Behaviour-Driven Development for
Computer-Interpretable Clinical Guidelines

Reinhard Hatko!, Stefan Mersmann?, and Frank Puppe!

! Institute of Computer Science, University of Wiirzburg, Germany
2 Driger Medical GmbH, Liibeck, Germany

Abstract. In this paper, we propose an approach for specification and
analysis of Computer-Interpretable Clinical Guidelines (CIGs) that was
inspired by Behaviour-Driven Development. The expected behaviour of
a CIG is specified by requirements in natural language. On the one
hand, those requirements are used as design input for guideline devel-
opment. On the other hand, they can be checked against time-oriented
data recorded during testing sessions of the implemented CIG.

1 Introduction

Continuously improving quality and efficiency of health care delivery are major
goals in medicine, especially in critical care. Approaches from process engineer-
ing that identify, organize and standardize therapeutic workflows have been es-
tablished to meet these goals. Evidence-based workflows in medicine are called
clinical guidelines (CGs). CGs are standardized therapeutic plans that reflect
best practices for treating patients within a certain medical scope. The impact
of CGs on patient outcome had been investigated and published through several
clinical studies, e.g., [5]. A logical next step was the integration of standardized
health care processes into medical technology by enabling CGs to be executed
by medical devices as Computer-Interpretable Clinical Guidelines (CIGs).

Recently, we demonstrated the applicability of the Semantic Wiki KnowWE
for the development of a CIG for automated mechanical ventilation [4]. The vi-
sual CIG language DiaFlux [3] was used to implement the guideline logic. How-
ever, the described development process lacked a specification of CIG behaviour
at an abstract level on which the implementation was based.

The rest of the paper describes an approach to fill this gap: The next sec-
tion introduces Behaviour-Driven Development (BDD) in Software Engineering.
Section 3 shows its applicability in the area of CIGs. A case study in progress is
presented in Section 4. The paper concludes with a summary in Section 5.

2 Behaviour-Driven Development

Behaviour-Driven Development (BDD) is an agile Software Engineering (SE)
methodology, that conforms to the Test-First principle: Test cases are devel-
oped previous to the software system itself. In BDD, executable test cases are
directly derived from requirements stated in natural language, by employing a

pattern matching approach. This enables stakeholders to actively participate in
the definition of requirements, which are a fundamental design input for the
system under development.

In contrast to other Test-First approaches (like Test-Driven Development),
BDD focuses on the creation of acceptance tests rather than unit tests. The
former ones assure the acceptance of the system by its users, as the system’s
ability to fulfill their needs with respect to a business value is tested. The latter
ones perform testing on a lower system level by checking individual program
constructs. This has the potential to reduce the number of defects at an early
stage of the software development process.

Scenario: trader is not alerted below threshold
Given a stock of symbol STK1 at a threshold of 10.0
When the stock is traded at 5.0
Then the alert status should be OFF

Scenario: trader is alerted above threshold
Given a stock of symbol STK1 at a threshold of 10.0
When the stock is traded at 11.0
Then the alert status should be ON

Fig. 1: Two scenarios from the stock market domain, expressed in Gherkin.

BDD frameworks exist for several programming languages, e.g. JBehave?
(Java) or RSpec [1] (Ruby). As a commonality, those frameworks offer some kind
of Domain-Specific Language (DSL) for defining scenarios, and a mechanism to
derive executable test code by some sort of pattern matching, usually regular
expressions. One such DSL which is employed in multiple frameworks is called
the Gherkin language [1]. Figure 1 shows an exemplary usage of Gherkin. The
scenarios consist of the following three groups:

— The keyword GIVEN sets up the test environment by creating the specific
context which is necessary to execute the test.

— Second, the functionality under test is executed (keyword WHEN).

— Lastly, the outcome of the previous step is compared against the expected
one (keyword THEN).

Each group can contain several steps that are joined together using the key-
word AND. Each step in turn, is backed by a step template (also called support
code), that converts the text into executable program code using regular ex-
pressions, e.g. to extract method parameters. Figure 2 shows the step templates
needed to execute both scenarios shown in Figure 1.

As each step is individually backed by support code, steps can arbitrarily
be combined to create new acceptance tests. Thanks to the comprehensibility
of Gherkin and the use of natural language, scenarios can easily be created also

3 http://jbehave.org

public class TraderSteps {
private Stock stock;

Q@QGiven("a stock of symbol $sym at a threshold of $thr")
public void aStock(String sym, double thr) {
stock = new Stock(sym, thr); }

@When("the stock is traded at $price")
public void theStockIsTradedAt(double price) {
stock . tradeAt (price); }

@Then("the alert status should be $stat")
public void theAlertStatusShouldBe(String stat) {
ensureThat (stock.getStatus () .name(), equalTo(stat)); }

Fig.2: The according support code for the scenarios in Figure 1, expressed in
Java and JBehave.

by non-programmers, e.g. the future users of the software themselves. That way,
a ubiquitous language [2] is created, that improves communication between all
participants involved in the software development process, e.g., product owner,
software engineers, testers, and users.

3 Specification of Clinical Guidelines

In the remainder of this section, we describe an approach for the specification of
automated CIGs following the BDD methodology. The CIG behaviour is speci-
fied as a set of scenarios expressed in the Gherkin language:
— The GIVEN group of a scenario describes the precondition in terms of the
patient’s current state, and possibly also its past progression.
— The expected therapeutic action, i.e. the output of the CIG for the given
patient state, is expressed in the WHEN part of the scenario.
— The THEN group contains assumptions about the future (improved) patient
state, based on the therapeutic action. As the effects will take some time
until they are measurable, usually a temporal annotation is included.
There is a main difference between the SE acceptance tests as described in
the previous section and the CIG scenarios. While the former ones are actively
preparing the test context and executing the function under test, the latter ones
can only “passively” be evaluated on data a patient delivered. The CIG scenarios
are interpretable descriptions of patterns that are supposed to occur in patient
data, given that the CIG has correctly been implemented based on an error-free
specification.

After implementing the CIG based on the defined scenarios, test cases can be
recorded, e.g. using a patient simulator [4]. The data consists of time-stamped
recordings of the patient state and the according therapy over the course of

the session. Therapeutic actions are changes of the medical device’s settings ap-
plied automatically according to the underlying CIG. By checking the scenarios
against a test case, two types of errors can be discovered: First, the designated
therapeutic action (WHEN-group) may not occur due to a bug in the implementa-
tion (“error of omission”), although the current patient state fulfills the precon-
dition of the scenario (GIVEN-group). Second, if the precondition as well as the
action of a scenario are met, but not the expected change in the patient’s state,
the assumptions about the state may not be correct in the first place. While the
first error is most likely rooted in the implementation of the CIG, the second
kind of error may arise from an improper specification itself.

4 Case Study

We have implemented an extension for the Semantic Wiki KnowWE that sup-
ports the described approach. Each step template consists of a regular expression
containing capturing groups enriched by a type system, and a formal condition
with the according placeholders. When using step templates, the placeholders are
filled with terms from a predefined ontology, that contains the data definitions
of the CIG (cf. Figure 3, left side). The ontology is created as the foundation for
the fully formalized CIG [4]. Scenarios are expressed by arbitrarily combining
steps. If a step can not be matched against a template, an error is reported. This
leads to the definition of new templates, incrementally increasing the range of
expressible scenarios as needed (cf. Figure 3, right side).

View Attach Info Edit Mode Edit Maore... ¥

ke Could not match step: PS is reduced

View Attach Info Edit Mode Edit More... v
GIVEN f_spn is below lower limit
AND etCO2 is below upper limit
oL - - . AND PS is above minimum
- VT [num] { I‘JII!‘.!'ILITE'?\..‘F,“O UEEED) WHEN PS is reduced
=GIEER ol TR (D 7 THEN f_spn should increase within 6min
-f_spn [num] {"BREATHS_PER_MIN"} (0 300) -
Output

- PS [num] {"MBAR"} (0 40) (;’;;;é;;r"i; """"""""""""""""""""""""""""
\GIVEN f spn i3 within limits
! BND VT is above lower limit

BAND etC02 is below upper limit

BND PS5 is above minimum
| WHEN PS is decreased :
| THEN Classifications should be normal within émin !
| Bname NormalVentilation 1

Template: ${QuestionNum’} is below lower limit
Replacement: $1 < $1_low

Template: ${Question} is unchanged
Replacement: 31 = $1[now-1ms]

Template: ${QuestionNum} is above minimum
Replacement: $1_min < $1

Fig. 3: Two KnowWE wiki pages: The left page contains parts of the data ontol-
ogy and step templates. The right one contains two scenarios in display and in
editing mode. Steps that cannot be matched result in an error.

The results of the scenario analysis with respect to a test case are visual-
ized on an interactive timeline, that can be panned and zoomed, cf. Figure 4.
Each band corresponds to exactly one scenario. At each instant of time, an icon
represents the result, if the scenario’s precondition is fulfilled: omitted therapeu-
tic action (red warning sign), unfulfilled postcondition (yellow warning sign),
and fully satisfied scenario (green checkmark), respectively. The timeline is inte-
grated into KnowWE’s testing framework. Replaying the test case to any instant
in time is possible to introspect CIG execution for debugging purposes.

Testcase Dashboard)/P. 129/200° 14xml - Filter

[PsevareTachypnes (00
ila (0/n

reTad
[P1n

f A A A & A
n e ~
&
ilation L
[Puus renalvenitilation (1 V¢ IY SIS SIS IS ihh SIS I DTImE 1d 24min (#: 716) Ann
Terminology Object Value
@O RIPLRFP OO VO 00V UV OB OO UBLBU 0T BOOLOLT & U © YL LYWL © U

. Checked_PS 5.0
pPS 2.0
PS_min 5.0

ih

Timeline © SIMILE

etCo2 35.0
etCo2_high 55.0
f_spn_low 15.0 n 27-Mai-2014 07:45 by Reinhard Hatko &

Fig. 4: Analysis results of the defined scenarios with respect to a temporal test
case are depicted on an interactive timeline. For debugging purposes, the test
case can be replayed until the currently selected instant of time by clicking the
green arrow inside the tooltip.

For the evaluation of the presented approach, we are currently working on a
case study with a real world CIG and patient data from a previous study con-
ducted at the Department of Anesthesiology and Intensive Care Medicine, Uni-
versity Medical Center Schleswig-Holstein, Campus Kiel [8]. During this study,
150 patients have been automatically weaned from mechanical ventilation by the
automatic weaning system SmartCare/PS® [6]. SmartCare/PS is a knowledge-
based software option for Dréger’s mechanical ventilators Evita XL and Evita
Infinity V500. SmartCare/PS stabilizes the patient’s spontaneous breathing in
a respiratory comfort zone, while gradually reducing the inspiratory support of
the ventilator until the patient is ready for extubation. The system’s underlying
CG is further depicted in [7].

This study does not investigate the usage of the derived specification as a
design input. It focuses on the applicability of the approach in terms of usability
and expressiveness, and its usage for analysing the test cases regarding the sce-
narios. The CIG behaviour has been specified using natural language scenarios
as described herein. By exploiting strict naming conventions regarding the label-
ing of related data, e.g. measurements and their corresponding upper and lower
limits, only a rather limited set of about 15 step templates needed to be de-

fined. This allows for fast requirements elicitation and also reduces maintenance
efforts.

5 Conclusion

In this paper, we have described an approach inspired by Behaviour-Driven
Development for specification and analysis of Computer-Interpretable Clinical
Guidelines. Requirements stated by medical experts in natural language are
used as design input for the development of CIGs and their analysis using test
cases. We demonstrated the applicability of Behaviour-Driven Development for
CIGs using an extension for the Semantic Wiki KnowWE. Currently, we are
conducting a case study focusing on the analysis aspect. A real world CIG and
test cases from a real patient study are used for evaluation. So far, the approach
has shown its applicability in terms of usability and expressiveness. In the near
future, the results of the scenarios will be analysed by medical experts.

References

1. Chelimsky, D., Astels, D., Dennis, Z., Hellesoy, A., Helmkamp, B., North, D.: The
RSpec Book: Behaviour Driven Development with RSpec, Cucumber, and Friends.
The Pragmatic Programmers, United States (2011)

2. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Longman, Amsterdam, 1 edn. (2003)

3. Hatko, R., Baumeister, J., Belli, V., Puppe, F.: DiaFlux: A graphical language for
computer-interpretable guidelines. In: Riafno, D., ten Teije, A., Miksch, S. (eds.)
Knowledge Representation for Health-Care, Lecture Notes in Computer Science,
vol. 6924, pp. 94-107. Springer, Berlin / Heidelberg (2012)

4. Hatko, R., Schidler, D., Mersmann, S., Baumeister, J., Weiler, N., Puppe, F.: Imple-
menting an Automated Ventilation Guideline Using the Semantic Wiki KnowWE.
In: ten Teije, A., Volker, J., Handschuh, S., Stuckenschmidt, H., d’Aquin, M.,
Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW. Lecture Notes in
Computer Science, vol. 7603, pp. 363—-372. Springer (2012)

5. Lellouche, F., Mancebo, J., Jolliet, P., Roeseler, J., Schortgen, F., Dojat, M., Ca-
bello, B., Bouadma, L., Rodriguez, P., Maggiore, S., Reynaert, M., Mersmann, S.,
Brochard, L.: A multicenter randomized trial of computer-driven protocolized wean-
ing from mechanical ventilation. American journal of respiratory and critical care
medicine 174(8), 894-900 (Oct 2006)

6. Mersmann, S., Dojat, M.: SmartCare/PS-Automated Clinical Guidelines in Critical
Care. In: de Mantaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean
Conference on AI, ECAT’2004. pp. 745-749. I0S Press 2004, Valencia, Spain (2004)

7. Neumann, A., Schmidt, H.: SmartCare®/PS The automated weaning protocol
(2010), http://www.draeger.net/media/10/01/35/10013505/
smartcare_auto_weaning protocol _booklet.pdf

8. Schadler, D., Engel, C., Elke, G., Pulletz, S., Haake, N., Frerichs, 1., Zick, G., Scholz,
J., Weiler, N.: Automatic control of pressure support for ventilator weaning in surgi-
cal intensive care patients. American journal of respiratory and critical care medicine
185(6), 637-44 (Mar 2012)

