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ABSTRACT 

The Linux Read-Ahead mechanism has been designed to bridge 

the gap between the secondary storage low performance and I/O 

read-intensive applications for personal computers and servers. 

This paper revisits the efficiency of this mechanism for embedded 

Linux using flash memory as secondary storage, which is the case 

for most embedded systems. Indeed, Linux kernel uses the same 

read-ahead mechanism whatever the application domain. This 

paper evaluates the efficiency of read-ahead technique for the 

widely used flash specific file systems that are JFFS2 and 

YAFFS2, in terms of response time and energy consumption. We 

used micro-benchmarks to investigate read-ahead effect on those 

metrics at a fine (system call) granularity. Moreover, we also 

study this impact at a higher application level using a macro-

benchmark evaluating read-ahead effect on the SQLite DBMS 

read performance and power consumption. As described in this 

paper, disabling this mechanism can improve the performance and 

energy consumption by up to 70% for sequential patterns and up 

to 60% for random patterns. 

Categories and Subject Descriptors 

D.4.2 [Operating Systems]: Storage Management – secondary 

storage, main memory, storage hierarchies. D.4.3 [Operating 

Systems]: File Systems Management – access methods. D.4.8 

[Operating Systems]: Performance – measurements, modeling 

and prediction. 

General Terms 

Performance, Measurement, Design. 

Keywords 

Embedded Linux, Flash File System, JFFS2, YAFFS2, Linux 

Page Cache, Read-Ahead. 

1. INTRODUCTION 

Embedded Linux has become the de facto operating system 

for many embedded applications such as consumer electronics 

(smartphones, tablets, etc.), multimedia devices and set-top boxes.  

It is also integrated in many devices such as routers, video 

surveillance systems, and robots. With Linux, there is no special 

form of kernel dedicated to embedded systems. Instead, one 

unique (configurable) kernel is intended to be used for the widest 

range of devices. One of the peculiarities of embedded Linux is 

the use of a special subsystem to manage bare flash memory based 

storage systems through Flash File Systems (FFS). 

The explosion of the NAND flash memory market has 

boosted many embedded system applications, especially consumer 

electronics, by providing efficient and relatively cheap Non-

Volatile Memory (NVM). In fact, mobile memory (including both 

NOR and NAND flash, DRAM and embedded multimedia cards) 

market have experienced a growth of 14% in 2012 (as compared 

to 2011). However, NAND flash memory presents some specific 

constraints one should deal with when designing an embedded 

system: (1) Write/Erase granularity asymmetry: writes are 

performed on pages whereas erase operations are executed on 

blocks, a block being composed of pages. (2) Erase-before-write 

rule: one cannot modify data in-place. A costly erase operation 

must be achieved before data can be modified in case one needs to 

update data on the same location. (3) Limited number of write 

/erase (w/e) cycles: the average number is between 5000 and 105 

depending on the used flash memory technology. After the 

maximum number of erase cycles is achieved, a given memory 

cell becomes unusable. Finally, (4) the I/O performance for read 

and write operations is asymmetric.   

There are two possible ways to deal with the aforementioned 

flash memory constraints: (1) through a hardware/software 

controller included into the memory device itself named the Flash 

Translation Layer (FTL). This is the case for USB sticks, flash 

cards, solid state drives, etc; or (2) through some specific Flash 

File System (FFS) implemented at the embedded operating system 

level in a pure software solution. JFFS2 [1], YAFFS2 [2], and 

UBIFS [3] are the most popular FFS. All of them rely on a deep 

layer in the kernel that interfaces the file system with the flash 

memory driver: the Memory Technology Device (MTD). This 

software stack behaves differently from traditional block devices 

and file systems. Resulting interactions with the upper kernel file 

management layers are thus very different. In these layers is 

implemented the Linux read-ahead algorithm, which aims to 

prefetch data read from secondary storage to enhance a process 

I/O read performance. 
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This study analyzes the interaction between the flash based 

storage system on embedded Linux and the page cache read-ahead 

prefetching system. Conducted experimentations showed that a 

substantial performance drop is observed for both sequential and 

random I/O workloads. This leads to subsequent energy 

consumption overhead on both CPU and memory subsystem 

(RAM and flash memory). This paper tries to quantify this 

behavior. 

The paper is organized as follows: the first section gives 

some background on flash memories. Section 3 describes the 

performance evaluation methodology. Section 4 discusses the 

obtained results. Section 5 gives some conclusions. 

2. PRELIMINARIES 

2.1 Background 
To cope with the above-mentioned NAND flash memory 

constraints, some specific management mechanisms are 

implemented. (1) In order to avoid a costly in-place data update, a 

logical-to-physical address mapping mechanism allowing to 

perform out-of-place data modifications is used (update data in 

another location and invalidate the first copy). (2) As the number 

of write/erase (w/e) cycles is limited and because of spatial and 

temporal data locality of I/O workloads, some specific blocks 

containing "hot" data can wear out quickly. To avoid this issue, 

wear leveling mechanisms are implemented all with the mapping 

system in order to evenly distribute the erase operations over the 

whole memory surface. (3) Performing many update operations 

results in many invalidated pages/blocks that must be erased in 

order to be reused. A garbage collector is used to perform this 

task. 

Figure 1 illustrates the FFS layer location inside the Linux 

storage hierarchy. User space processes access files using system 

calls, received by the Virtual File System (VFS). VFS role is to 

abstract the idiosyncrasies of the underlying file systems. 

Moreover, at the VFS level, Linux maintains several caches in 

RAM in order to speed up file operations. In particular, Linux 

page cache is dedicated to file data buffering. VFS maps system 

calls to FFS functions. To access the flash chip, the FFS uses a 

NAND driver, MTD. 

Hard drives exhibit poor performance on random I/O 

requests. It is due to the presence of mechanical elements 

generating important latencies. Linux read-ahead [4] mechanism 

was designed to alleviate that problem. It allows to sequentially 

prefetch more data from the disk than it is requested by a process 

accessing a file. The size of prefetched data is based on complex 

heuristics. Their aim is to determine if the global read pattern of 

the process is sequential or random. On sequential access patterns, 

read-ahead prefetches large chunks of data. On random ones, it 

reads smaller amounts. Read-ahead is implemented at the VFS 

level: it is independent from the underlying file system. This 

mechanism enhances I/O performance on disk based storage 

systems because [4]: (1) it reduces mechanical movement by 

reading large data chunks; (2) it relies on I/O timeouts to 

asynchronously prefetch data. So, in case of a page cache hit, data 

are read directly from the page cache inferring no access to the 

secondary storage. 

2.2 Motivational Example 
Because flash memory is fundamentally different from hard 

disk drives, one could question about the usefulness of read-ahead 

for flash based storage. Read-ahead is enabled by default on 

Linux, unless the file system itself specifies not to use it. This may 

be done in the source code of the file system. 

As a preliminary experiment, we used the popular storage 

benchmark Postmark [5]. Each time a file is read during the 

benchmark execution, we measured the time taken by the read() 

system calls, then we computed the mean read throughput. The 

throughput measurements were performed at 3 moments during 

each file read operation: when 25%, 50% and 100% of the file is 

read. The benchmark was launched on a hardware platform (TI 

OMAP based board described further in this paper), running 

Linux with (A) read-ahead enabled and (2) read-ahead disabled. 

Results are presented in Table 1. 

 

Table 1. Postmark mean read throughput (MB/s) 

Percentage 

of files size 

read 

FFS: JFFS2 FFS: YAFFS2 

RA ON RA OFF RA ON RA OFF 

25% 2.86 6.68 6.68 14.30 

50% 4.77 7.63 9.54 14.30 

100% 7.63 7.63 14.30 14.30 

 

The difference in performance between JFFS2 and YAFFS2 

may be due to YAFFS2 internal caching system [2], and JFFS2’s 

waste of time in uncompressing random data composing Postmark 

files. Those results show that when reading a file, read-ahead 

causes a dramatic performance drop if the file is not entirely read 

In this paper we study and analyze in details this impact on the 

performance and power consumption for the popular FFS JFFS2 

and YAFFS2. 

2.3 Related Work 
Based on the fact that flash memory read operation is 

pattern-agnostic (no difference between sequential and random 

reads), read-ahead was deactivated in UBIFS. Nevertheless, no 

experimental evaluation was published about this issue. In [6], 

authors present an algorithm for flash memory management in 

embedded systems for which read-ahead is disabled because of 

performance overhead. In [7], a novel read-ahead algorithm is 

proposed to enhance read-ahead performance in the context of 

demand-paging on compressed file system (CramFS) on flash 

memory. 

 

Figure 1. Flash-based storage software stack in Linux 



3. PERFORMANCE EVALUATION OF 

READ-AHEAD ON EMBEDDED LINUX 

3.1 Methodology and Metrics 

3.1.1 Micro-benchmarks 
The performed experimentations consisted in measuring the 

performance and energy consumption of sequential and random 

I/O workloads on both JFFS2 and YAFFS2 with read-ahead 

enabled and disabled. We first modified JFFS2 and YAFFS2 

source codes to disable read-ahead. Note that disabling this 

mechanism can also be done at the application level without 

modifying the kernel sources, by using the posix_fadvise() system 

call. This is a less intrusive but also less generic solution. We 

designed a simple C test program that performs read operations in 

a loop, on a target file stored in a JFFS2 or YAFFS2 flash 

memory partition. Read operations were performed with the read() 

system call and the target file was opened with the O_RDONLY 

flag. In the test program, several parameters were varied: the 

number of generated read requests, their size, the target file size, 

inter-arrival times, and the access pattern (random or sequential). 

Before each test, the Linux page cache was emptied to insure the 

same initial state. 

Performance evaluation: The execution time of each read() 

system call was measured using the gettimeofday() system 

function, giving a microsecond precision. We also used Flashmon 

[8] to trace the number of flash I/O accesses or each test to 

compare the number of generated read operations with and 

without read-ahead mechanism. 

Power consumption: In order to study how the read-ahead 

mechanism impacts the energy consumption, we measured during 

read accesses the power on both the (1) CPU and (2) RAM + flash 

memory power rails (RAM and flash share the same power rail on 

our hardware test platform). It allowed us to build a simple power 

consumption model to estimate read-ahead effect on the I/O 

energy consumption. The basic idea behind the model is to 

multiply the mean power measured during read accesses by the 

execution time of a given experimentation to obtain the energy 

consumption. 

3.1.2 SQLite Macro-benchmark 
SQLite [9] is a relational database engine operated by the 

SQL query language. One of its specificities is the fact that a 

SQLite database is fully contained in a single file on top of a 

regular file system. Moreover, the SQLite DBMS is available in 

various formats, in particular in the form of a C library which can 

be directly embedded in (i.e. compiled with) an application, 

eliminating the need for any external dependency. Because of that 

portability, its relatively low CPU load /memory footprint, and its 

tolerance to sudden system shutdown, SQLite is widely used in 

embedded systems. In particular, SQLite is the DBMS used for 

managing system and user databases in the Android embedded 

operating system [10]. 

We used for the macro-benchmark experimentation a SQLite 

database containing a single table. As in [10], we used a schema 

reproducing the contacts database of an Android operating 

system. The contacts table contains 17 fields, 12 of which being 

integers, and 5 being text fields. One of the integer fields is a 

unique record identifier (primary key). The database was created 

on previously erased JFFS2 and YAFFS2 flash partitions. The 

database was filled with 1000 records containing random data. 

We created two versions of the database, one with each one of the 

5 text fields filled with 64 bytes strings, the other with 128 bytes 

strings. The reported size of the database files was then of 518 KB 

for the first version, and 1 MB for the second. In the rest of this 

paper we refer to the version 1 as small database, and large 

database for version 2. 

Performance evaluation: We created a C application 

integrating the SQLite library and performing select operations on 

the database. Using the application, we performed selection runs, 

each one consisting of one or several record selections from the 

database in a loop. A run can be performed in sequential or 

random mode, according to the read record identifier order 

(record identifier being assigned incrementally during the table 

creation). The Linux page cache is dropped before each run and 

the execution time of each run is measured with gettimeofday(). 

Experiments are ran with read-ahead enabled and disabled. 

Power consumption: We used an adapted version of the 

power consumption model created in the micro-benchmark phase 

to estimate read-ahead impact on energy during SQLite selections. 

3.2 Hardware and Software Experimental 

Configuration 
We used a Mistral Omap3evm board embedding an 

OMAP3530 (720 MHz ARM Cortex A8) CPU, 256 MB of RAM, 

and 256 MB of Micron SLC (Single Level Cell) NAND flash. The 

NAND chip datasheet reports a latency of 130 µs to read a 2048 

bytes flash page (internal read operation plus transfer on the I/O 

bus). As stated earlier, the RAM and flash share the same power 

rail. The Linux kernel 2.6.37 was used with a standard embedded 

kernel configuration. For the power consumption measurements, 

we used the Open-PEOPLE (Open-Power and Energy 

Optimization PLatform and Estimator) platform [11][12] 

equipped with a National Instruments PXI-4472 module. For the 

macro-benchmark we used the version 3.7.15.2 of SQLite. 

4. RESULTS AND DISCUSSION 

4.1 Micro-benchmarks: Read system call 

performance 

4.1.1 Impact of Inter-arrival Times: why read-ahead 

performs badly with FFS 
Using disks, the read-ahead mechanism can be launched 

asynchronously during I/O timeouts to optimize I/O response 

times. In contrast, the Linux NAND driver (MTD) used by FFS is 

a fully synchronous software stack. We tested this feature by 

replaying the same experimentations, sequentially reading part of 

a 5MB file, and inserting inter-arrival times between reads. 

Figure 2 shows the mean read latency when varying inter-

arrival times with read-ahead enabled under sequential workload. 

Response times are not impacted by the inter-arrival time 

increase, which confirms the synchronous nature of flash 

operations. In fact, when read-ahead is enabled, the prefetching 

 

Figure 2. Inter arrival time variation 



requests triggered by the page cache are served synchronously, 

thus delaying the application read response times. In other words 

the I/O latency due to data prefetching is added to the read() 

system call execution time which triggered the read-ahead pass. 

Because with MTD prefetching is done synchronously, read-

ahead cannot mask I/O latencies from the calling process. 

Therefore, in the best case (when all prefetched data are used), 

read-ahead do not enhance the process read performance. 

Moreover, when prefetched data are not used, read-ahead can only 

have a negative impact on performance. For that reason, most of 

the curves presented in this paper show the improvement in 

performance / power consumption gained from disabling read-

ahead. 

4.1.2 Impact of Request Number  
We varied the request number from 8 to 1024 on a 5MB 

target file for a fixed 4KB request size with no inter-arrival times 

between I/O requests. For the highest request number, most of the 

file is read. Figure 3-a shows the improvement rate on the total 

I/O response time when disabling read-ahead. 

One can observe that disabling read-ahead always improves 

the performance. In addition, the behavior of both JFFS2 and 

YAFFS2 is similar as they behave the same under sequential and 

random workloads. In fact, read-ahead impact does not depend on 

the used file system, as the technique is implemented at the 

(upper) VFS level. Read-ahead just asks the file system for more 

data, which leads to more flash memory reads. This can be 

verified in Figure 3-b showing the results of the same 

experimentations in terms of number of flash memory reads 

generated (traced with Flashmon).  

On sequential workloads, we can notice that the smaller the 

number of requests, the better the improvement when disabling 

read-ahead (we can observe more than 50% flash operations 

reduction when performing less than 64 requests on the same file). 

In fact, read-ahead is very active under sequential workloads, and 

issues many prefetching requests. As the size of the prefetching 

requests is stable (proved to be around 128KB for our 

experimentations), when the number of application read requests 

is small, the overhead of prefetching is relatively high (as all the 

prefetched data are not necessarily used). On the other hand, when 

the number of requests is high, a larger part of prefetched data is 

used inducing less overhead. 

Under random workloads, one can also observe a 

performance improvement when disabling the read-ahead 

mechanism. It means that read-ahead is actually activated for 

random workloads. We can notice that the improvement is less 

impressive for small number of requests (20% of improvement for 

up to 32 requests). Indeed, read-ahead does not prefetch large data 

chunks. The improvement increases up to 50% for 256 requests. 

Under random workload, prefetched data is not likely to be 

accessed in a near future, unless the total accessed space is large 

enough (as compared to the target file size) to reveal temporal 

locality. This is what happens starting from 256 requests up to 

1024: when the total addressed space is large, we observed many 

page cache hits.  

A last common observation one can draw is that we get a 

minimal performance improvement from disabling the read-ahead 

mechanism when reading the whole file: this is because there is 

no waste in the prefetched data (all the prefetched data are read by 

the application). 

4.1.3 Impact of Request Size 
On a 32 MB target file, we varied the number of requests and 

the request size. Results are presented on Figure 4-a. Under 

 

 

Figure 4.  Performance (top) and power consumption (bottom) results, focusing on request number and size variation. 

 

Figure 3. Number of requests variation 



sequential workloads, for a fixed small number of requests, we 

observe that the improvement when disabling read-ahead 

decreases with the increase of the request size. This behavior is 

similar to the observations made when varying the number of 

requests. Indeed read-ahead impact depends on the total space 

read (number of request multiplied by the request size).  

Under random workloads the performance optimization is 

relatively stable, apart from large addressed spaces (1024 requests 

of 32 KB). This is caused by the large number of page cache hits 

generated when the addressed space converges to the total file 

size. On small addressed spaces the enhancement is lower as read-

ahead does only prefetch a small amount of data for small random 

workloads. Finally, one can observe a slight enhancement for 2 

KB requests as compared to 4KB size (size of a memory page). 

This is probably due to memory alignment issues. 

 

4.2 Micro-benchmarks:  Energy 

Consumption Estimation 

We observed that the parameters impacting the power on the 

CPU are the file system type and the fact that read-ahead is 

enabled or disabled. In addition to these parameters, the memory 

power consumption is also affected by the access pattern. Results 

are presented in Table 2. 

Table 2. Energy model constants 

Com- 

ponent 

File 

system 

Access 

pattern 

Read-

ahead 

Mean Power Cost 

(W) during read 

operations 

CPU 

JFFS2 
no 

impact 

ON 0.223 

OFF 0.223 

YAFFS2 
ON 0.211 

OFF 0.214 

Memory 

(RAM + 

flash) 

JFFS2 

SEQ 
ON 0.029 

OFF 0.024 

RAN 
ON 0.023 

OFF 0.023 

YAFFS2 

SEQ 
ON 0.028 

OFF 0.028 

RAN 
ON 0.024 

OFF 0.026 

 

The power cost is obtained by subtracting the idle power 

(power measured when executing the sleep command) from the 

power measured during reads. We observed that these values were 

stable enough to extract a simple energy model. 

As one can see in Figure 5, the energy consumption is 

represented by a square area. Whether read-ahead is enabled or 

not, the magnitude of the power does not change. Thus the energy 

consumption is only impacted by the response time value. The 

energy model can be approximated as follows: 

Etotal = texp * (PCPU + PMem) 

Etotal is the total energy consumed by the read operations in 

the experimentation, texp is the execution time of the read 

operations, and PCPU and PMem are estimations of the mean power 

cost during read operations.  

Results on energy consumption are presented on Figure 4-b, 

they exhibit a very similar behavior to the performance results. In 

fact, execution times of read requests are the main factor 

impacting the energy consumption. Indeed, as shown in Table 2, 

the variation of the mean power is very slight. 

4.3 Read-Ahead impact on SQLite database 

read performance and power consumption 

In this section we measured the impact of read-ahead on 

SQLite database performance, and the previously presented model 

is adapted to compute an estimation of read-ahead impact on the 

database accesses power consumption. 

4.3.1 Performance impact measurement 
As for the micro-benchmarking results, disabling read-ahead 

always reduces the execution time of the SQL SELECT runs, 

regardless of the file system type, access pattern, and size of the 

database (small / large). So once again, we plot the performance 

improvement gained by disabling the prefetching mechanism. 

Performance results are presented on Figure 6.  

One can see that the performance improvement on sequential 

pattern is relatively stable and stays around 10%. Counting both 

small and large DB results, mean values for the improvement are 

9.5% for JFFS2, and 5% for YAFFS2. We did not observe the 

important performance improvement on sequential workloads 

measured in the previous section. It may indicate that the majority 

of the prefetched data are actually used. It is also important to 

note that sequentially selecting records do not necessarily 

translates into sequential file read operations: this behavior 

depends on the way the records were inserted / updated, and more 

generally on SQLite internal algorithms. 

On random workloads, one can see that read-ahead generates 

an important overhead: the performance improvement is up to 

70% for JFFS2, and 50% for YAFFS2. Mean values are 44% and 

25% for JFFS2 and YAFFS2 respectively. With random patterns, 

when the number of records read in one run increases, the 

performance improvement decreases. In that case, because of the 

 

Figure 5.  Example of power consumption measurement on the 

CPU power rail 

 

Figure 6. SQLite SELECT performance improvement for 

JFFS2 (top) and YAFFS2 (bottom) 

 

 



nature of the access, a large part of the file is read and prefetched 

(by small amounts) from the flash memory. Thus, the number of 

page cache hits increases and read-ahead calls are less frequent, 

minimizing its impact. This depends on the number of records 

selected in the run, and on the total size of the database file. 

4.3.2 Power consumption impact estimation 
Using the same methodology as in the micro-benchmarking 

phase, we measured the mean power during a large run of 

SELECT operations on both JFFS2 and YAFFS2 file systems, 

with read-ahead enabled / disabled. Results are presented in Table 

3. We did not vary the access pattern as it was previously proven 

to have a small impact on power consumption. 

 

Table 3. SQLite energy model constants 

Com- 

ponent 

File 

system 

Read-

ahead 

Mean Power Cost (W) during 

SELECT operations 

CPU 

JFFS2 
ON 0.24565 

OFF 0.23925 

YAFFS2 
ON 0,245814 

OFF 0,245296 

Memory 

(RAM + 

flash) 

JFFS2 
ON 0,030188 

OFF 0,036863 

YAFFS2 
ON 0,033325 

OFF 0,036319 

 

The mean power cost was multiplied by the execution time 

measurements of SQLite SELECT runs presented in the previous 

section. Figure 7 represents the estimated energy savings obtained 

by disabling read-ahead. Once again, as the various power values 

measured exhibit few variations, the execution time is the main 

influencing factor in the energy equation. Thus, the energy 

savings plots are very similar to the run time improvements 

presented in Figure 6. Taking both large and small DB 

configurations, the mean energy savings for JFFS2 are 8.6% (seq.) 

and 41% (ran.). For YAFFS2, these numbers are 5.3% and 25.5%. 

5. CONCLUSION 
Because of the synchronous nature of the NAND driver on 

embedded Linux, read-ahead has a negative impact on both 

performance and power consumption of raw NAND flash based 

embedded storage systems. We studied that effect on JFFS2 and 

YAFFS2 flash file systems. According to micro-benchmarking 

results, the main parameters influencing read-ahead impact were 

proved to be the access pattern, and the proportion of the file read 

by the process. Disabling the technique improved performance 

and energy consumption by up to 70% on our test platform. We 

also found that deactivating read-ahead lead to strong 

performance and power consumption improvements in the context 

of SQLite SELECT operations, particularly on random workloads. 

Kernel patches for disabling read-ahead with 

JFFS2/YAFFS2 can be retrieved at the following URL: 

http://syst.univ-brest.fr/~pierre/Files/ra_ffs.zip. 
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Figure 7. SQLite SELECT energy consumption 

improvement for JFFS2 (top) and YAFFS2 (bottom). 

 

 


