
Revisiting Read-ahead Efficiency for Raw NAND Flash

Storage in Embedded Linux
Pierre Olivier

Univ. Europeenne de Bretagne
Univ. Bretagne Occidentale

UMR6585 Lab-STICC
F29200 Brest, France

+332 98 01 74 35

pierre.olivier@univ-brest.fr

Jalil Boukhobza
Univ. Europeenne de Bretagne

Univ. Bretagne Occidentale
UMR6585 Lab-STICC
F29200 Brest, France

+332 98 01 69 73

jalil.boukhobza@univ-brest.fr

Eric Senn
Univ. Europeenne de Bretagne

Univ. Bretagne Sud
UMR6585 Lab-STICC
F56100 Lorient, France

+332 97 87 46 03

eric.senn@univ-ubs.fr

ABSTRACT

The Linux Read-Ahead mechanism has been designed to bridge

the gap between the secondary storage low performance and I/O

read-intensive applications for personal computers and servers.

This paper revisits the efficiency of this mechanism for embedded

Linux using flash memory as secondary storage, which is the case

for most embedded systems. Indeed, Linux kernel uses the same

read-ahead mechanism whatever the application domain. This

paper evaluates the efficiency of read-ahead technique for the

widely used flash specific file systems that are JFFS2 and

YAFFS2, in terms of response time and energy consumption. We

used micro-benchmarks to investigate read-ahead effect on those

metrics at a fine (system call) granularity. Moreover, we also

study this impact at a higher application level using a macro-

benchmark evaluating read-ahead effect on the SQLite DBMS

read performance and power consumption. As described in this

paper, disabling this mechanism can improve the performance and

energy consumption by up to 70% for sequential patterns and up

to 60% for random patterns.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management – secondary

storage, main memory, storage hierarchies. D.4.3 [Operating

Systems]: File Systems Management – access methods. D.4.8

[Operating Systems]: Performance – measurements, modeling

and prediction.

General Terms

Performance, Measurement, Design.

Keywords

Embedded Linux, Flash File System, JFFS2, YAFFS2, Linux

Page Cache, Read-Ahead.

1. INTRODUCTION

Embedded Linux has become the de facto operating system

for many embedded applications such as consumer electronics

(smartphones, tablets, etc.), multimedia devices and set-top boxes.

It is also integrated in many devices such as routers, video

surveillance systems, and robots. With Linux, there is no special

form of kernel dedicated to embedded systems. Instead, one

unique (configurable) kernel is intended to be used for the widest

range of devices. One of the peculiarities of embedded Linux is

the use of a special subsystem to manage bare flash memory based

storage systems through Flash File Systems (FFS).

The explosion of the NAND flash memory market has

boosted many embedded system applications, especially consumer

electronics, by providing efficient and relatively cheap Non-

Volatile Memory (NVM). In fact, mobile memory (including both

NOR and NAND flash, DRAM and embedded multimedia cards)

market have experienced a growth of 14% in 2012 (as compared

to 2011). However, NAND flash memory presents some specific

constraints one should deal with when designing an embedded

system: (1) Write/Erase granularity asymmetry: writes are

performed on pages whereas erase operations are executed on

blocks, a block being composed of pages. (2) Erase-before-write

rule: one cannot modify data in-place. A costly erase operation

must be achieved before data can be modified in case one needs to

update data on the same location. (3) Limited number of write

/erase (w/e) cycles: the average number is between 5000 and 105

depending on the used flash memory technology. After the

maximum number of erase cycles is achieved, a given memory

cell becomes unusable. Finally, (4) the I/O performance for read

and write operations is asymmetric.

There are two possible ways to deal with the aforementioned

flash memory constraints: (1) through a hardware/software

controller included into the memory device itself named the Flash

Translation Layer (FTL). This is the case for USB sticks, flash

cards, solid state drives, etc; or (2) through some specific Flash

File System (FFS) implemented at the embedded operating system

level in a pure software solution. JFFS2 [1], YAFFS2 [2], and

UBIFS [3] are the most popular FFS. All of them rely on a deep

layer in the kernel that interfaces the file system with the flash

memory driver: the Memory Technology Device (MTD). This

software stack behaves differently from traditional block devices

and file systems. Resulting interactions with the upper kernel file

management layers are thus very different. In these layers is

implemented the Linux read-ahead algorithm, which aims to

prefetch data read from secondary storage to enhance a process

I/O read performance.

EWiLi’14, November 2014, Lisbon, Portugal.

Copyright retained by the authors.

This study analyzes the interaction between the flash based

storage system on embedded Linux and the page cache read-ahead

prefetching system. Conducted experimentations showed that a

substantial performance drop is observed for both sequential and

random I/O workloads. This leads to subsequent energy

consumption overhead on both CPU and memory subsystem

(RAM and flash memory). This paper tries to quantify this

behavior.

The paper is organized as follows: the first section gives

some background on flash memories. Section 3 describes the

performance evaluation methodology. Section 4 discusses the

obtained results. Section 5 gives some conclusions.

2. PRELIMINARIES

2.1 Background
To cope with the above-mentioned NAND flash memory

constraints, some specific management mechanisms are

implemented. (1) In order to avoid a costly in-place data update, a

logical-to-physical address mapping mechanism allowing to

perform out-of-place data modifications is used (update data in

another location and invalidate the first copy). (2) As the number

of write/erase (w/e) cycles is limited and because of spatial and

temporal data locality of I/O workloads, some specific blocks

containing "hot" data can wear out quickly. To avoid this issue,

wear leveling mechanisms are implemented all with the mapping

system in order to evenly distribute the erase operations over the

whole memory surface. (3) Performing many update operations

results in many invalidated pages/blocks that must be erased in

order to be reused. A garbage collector is used to perform this

task.

Figure 1 illustrates the FFS layer location inside the Linux

storage hierarchy. User space processes access files using system

calls, received by the Virtual File System (VFS). VFS role is to

abstract the idiosyncrasies of the underlying file systems.

Moreover, at the VFS level, Linux maintains several caches in

RAM in order to speed up file operations. In particular, Linux

page cache is dedicated to file data buffering. VFS maps system

calls to FFS functions. To access the flash chip, the FFS uses a

NAND driver, MTD.

Hard drives exhibit poor performance on random I/O

requests. It is due to the presence of mechanical elements

generating important latencies. Linux read-ahead [4] mechanism

was designed to alleviate that problem. It allows to sequentially

prefetch more data from the disk than it is requested by a process

accessing a file. The size of prefetched data is based on complex

heuristics. Their aim is to determine if the global read pattern of

the process is sequential or random. On sequential access patterns,

read-ahead prefetches large chunks of data. On random ones, it

reads smaller amounts. Read-ahead is implemented at the VFS

level: it is independent from the underlying file system. This

mechanism enhances I/O performance on disk based storage

systems because [4]: (1) it reduces mechanical movement by

reading large data chunks; (2) it relies on I/O timeouts to

asynchronously prefetch data. So, in case of a page cache hit, data

are read directly from the page cache inferring no access to the

secondary storage.

2.2 Motivational Example
Because flash memory is fundamentally different from hard

disk drives, one could question about the usefulness of read-ahead

for flash based storage. Read-ahead is enabled by default on

Linux, unless the file system itself specifies not to use it. This may

be done in the source code of the file system.

As a preliminary experiment, we used the popular storage

benchmark Postmark [5]. Each time a file is read during the

benchmark execution, we measured the time taken by the read()

system calls, then we computed the mean read throughput. The

throughput measurements were performed at 3 moments during

each file read operation: when 25%, 50% and 100% of the file is

read. The benchmark was launched on a hardware platform (TI

OMAP based board described further in this paper), running

Linux with (A) read-ahead enabled and (2) read-ahead disabled.

Results are presented in Table 1.

Table 1. Postmark mean read throughput (MB/s)

Percentage

of files size

read

FFS: JFFS2 FFS: YAFFS2

RA ON RA OFF RA ON RA OFF

25% 2.86 6.68 6.68 14.30

50% 4.77 7.63 9.54 14.30

100% 7.63 7.63 14.30 14.30

The difference in performance between JFFS2 and YAFFS2

may be due to YAFFS2 internal caching system [2], and JFFS2’s

waste of time in uncompressing random data composing Postmark

files. Those results show that when reading a file, read-ahead

causes a dramatic performance drop if the file is not entirely read

In this paper we study and analyze in details this impact on the

performance and power consumption for the popular FFS JFFS2

and YAFFS2.

2.3 Related Work
Based on the fact that flash memory read operation is

pattern-agnostic (no difference between sequential and random

reads), read-ahead was deactivated in UBIFS. Nevertheless, no

experimental evaluation was published about this issue. In [6],

authors present an algorithm for flash memory management in

embedded systems for which read-ahead is disabled because of

performance overhead. In [7], a novel read-ahead algorithm is

proposed to enhance read-ahead performance in the context of

demand-paging on compressed file system (CramFS) on flash

memory.

Figure 1. Flash-based storage software stack in Linux

3. PERFORMANCE EVALUATION OF

READ-AHEAD ON EMBEDDED LINUX

3.1 Methodology and Metrics

3.1.1 Micro-benchmarks
The performed experimentations consisted in measuring the

performance and energy consumption of sequential and random

I/O workloads on both JFFS2 and YAFFS2 with read-ahead

enabled and disabled. We first modified JFFS2 and YAFFS2

source codes to disable read-ahead. Note that disabling this

mechanism can also be done at the application level without

modifying the kernel sources, by using the posix_fadvise() system

call. This is a less intrusive but also less generic solution. We

designed a simple C test program that performs read operations in

a loop, on a target file stored in a JFFS2 or YAFFS2 flash

memory partition. Read operations were performed with the read()

system call and the target file was opened with the O_RDONLY

flag. In the test program, several parameters were varied: the

number of generated read requests, their size, the target file size,

inter-arrival times, and the access pattern (random or sequential).

Before each test, the Linux page cache was emptied to insure the

same initial state.

Performance evaluation: The execution time of each read()

system call was measured using the gettimeofday() system

function, giving a microsecond precision. We also used Flashmon

[8] to trace the number of flash I/O accesses or each test to

compare the number of generated read operations with and

without read-ahead mechanism.

Power consumption: In order to study how the read-ahead

mechanism impacts the energy consumption, we measured during

read accesses the power on both the (1) CPU and (2) RAM + flash

memory power rails (RAM and flash share the same power rail on

our hardware test platform). It allowed us to build a simple power

consumption model to estimate read-ahead effect on the I/O

energy consumption. The basic idea behind the model is to

multiply the mean power measured during read accesses by the

execution time of a given experimentation to obtain the energy

consumption.

3.1.2 SQLite Macro-benchmark
SQLite [9] is a relational database engine operated by the

SQL query language. One of its specificities is the fact that a

SQLite database is fully contained in a single file on top of a

regular file system. Moreover, the SQLite DBMS is available in

various formats, in particular in the form of a C library which can

be directly embedded in (i.e. compiled with) an application,

eliminating the need for any external dependency. Because of that

portability, its relatively low CPU load /memory footprint, and its

tolerance to sudden system shutdown, SQLite is widely used in

embedded systems. In particular, SQLite is the DBMS used for

managing system and user databases in the Android embedded

operating system [10].

We used for the macro-benchmark experimentation a SQLite

database containing a single table. As in [10], we used a schema

reproducing the contacts database of an Android operating

system. The contacts table contains 17 fields, 12 of which being

integers, and 5 being text fields. One of the integer fields is a

unique record identifier (primary key). The database was created

on previously erased JFFS2 and YAFFS2 flash partitions. The

database was filled with 1000 records containing random data.

We created two versions of the database, one with each one of the

5 text fields filled with 64 bytes strings, the other with 128 bytes

strings. The reported size of the database files was then of 518 KB

for the first version, and 1 MB for the second. In the rest of this

paper we refer to the version 1 as small database, and large

database for version 2.

Performance evaluation: We created a C application

integrating the SQLite library and performing select operations on

the database. Using the application, we performed selection runs,

each one consisting of one or several record selections from the

database in a loop. A run can be performed in sequential or

random mode, according to the read record identifier order

(record identifier being assigned incrementally during the table

creation). The Linux page cache is dropped before each run and

the execution time of each run is measured with gettimeofday().

Experiments are ran with read-ahead enabled and disabled.

Power consumption: We used an adapted version of the

power consumption model created in the micro-benchmark phase

to estimate read-ahead impact on energy during SQLite selections.

3.2 Hardware and Software Experimental

Configuration
We used a Mistral Omap3evm board embedding an

OMAP3530 (720 MHz ARM Cortex A8) CPU, 256 MB of RAM,

and 256 MB of Micron SLC (Single Level Cell) NAND flash. The

NAND chip datasheet reports a latency of 130 µs to read a 2048

bytes flash page (internal read operation plus transfer on the I/O

bus). As stated earlier, the RAM and flash share the same power

rail. The Linux kernel 2.6.37 was used with a standard embedded

kernel configuration. For the power consumption measurements,

we used the Open-PEOPLE (Open-Power and Energy

Optimization PLatform and Estimator) platform [11][12]

equipped with a National Instruments PXI-4472 module. For the

macro-benchmark we used the version 3.7.15.2 of SQLite.

4. RESULTS AND DISCUSSION

4.1 Micro-benchmarks: Read system call

performance

4.1.1 Impact of Inter-arrival Times: why read-ahead

performs badly with FFS
Using disks, the read-ahead mechanism can be launched

asynchronously during I/O timeouts to optimize I/O response

times. In contrast, the Linux NAND driver (MTD) used by FFS is

a fully synchronous software stack. We tested this feature by

replaying the same experimentations, sequentially reading part of

a 5MB file, and inserting inter-arrival times between reads.

Figure 2 shows the mean read latency when varying inter-

arrival times with read-ahead enabled under sequential workload.

Response times are not impacted by the inter-arrival time

increase, which confirms the synchronous nature of flash

operations. In fact, when read-ahead is enabled, the prefetching

Figure 2. Inter arrival time variation

requests triggered by the page cache are served synchronously,

thus delaying the application read response times. In other words

the I/O latency due to data prefetching is added to the read()

system call execution time which triggered the read-ahead pass.

Because with MTD prefetching is done synchronously, read-

ahead cannot mask I/O latencies from the calling process.

Therefore, in the best case (when all prefetched data are used),

read-ahead do not enhance the process read performance.

Moreover, when prefetched data are not used, read-ahead can only

have a negative impact on performance. For that reason, most of

the curves presented in this paper show the improvement in

performance / power consumption gained from disabling read-

ahead.

4.1.2 Impact of Request Number
We varied the request number from 8 to 1024 on a 5MB

target file for a fixed 4KB request size with no inter-arrival times

between I/O requests. For the highest request number, most of the

file is read. Figure 3-a shows the improvement rate on the total

I/O response time when disabling read-ahead.

One can observe that disabling read-ahead always improves

the performance. In addition, the behavior of both JFFS2 and

YAFFS2 is similar as they behave the same under sequential and

random workloads. In fact, read-ahead impact does not depend on

the used file system, as the technique is implemented at the

(upper) VFS level. Read-ahead just asks the file system for more

data, which leads to more flash memory reads. This can be

verified in Figure 3-b showing the results of the same

experimentations in terms of number of flash memory reads

generated (traced with Flashmon).

On sequential workloads, we can notice that the smaller the

number of requests, the better the improvement when disabling

read-ahead (we can observe more than 50% flash operations

reduction when performing less than 64 requests on the same file).

In fact, read-ahead is very active under sequential workloads, and

issues many prefetching requests. As the size of the prefetching

requests is stable (proved to be around 128KB for our

experimentations), when the number of application read requests

is small, the overhead of prefetching is relatively high (as all the

prefetched data are not necessarily used). On the other hand, when

the number of requests is high, a larger part of prefetched data is

used inducing less overhead.

Under random workloads, one can also observe a

performance improvement when disabling the read-ahead

mechanism. It means that read-ahead is actually activated for

random workloads. We can notice that the improvement is less

impressive for small number of requests (20% of improvement for

up to 32 requests). Indeed, read-ahead does not prefetch large data

chunks. The improvement increases up to 50% for 256 requests.

Under random workload, prefetched data is not likely to be

accessed in a near future, unless the total accessed space is large

enough (as compared to the target file size) to reveal temporal

locality. This is what happens starting from 256 requests up to

1024: when the total addressed space is large, we observed many

page cache hits.

A last common observation one can draw is that we get a

minimal performance improvement from disabling the read-ahead

mechanism when reading the whole file: this is because there is

no waste in the prefetched data (all the prefetched data are read by

the application).

4.1.3 Impact of Request Size
On a 32 MB target file, we varied the number of requests and

the request size. Results are presented on Figure 4-a. Under

Figure 4. Performance (top) and power consumption (bottom) results, focusing on request number and size variation.

Figure 3. Number of requests variation

sequential workloads, for a fixed small number of requests, we

observe that the improvement when disabling read-ahead

decreases with the increase of the request size. This behavior is

similar to the observations made when varying the number of

requests. Indeed read-ahead impact depends on the total space

read (number of request multiplied by the request size).

Under random workloads the performance optimization is

relatively stable, apart from large addressed spaces (1024 requests

of 32 KB). This is caused by the large number of page cache hits

generated when the addressed space converges to the total file

size. On small addressed spaces the enhancement is lower as read-

ahead does only prefetch a small amount of data for small random

workloads. Finally, one can observe a slight enhancement for 2

KB requests as compared to 4KB size (size of a memory page).

This is probably due to memory alignment issues.

4.2 Micro-benchmarks: Energy

Consumption Estimation

We observed that the parameters impacting the power on the

CPU are the file system type and the fact that read-ahead is

enabled or disabled. In addition to these parameters, the memory

power consumption is also affected by the access pattern. Results

are presented in Table 2.

Table 2. Energy model constants

Com-

ponent

File

system

Access

pattern

Read-

ahead

Mean Power Cost

(W) during read

operations

CPU

JFFS2
no

impact

ON 0.223

OFF 0.223

YAFFS2
ON 0.211

OFF 0.214

Memory

(RAM +

flash)

JFFS2

SEQ
ON 0.029

OFF 0.024

RAN
ON 0.023

OFF 0.023

YAFFS2

SEQ
ON 0.028

OFF 0.028

RAN
ON 0.024

OFF 0.026

The power cost is obtained by subtracting the idle power

(power measured when executing the sleep command) from the

power measured during reads. We observed that these values were

stable enough to extract a simple energy model.

As one can see in Figure 5, the energy consumption is

represented by a square area. Whether read-ahead is enabled or

not, the magnitude of the power does not change. Thus the energy

consumption is only impacted by the response time value. The

energy model can be approximated as follows:

Etotal = texp * (PCPU + PMem)

Etotal is the total energy consumed by the read operations in

the experimentation, texp is the execution time of the read

operations, and PCPU and PMem are estimations of the mean power

cost during read operations.

Results on energy consumption are presented on Figure 4-b,

they exhibit a very similar behavior to the performance results. In

fact, execution times of read requests are the main factor

impacting the energy consumption. Indeed, as shown in Table 2,

the variation of the mean power is very slight.

4.3 Read-Ahead impact on SQLite database

read performance and power consumption

In this section we measured the impact of read-ahead on

SQLite database performance, and the previously presented model

is adapted to compute an estimation of read-ahead impact on the

database accesses power consumption.

4.3.1 Performance impact measurement
As for the micro-benchmarking results, disabling read-ahead

always reduces the execution time of the SQL SELECT runs,

regardless of the file system type, access pattern, and size of the

database (small / large). So once again, we plot the performance

improvement gained by disabling the prefetching mechanism.

Performance results are presented on Figure 6.

One can see that the performance improvement on sequential

pattern is relatively stable and stays around 10%. Counting both

small and large DB results, mean values for the improvement are

9.5% for JFFS2, and 5% for YAFFS2. We did not observe the

important performance improvement on sequential workloads

measured in the previous section. It may indicate that the majority

of the prefetched data are actually used. It is also important to

note that sequentially selecting records do not necessarily

translates into sequential file read operations: this behavior

depends on the way the records were inserted / updated, and more

generally on SQLite internal algorithms.

On random workloads, one can see that read-ahead generates

an important overhead: the performance improvement is up to

70% for JFFS2, and 50% for YAFFS2. Mean values are 44% and

25% for JFFS2 and YAFFS2 respectively. With random patterns,

when the number of records read in one run increases, the

performance improvement decreases. In that case, because of the

Figure 5. Example of power consumption measurement on the

CPU power rail

Figure 6. SQLite SELECT performance improvement for

JFFS2 (top) and YAFFS2 (bottom)

nature of the access, a large part of the file is read and prefetched

(by small amounts) from the flash memory. Thus, the number of

page cache hits increases and read-ahead calls are less frequent,

minimizing its impact. This depends on the number of records

selected in the run, and on the total size of the database file.

4.3.2 Power consumption impact estimation
Using the same methodology as in the micro-benchmarking

phase, we measured the mean power during a large run of

SELECT operations on both JFFS2 and YAFFS2 file systems,

with read-ahead enabled / disabled. Results are presented in Table

3. We did not vary the access pattern as it was previously proven

to have a small impact on power consumption.

Table 3. SQLite energy model constants

Com-

ponent

File

system

Read-

ahead

Mean Power Cost (W) during

SELECT operations

CPU

JFFS2
ON 0.24565

OFF 0.23925

YAFFS2
ON 0,245814

OFF 0,245296

Memory

(RAM +

flash)

JFFS2
ON 0,030188

OFF 0,036863

YAFFS2
ON 0,033325

OFF 0,036319

The mean power cost was multiplied by the execution time

measurements of SQLite SELECT runs presented in the previous

section. Figure 7 represents the estimated energy savings obtained

by disabling read-ahead. Once again, as the various power values

measured exhibit few variations, the execution time is the main

influencing factor in the energy equation. Thus, the energy

savings plots are very similar to the run time improvements

presented in Figure 6. Taking both large and small DB

configurations, the mean energy savings for JFFS2 are 8.6% (seq.)

and 41% (ran.). For YAFFS2, these numbers are 5.3% and 25.5%.

5. CONCLUSION
Because of the synchronous nature of the NAND driver on

embedded Linux, read-ahead has a negative impact on both

performance and power consumption of raw NAND flash based

embedded storage systems. We studied that effect on JFFS2 and

YAFFS2 flash file systems. According to micro-benchmarking

results, the main parameters influencing read-ahead impact were

proved to be the access pattern, and the proportion of the file read

by the process. Disabling the technique improved performance

and energy consumption by up to 70% on our test platform. We

also found that deactivating read-ahead lead to strong

performance and power consumption improvements in the context

of SQLite SELECT operations, particularly on random workloads.

Kernel patches for disabling read-ahead with

JFFS2/YAFFS2 can be retrieved at the following URL:

http://syst.univ-brest.fr/~pierre/Files/ra_ffs.zip.

6. REFERENCES
[1] Woodhouse, D. 2001. JFFS: The journalling flash file

system. In Proceedings of the Ottawa Linux Symposium

(Ottawa, Canada, July 25 – 28, 2001).

[2] Wookey. 2004. YAFFS2: a NAND flash file system. UK's

Unix & Open Systems User Group Linux Tech. Conf (Leeds,

United Kingdom, August 5 – 8, 2004).

[3] Hunter A. 2008. A Brief Introduction to the Design of

UBIFS.

www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf

(online, accessed 07/2014).

[4] Wu F., Xi H., Li J., and Zou N. 2007. Linux readahead: less

tricks for more. In Proceedings of the Linux Symposium

(Ottawa, Canada, July 27 – 30, 2007), vol. 2, pp. 273–284.

[5] Katcher J. 1997. PostMark: A New File System Benchmark.

Technical Report TR3022, Network Appliance.

[6] Park S., Jung D., Kang J., Kim J. and Lee J. 2006. CFLRU: a

replacement algorithm for flash memory. In Proceedings of

the 2006 international conference on Compilers,

Architecture and Synthesis for Embedded Systems (Seoul,

Korea, October 23 – 25, 2006), CASES, pp. 234–241.

[7] Ahn S., Hyun S., and Koh K. 2009. Improving demand

paging performance of compressed filesystem with NAND

flash memory. In Selected Papers of the Seventh

International Conference on Computational Science and

Applications (Yongin, Korea, June 29 – July 2, 2009),

ICCSA’09, 84–88.

[8] Olivier P., Boukhobza J. and Senn E. 2014. Flashmon v2:

monitoring raw flash memory accesses for embedded Linux.

ACM SIGBED Review vol. 11, issue 1, Special issue of the

Embed With Linux (EWiLi) International workshop,

Toulouse, France, 2013.

[9] Hipp D.R. and Kennedy D. 2007. SQLite. www.sqlite.org

(online, accessed 07/2014).

[10] Kim J.M. and Kim J.S. 2012. AndroBench: Benchmarking

the Storage Performance of Android-Based Mobile Devices.

In Frontiers in Computer Education Advances in Intelligent

and Soft Computing Volume 133,Springer, pp 667-674.

[11] Senn E., Chillet D., Zendra O., Belleudy C., Bilavarn S.,

Atitallah R. B. , Samoyeau C. and Fritsch A. 2012. Open-

PEOPLE: open power and energy optimization platform and

estimator. In Proceedings of the 2012 15th Euromicro

Conference on Digital System Design (Cesme, Izmir, Turkey,

September 5 – 8, 2012), DSD, pp. 668–675.

[12] Benmoussa Y., Senn E. and Boukhobza J. 2014. Open-

PEOPLE, a collaborative platform for remote and accurate

measurement and evaluation of embedded systems power

consumption. In 22nd IEEE International Symposium on

Modeling, Analysis and Simulation of Computer and

Telecommunication Systems.

Figure 7. SQLite SELECT energy consumption

improvement for JFFS2 (top) and YAFFS2 (bottom).

