

procedures presented in [2] for basic and acyclic graphs.}

Regarding the cyclic graphs with intersecting cycles, a branch and bound
procedure has been presented, it reduces the number of intersecting cycles until
basic graphs are produced (subgraphs without intersecting cycles).

Additionally, a pair of recurrence relations have been determined that es-
tablish an upper bound on the time to compute the number of edge covers on
intersecting cycle graphs. It was also designed a “low-exponential” algorithm for
the #Edge Covers problem whose upper bound is O(1.465571(m−n) ∗ (m+ n)),
m and n being the number of edges and nodes of the input graph, respectively.

References

1. Bondy J. A. and Murty U.S.R. Graph Theory. Springer Verlag, Graduate Texts
in Mathematics, 2010.

2. De Ita G., Marcial-Romero J. Raymundo, Montes-Venegas Héctor., Estimating the
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