
CAPJA- A Connector Architecture for PROLOG and
JAVA

Ludwig Ostermayer, Frank Flederer, Dietmar Seipel

University of Würzburg, Department of Computer Science
Am Hubland, D – 97074 Würzburg, Germany

{ludwig.ostermayer,dietmar.seipel}@uni-wuerzburg.de

Abstract. Modern software often relies on the combination of several software
modules that are developed independently. There are use cases where different
software libraries from different programming languages are used, e.g., embed-
ding DLL files in JAVA applications. Even more complex is the case when differ-
ent programming paradigms are combined like within applications with database
connections, for instance PHP and SQL.
Such a diversification of programming languages and modules in just one soft-
ware application is becoming more and more important, as this leads to a combi-
nation of the strengths of different programming paradigms. But not always, the
developers are experts in the different programming languages or even in differ-
ent programming paradigms. So, it is desirable to provide easy to use interfaces
that enable the integration of programs from different programming languages
and offer access to different programming paradigms.
In this paper we introduce a connector architecture for two programming lan-
guages of different paradigms: JAVA as a representative of object oriented pro-
gramming languages and PROLOG for logic programming. Our approach pro-
vides a fast, portable and easy to use communication layer between JAVA and
PROLOG. The exchange of information is done via a textual term representation
which can be used independently from a deployed PROLOG engine. The proposed
connector architecture allows for Object Unification on the JAVA side.
We provide an exemplary connector for JAVA and SWI-PROLOG, a well-known
PROLOG implementation.

Keywords. Multi-Paradigm Programming, Logic Programming, Prolog, Java.

1 Introduction

Business applications often are implemented with object oriented techniques. JAVA cur-
rently is one of the most used object oriented programming languages with rich libraries
and a very active community. There are tools based on JAVA for writing complex rules,
but these tools still come with flaws [10]. Logic programming languages like PROLOG
are particular suitable to write rules more intuitively and declaratively, which helps in
building, updating and testing complex structured sets of rules as we have successfully
shown in the field of e-commerce in [9]. Because JAVA is the main programming lan-
guage in most large-scale applications, it is desirable to connect JAVA with PROLOG for
certain problem domains.

Many approaches have been proposed to make PROLOG available in JAVA, but in
many cases there is no clear distinction between JAVA and PROLOG as they use PRO-
LOG concepts like terms and atoms directly in JAVA. Our efforts are to keep PROLOG
structures off from JAVA, but to enable in JAVA the use of existing PROLOG rules and
facts. Therefore we propose a fast, portable and intuitive connector architecture between
JAVA and PROLOG.

In our approach, objects can directly be used as PROLOG goals, without creating
complex structures in JAVA that represent the terms in PROLOG. Member variables that
are equal null in JAVA are translated into PROLOG variables. Those variables are
unified by PROLOG when querying a JAVA object as a goal in PROLOG. The values, the
variables are unified with, are set to the corresponding member variables of the JAVA
objects. We call this mechanism Object Unification. Apart from using existing JAVA
classes for Object Unification, we also provide in PROLOG a generator for JAVA classes.
The instances of generated classes unify with terms initially passed to the generator.

The remainder of this paper is organized as follows. In Section 2 we look at re-
lated work and compare those concepts with our own approach. Section 3 introduces
the components of the proposed connector. We show the mechanics of the object term
mapping in Section 3.1 and in Section 3.2 the parsing of PROLOG terms in JAVA. An
exemplary interface for JAVA and SWI PROLOG completes the connector architecture
in Section 3.3. After that, the workflow with our connector architecture is shown in
Section 4 from two viewpoints: from JAVA and from PROLOG. In Section 5 we evaluate
our approach and finally discuss future work in Section 6.

2 Related Work

Providing a smooth interaction mechanism for JAVA and PROLOG is a challenging prob-
lem that has been studied in several research papers of the last decade.

A well known and mature interface between JAVA and PROLOG is JPL [13]. To en-
able a fast communication JPL provides JAVA classes that represent directly the struc-
tures in PROLOG. This leads to much code for complex PROLOG term structures. Also,
it requires that either the JAVA developer knows how to program PROLOG or the PRO-
LOG developer knows how to code JAVA in order to build the necessary structures
in JAVA via classes like Compound. Furthermore, it is limited to the use with SWI-
PROLOG, as it is shipped and created for just this single PROLOG implementation.

An interesting approach is INTERPROLOG [2] that uses the JAVA serialization mech-
anism in order to send serialized JAVA objects to PROLOG. These strings are analysed in
PROLOG with definite clause grammars and a complex term structure is created which
describes the serialized object. However, this generated object term structure is com-
plex and contains a lot of class meta information that is not as natural for a PROLOG
programmer as the textual term representations of objects in our approach.

The concepts of linguistic symbiosis have been used in [3, 6, 7] to define a suitable
mapping. Methods in JAVA are mapped to queries in PROLOG. This differs from our
approach, as we use JAVA objects for terms as well as for queries in PROLOG.

A customisable transformations of JAVA objects to PROLOG terms was introduced
with JPC [4]. Instead of using annotations, as it is done in our approach to customise the

mapping, in JPC custom converter classes can be defined. These converters implement
methods which define the translation between objects and terms. This causes in a lot of
extra code and files as the user has to define the converter classes instead of just writing
annotations to existing classes.

In [5] tuProlog, a PROLOG engine entirely written in JAVA, was integrated into
JAVA programs by using JAVA annotations and generics. But other than in our approach,
PROLOG rules and facts are written directly into the JAVA code within annotations.
Querying rules and facts is done again by JAVA methods. The mapping of input and
return to arguments of a goal in PROLOG is defined with annotations. In contrast to our
attempt, this approach is strongly dependent on tuProlog and therefore not compatible
to other PROLOG engines.

In [11], we have presented the framework PBR4J (PROLOG Business Rules for
JAVA) that allows to request a given set of PROLOG rules from a JAVA application. To
overcome the interoperability problems, a JAVA archive has been generated that contains
methods to query the set of PROLOG rules. PBR4J uses XML Schema to describe the
data exchange format. From the XML Schema description, we have generated JAVA
classes for the JAVA archive. In our new approach the mapping information for JAVA
objects and PROLOG terms is not saved to an intermediate, external layer. It is part of
the JAVA class we want to map and though we can get rid of the XML Schema as used in
PBR4J. Either the mapping is given indirectly by the structure of the class or directly by
annotations. While PBR4J just provides with every JAR only a single PROLOG query,
we are now able to use different goals depending on which variables are bound. PBR4J
transmitted along with a request facts in form of a knowledge base. The result of the
request was encapsulated in a result set. With our connector architecture we do not
need any more wrapper classes for the knowledge base and the result set as it was with
PBR4J. That means with our new connector we have to write less code in JAVA. We
either assert facts from a file or persist objects with a JAVA method to the database of
PROLOG.

3 A Connector for PROLOG and JAVA

The connector for PROLOG and JAVA is based on our work with mappings between
objects in JAVA and terms in PROLOG. Before we discuss the individual parts of our
connector, we recap briefly the highly customisable Object Term Mapping (OTM) which
we have introduced in [12]. In addition to a simple, yet powerful default mapping for
almost every class in JAVA, different mappings between objects and terms also easily
can be defined. We call the mapping of an object to a PROLOG term Prolog-View on the
given object. Multiple Prolog-Views for a single object can be defined. For this purpose,
we only need three annotations in JAVA in a nested way as shown in Figure 1. Because
JAVA does not support multiple annotations of the same type within a class until ver-
sion 7, we use the annotation @PlViews to allow multiple @PlView annotations in a
single given class. A @PlView is identified by viewId and consists of the following
elements to customize the mapping of an object to a term. functor is used to change
the target term’s functor. The list orderArgs changes the arguments order and the
list ignoreArgs prevents member variables to be mapped as arguments of the target

Fig. 1: The Interfaces for @PlViews, @PlView and @Arg

term. The list modifyArgs consists of @Arg annotations which are used to modify
the mapping of a single member variable of the object. The member variable is refer-
enced by valueOf and the type in PROLOG can be modified with type. If the member
variable is a class type that has @PlView annotations, a particular Prolog-View can be
selected via the appropriate viewId. All in all, arbitrary complex nested term struc-
tures can be created by the mapping. The following example shows a Person class
and two different Prolog-Views on Person:

@PlViews({
@PlView(viewId="personView1",
ignoreArgs={"id"},
modifyArgs=

{@PlArg(valueOf="children", viewId="personView2")})
@PlView(viewId="personView2", functor="child",
orderArgs={"givenName")}

)
class Person {
private int id;
private String givenName;
private String familyName;
private Person[] children;
// ... constructor/ getter / setter

}

In the listing below instances of Person are given followed by the textual term
representation under the default mapping and under the Prolog-View personView1:

Person p1 = new person(1, 'Homer', 'Simpson');
Person p2 = new person(2, 'Bart', 'Simpson');
p1.setChildren(new Person[]{p2});

// default mapping of p1
"person(1,'Homer','Simpson',[person(2,'Bart','Simpson',[])])"
// mapping of p1 under the Prolog-View "personView1"
"person('Homer', 'Simpson', [child('Bart')])"

All the information needed for the creation of textual term representations are de-
rived from the classes involved in the mapping. The default mapping uses the infor-
mation of the classes structure itself. The customised mapping uses the information
contained in the annotations @PlView.

3.1 Creating Textual Term Representations

We only need two classes in JAVA to request PROLOG as shown in Figure 2. The con-
version as well as the parsing is implemented within the wrapper class OTT (Object-
Term-Transformer). The class Query is used to start a call to PROLOG. An example

Fig. 2: Classes for CAPJA

for the usage of these classes is shown in Figure 3. The object o1 is destined to be
unified in PROLOG. It has references to two other objects o2 and o3 which will lead
to a nested term structure in PROLOG. When the instance query gets o1 passed to its
constructor, query creates an instance of OTT, here ott1. For all the other references
in o1 instances of OTT are created in a nested way, namely ott2 for o2 and ott3 for
o3.

query

o1

o3

o2

ott1

ott2

ott3

Fig. 3: A Dependency Tree of OTT Objects

In order to create the textual term representation of o1, the instance query causes
ott1 to call its toTerm() method that triggers a recursive call of toTerm() in all
involved instances of OTT. In doing so, the first operation is to determine which fields
have to be mapped. Dependent on the viewId of the requested Prolog-View or on
the default mapping, an array of Field references is created that contains all the needed
member variables for the particular view in the corresponding order. The information
about the Fields is retrieved with help of the Reflection API in JAVA. The same way,
additional information like PROLOG types and viewIds for particular member vari-
ables are saved within such arrays. As the information about a view of a class is solid
and does not change with the instances, this field information is just created once and

cached for further use. For the creation of the textual term representation the functor is
determined either from a customised functor element of an @PlView annotation or
from the class name in the default case. After that, the Field array is iterated and the
string representation for its elements are created. The pattern of those strings depend on
the PROLOG type that is defined for a member. If a member is a reference to another
object, the toTerm() method for the reference is called recursively.

3.2 Parsing Textual Term Representations

After query has received a textual representation of the unified term from PROLOG, it
is parsed to set the unified values to the member variables of the appropriate objects in
JAVA. The parsing uses again the structure of the nested OTT objects as shown in Figure
3. The class OTT has the method fromTerm(String term). This method splits the
passed string into functor and arguments. The string that contains all the arguments is
split into single arguments. This is done under consideration of nested term structures.
According to the previously generated Field array the arguments are parsed. This pars-
ing happens in dependence on the defined PROLOG type of an argument. For instance,
an atom either has single quotes around its value or, if the first character is lowercase,
there are no quotes at all. If there is a quote detected, it is removed from the string
before assigning it as a value for the appropriate member variable. Assignments for
referenced objects in o1 are derived recursively by calling the fromTerm(String
term) method of the appropriate instances of OTT, in our example ott2 and ott3.

3.3 The Interface for JAVA and SWI-PROLOG

Although the complete mapping process is located in JAVA, we still need an interface
to the PROLOG implementation of choice in order to connect both programming lan-
guages. The open-source PROLOG implementation SWI-PROLOG [14] comes with the
highly specialized, and for SWI optimized, JAVA interface JPL. We have implemented
our own JAVA interface for SWI which is optimized for our mapping. Similar to JPL we
use SWI’s Foreign Language Interface (FLI) and the JAVA Native Interface (JNI). The
FLI is bundled with SWI and provides a native interface which can be used to extend
SWI by further (meta-)predicates. The FLI also provides an interface for C and is there-
fore accessible for all other programming languages which have access to C libraries.

We have JAVA on one side and the C interface FLI on the other, so we need the
glue to enable the communication between these two worlds. This is done by the JAVA
Native Interface (JNI), which enables the usage of in C defined functions in JAVA. With
the help of the JNI, we implemented a bridge between JAVA and the SWI-PROLOG sys-
tem. As mentioned, we focus on the simple transmission of strings that represent terms
in PROLOG. This differs from the interface JPL, as our interface does not need com-
plex class structures in JAVA to represent terms in PROLOG. We simply send strings to
PROLOG and receives strings from it. The transmitted strings already satisfy PROLOG’s
syntax and thus can be converted directly into terms on the PROLOG side.

Via the FLI we provide backtracking if there are more solutions. This leads to a
return that contains the next unified term in PROLOG. After sending from JAVA a string
containing a goal with the logical variable X, our interface for SWI-PROLOG returns the

unified term as a string back to our JAVA application. The user on the JAVA side now
can call backtrack() to send a backtrack command to SWI-PROLOG which returns
the next solution.

4 Workflows

We start from two viewpoints: JAVA and PROLOG. Each viewpoint describes the devel-
opment phase using our connector architecture.

From JAVA The default mapping enables the JAVA developer to use already existing
JAVA classes in PROLOG as facts or as goals. If the default mapping of an object in JAVA
does not provide a desired term structure in PROLOG, the textual term representation of
the object can be altered by using the appropriate @PlView annotations. To unify an
existing JAVA class the developer just has to wrap it within an instance of Query and
call its method unify in order to call the class’ textual term representation as goal in
PROLOG:

Person p = new Person();
p.setId(1);
Query q = new Query(p, "personView1");
q.unify();

The example request to PROLOG above contains an instance p of the class Person
from Section 3. Note, that the only value that is set for p is the id attribute. The other
attributes are not initialized and therefore equal null. The class Query manages the
call to PROLOG. The optional second parameter of the constructor of Query defines
which Prolog-View is used for the object p. It is specified by the viewId element of
a @PlView annotation, here personView1. When the method unify() is called
the textual term representation is created. This is done either according to the default
mapping or under the consideration of existing @PlView annotations that are defined
for the class Person or any other referenced classes in Person. This string is already
a valid term in PROLOG with arguments that represent the attributes of p and all ref-
erenced objects in p. The textual term representation has only arguments for attributes
that are mapped as defined by the default mapping or by a referenced @PlView anno-
tation. The textual term representation then is used as goal within the PROLOG query.

In the example above, most attributes of p are equal to null in JAVA. As null
is a value that can not be transformed into an appropriate type in PROLOG it has to be
handled in a particular way. We consider null to be in PROLOG a (logical-)variable
that is supposed to be unified. After sending a call to PROLOG containing null values,
the resulting variables are possibly unified in PROLOG. The unified term is sent back
as string and parsed in JAVA. Changes to the initial string sent from JAVA to PROLOG
will be detected and set to the initial object by JAVA reflections, in our example to the
instance p of Person. This means, those attributes that formerly have been equal to
null are set to the values of the variables unified in PROLOG. The original object p
now has been updated and represents the solution of the unification process in PROLOG.

An important feature of PROLOG is unknown to JAVA: the backtracking mecha-
nism. The method unify just returns the first solution PROLOG provides. But via
backtracking PROLOG is able to provide other unifiable solutions. These solutions can
be retrieved with another method of Query that is called backtrack(). It sends a
backtrack request to PROLOG in order to retrieve the next solution, if there is one. The
same way a the solution is set to the original object via unify(), the solution via
backtrack() is set to the variables of the original object in JAVA. As it is not sure
that there even are other solutions, backtrack() returns a boolean in JAVA whether
a solution was found by PROLOG or not.

Similar to JPL, we have implemented a third request: get all solutions of a goal in
one call. This is called findall(), named after the built-in predicate in SWI PRO-
LOG. This method returns an array of the requested objects, e. g. Person. As the method
returns multiple objects with different values in their variables, we have to create for
each solution a new object. So, when using this method the original object is not touched
at all. Creating new objects for every solution is the reason why we need the unifiable
objects to have a default constructor in JAVA.

Beside these basic methods for Object Unification there is a method for asserting
JAVA objects to the PROLOG database. This method is called persist() and just
takes the generated string representation of the PROLOG term and asserts it by using the
assertz/1 predicate. After that method call the term representation of the appropri-
ate object is available as fact in PROLOG.

From PROLOG Another viewpoint is the writing of PROLOG terms that are destined
for the use in JAVA. In contrast to the previous viewpoint, there are no suitable JAVA
classes yet within the current project. So, we show now how is easy it is to write PRO-
LOG libraries that are accessible from JAVA by generated classes.

In [12] we have described a default and a customised mapping between JAVA ob-
jects and PROLOG terms. As long as no customisation is defined for a JAVA class via
special annotations, a default mapping is applied which links a class to a certain term
in PROLOG. With annotations in JAVA the user is able to customise the mapping. These
annotations determine which of the member variables will be part of the term represen-
tation and which PROLOG type they will be (e. g. ATOM, COMPOUND, LIST). It is
possible to define several different views on a class.

We also have introduced in [12] the PVN (Prolog-View-Notation) that can be used
to define in PROLOG the mapping between JAVA objects and PROLOG terms. Expres-
sions in PVN consist of two predicates: pl_view and pl_arg. The term pl_view
describes a textual term representation of a JAVA class. The term pl_arg term in a
PVN expression is used to define the mapping of the member variables.

A Rule in PROLOG can be made accessible from JAVA using the PVN to describe a
rule’s head. From this PVN expression we generate JAVA classes with the appropriate
@PlView annotations. For this purpose we have developed two predicates in PROLOG:

create_class_from_pvn(?Pvn, ?Class)
create_annotation_from_pvn(?Pvn, ?Annotation)

Typically for PROLOG, both predicates can have the first or the second argument as
input. The first predicate generates from a PVN expression source code for JAVA con-
taining all necessary classes. These classes map directly to the terms in PROLOG from
which we started from. The second predicate is used to generate the @PlView annota-
tions.

5 Evaluation

To evaluate our approach we reimplemented the London Underground example as in
[3]. We made two implementations, one with JPL and one with our connector. The
structure of the London Underground is defined by connected/3 facts in PROLOG.
Speaking of the undirected graph, representing the London Underground with stations
as nodes and lines as edges, a connected fact describes in this context adjacent sta-
tions. The first and the second argument of a connected fact is a station. The third
argument is the connecting line. We give some examples for connected facts:

connected(station(green_park), station(charing_cross),
line(jubilee)).

connected(station(bond_street), station(green_park),
line(jubilee)).

...

In our first implementation we use JPL in order to retrieve a station connected to a
given station:

1 public class Line {
2 public String name;
3 public Term asTerm() {
4 return new Compound("line", new Term[]{new Atom(name)});

}
}

5 public class Station {
6 public String name;
7 public Station(String name) { this.name = name; }
8 public Term asTerm() {
9 return new Compound("station", new Term[]{

new Atom(name)});
}

10 public static Station create(Term stationTerm) {
11 String name = ((Compound)stationTerm).arg(1).name();
12 return new Station(name);

}
13 public Station connected(Line line) {
14 String stationVarName = "Station";
15 Term[] arguments = new Term[]{asTerm(),

new Variable(stationVarName), line.asTerm() };
16 Term goal = new Compound("connected", arguments);
17 Query query = new Query(goal);
18 Hashtable<String, Term> solution = query.oneSolution();

19 Station connectedStation = null;
20 if(solution != null) {
21 Term connectedStationTerm = solution.get(stationVarName);
22 connectedStation = create(connectedStationTerm);}
23 return connectedStation;}}

As one can see, the implementation with JPL leads to a lot of lines of code. In the
method connected the complex term structure is created in order to query the pred-
icate connected. The result handling is tedious again. With our approach we do not
have to create any term structures in JAVA. Instead, we need to implement an extra class
Connected representing the goal in PROLOG with the predicate connected/3:

1 public class Connected {
2 public Station stat1;
3 public Station stat2;
4 public Line line;
5 public Connected() { };
6 public Connected(

Station stat1, Station stat2, Line line) {
7 this.stat1 = stat1;
8 this.stat2 = stat2;
9 this.line = line;}
}

10 public class Line {
11 public String name;

}
12 public class Station {
13 private String name;
14 public Station connected(Line line) {
15 Connected connected = new Connected(this, null, line);
16 Query query = new Query(connected);
17 query.unify();
18 return connected.stat2;}

}

As the following table shows, our approach needs less lines of code to implement
the London Underground example than the implementation with JPL.

Line Station (w/o connected()) Connected connected() sum
JPL loc 4 8 0 11 23

CAPJA loc 2 2 9 5 18

However, lines of code do not say anything about the code’s complexity and infor-
mation density. Our class Connected is very simple. It contains only member vari-
ables and two simple constructors whereas in JPL already the method connected()
of the class Station is fairly complex.

With the data of the complete London Underground with 297 stations, 13 lines and
412 connections, we made 50,000 executions1 with both implementations. The result
of the performance test is presented in the following table:

1 Core i5 2 x 2.4 GHz, 6 GB RAM, Ubuntu 14.04

ø execution time of 50.000 calls
JPL ∼ 1.2s

CAPJA ∼ 2.6s

Castro et al. did a similar comparison between JPL and their LOGICOBJECTS [3].
Their implementation with LOGICOBJECTS is slower than the corresponding JPL im-
plementation by a factor of about 7 whereas our connector implementation is just about
2.13 times slower.

Aside from a performance improvement in form of field structure caching, as men-
tioned in Section 4, we identified that getting and setting the values of the member
variables via Reflections is slow. In the future we want to use static calls as often as pos-
sible instead of using the Reflection API. In order to make use of direct calls, we need
to generate Specialized OTT classes (SOTT) for all classes that we want to map. These
generated classes contain highly specialized toTerm() and fromTerm(String)
methods that call their member variables directly if public or with their getter and setter
methods. This attempt picks up concepts from our prior work in [11]. But this time, we
want to make use of so called Annotation Processors that extend the JAVA compiler in
order to generate additional code at compile time. Those generated SOTT classes are
only optional. The OTT class as presented in this work, still will be used in the case that
no SOTT class exists. We have implemented an early prototype in order to test these
ideas for feasibility. In an early test using SOTT classes, we have measured an average
time for 50.000 executions of about 1.5 seconds for the London Underground exam-
ple. This is a huge performance gain and is just about 25% slower than JPL, the highly
optimized interface for SWI-PROLOG.

6 Future Work

The presented interface in Section 3.3 has proven to be well applicable for SWI-PROLOG.
However, our approach is not limited to this PROLOG implementation. We currently
develop a standard interface based on pipes that is suitable for most PROLOG imple-
mentations and completes our generic approach. This way, we want to accomplish a
portable solution that is independent from any PROLOG implementation.

In addition, we further want to reduce the necessary lines of code. In our current
approach we use a wrapper class called Query for calling a PROLOG goal. Instead, we
could have used an abstract superclass that is extended by the class of an object that
is going to be mapped. This superclass manages the OTT objects that contain the logic
behind the creation of the textual term representations and the parsing. Even the request
control for unify(), backtrack() and findall() then is part of this superclass.
Using the abstract superclass the request for PROLOG from JAVA in the Underground
example in the lines 16, 17 can be reduced to a single line containing just the method
call connected.unify() which additionally saves the initialisation of a Query
object.

However, the approach with a superclass has a big drawback: we want to be able
to use almost every class in JAVA for the Object Unification. This will not work for
classes that already extend a class because JAVA does not support multiple inheritance

yet. In JAVA 8 there is a new feature called Default Methods that allows to implement
a method directly within a JAVA interface. Using this new feature we can implement
all the needed functions as Default Methods in an interface. Because multiple JAVA
interfaces can be implemented by a single class, we achieve with this new interface the
same reduction in lines of code as with an abstract superclass. This way, we can avoid
the multiple inheritance problem for classes.

References

1. A. Amandi, M. Campo, A. Zunino. JavaLog: a framework-based integration of Java and
Prolog for agent-oriented programming. Computer Languages, Systems & Structures 31.1,
2005. 17-33.

2. M. Calejo. InterProlog: Towards a Declarative Embedding of Logic Programming in Java.
Proc. Conference on Logics in Artificial Intelligence, 9th European Conference, JELIA, Lis-
bon, Portugal, 2004.

3. S. Castro, K. Mens, P. Moura. LogicObjects: Enabling Logic Programming in Java through
Linguistic Symbiosis. Practical Aspects of Declarative Languages. Springer Berlin Heidel-
berg, 2013. 26-42.

4. S. Castro, K. Mens, P. Moura. JPC: A Library for Modularising Inter-Language Conversion
Concerns between Java and Prolog. International Workshop on Advanced Software Devel-
opment Tools and Techniques (WASDeTT), 2013.

5. M. Cimadamore, M. Viroli. A Prolog-oriented extension of Java programming based on
generics and annotations. Proc. 5th international symposium on Principles and practice of
programming in Java. ACM, 2007. 197-202.

6. K. Gybels. SOUL and Smalltalk - Just Married: Evolution of the Interaction Between a Logic
and an Object-Oriented Language Towards Symbiosis. Proc. of the Workshop on Declarative
Programming in the Context of Object-Oriented Languages, 2003.

7. M. D’Hondt, K. Gybels, J. Viviane Seamless Integration of Rule-based Knowledge and
Object-oriented Functionality with Linguistic Symbiosis. Proc. of the 2004 ACM sympo-
sium on Applied computing. ACM, 2004.

8. T. Majchrzak, H. Kuchen. Logic java: combining object-oriented and logic programming.
Functional and Constraint Logic Programming. Springer Berlin Heidelberg, 2011. 122-137.

9. L. Ostermayer, D. Seipel. Knowledge Engineering for Business Rules in Prolog.
Proc. Workshop on Logic Programming (WLP), 2012.

10. L. Ostermayer, D. Seipel. Simplifying the Development of Rules Using Domain Specific Lan-
guages in Drools. Proc. Intl. Conf. on Applications of Declarative Programming and Knowl-
edge Management (INAP), 2013.

11. L. Ostermayer, D. Seipel. A Prolog Framework for Integrating Business Rules into Java
Applications. Proc. 9th Workshop on Knowledge Engineering and Software Engineering
(KESE), 2013.

12. L. Ostermayer, F. Flederer, D. Seipel. A Customisable Mapping between Java Objects and
Prolog Terms.
http://www1.informatik.uni-wuerzburg.de/pub/ostermayer/paper/
otm_2014.html

13. P. Singleton, F. Dushin, J. Wielemaker. JPL 3.0: A Bidirectional Prolog/Java Interface.
http://www.swi-prolog.org/packages/jpl

14. J. Wielemaker. SWI Prolog.
http://www.swi-prolog.org

