Automotive Real-time Operating Systems: A Model-Based

Configuration Approach

Georg Macher
Institute for Technical
Informatics
Graz University of Technology
AVL List GmbH
Graz, AUSTRIA
georg.macher@tugraz.at

ABSTRACT

Muesluem Atas
Institute for Technical
Informatics
Graz University of Technology
AVL List GmbH
Graz, AUSTRIA
muesluem.atas@avl.com

Christian Kreiner
Institute for Technical
Informatics
Graz University of Technology
. Graz, Austria
christian.kreiner@tugraz.at

Eric Armengaud
AVL List GmbH
Hans-List-Platz 1
. Graz, Austria
eric.armengaud@avl.com

1. INTRODUCTION

Automotive embedded systems have become very complex,
are strongly integrated, and the safety-criticality and real-
time constraints of these systems raise new challenges. Dis-
tributed system development, short time-to-market inter-
vals, and automotive safety standards (such as ISO 26262
[8]) require efficient and consistent product development along
the entire development lifecycle. The automotive OSEK/
VDX standard provides an architecture for distributed real-
time units in vehicles and a language aiming in specify-
ing the configuration of real-time OSEK operating systems.
The aim of this paper is to enhance a model-driven system-
engineering framework with the capability of generating OS
configurations from existing high level control system infor-
mation. Furthermore, to enable the possibility to update
stored information from OSEK Implementation Language
(OIL) files and support round-trip engineering of real-time
operating system (RTOS) configurations. This enables the
seamless description of automotive RTOS, from system level
requirements to software implementation and therefore en-
sures consistency and correctness of the configuration. To
that aim, a bidirectional tool bridge is proposed based on
OSEK OIL exchange format files.

Categories and Subject Descriptors

D.4.7 [Operating Systems]|: Organization and Design; D.2.3
[Software Engineering]: Coding Tools and Techniques

General Terms

Model-based development, traceability, embedded operating
systems, OSEK OIL, ISO 26262, RTOS.

EWiLi’ 14, November 2014, Lisbon, Portugal.
Copyright retained by the authors.

The number of embedded systems in the automotive do-
main has grown significantly in recent years. This trend
is also strongly supported by the ongoing replacement of
traditional mechanical systems with modern embedded sys-
tems. This enables the deployment of more advanced con-
trol strategies, thus providing added values for the customer
and more environment friendly vehicles. At the same time,
the higher degree of integration and the safety-criticality of
the control application raises new challenges. Evidence of
correctness of the different applications, both in the time
domain and value domain, possibly running on the same
computing platform, has to be guaranteed. In parallel, new
computing architectures with services integrated in hard-
ware require new software architectures and safety concepts.

Safety standards such as ISO 26262 [8] for road vehicles
have been established to provide guidance during the de-
velopment of safety-critical systems. These standards rely
on risk identification and mitigation strategies. They target
early hazard identification as well as solid counter measure
specification, implementation and validation along the entire
product life cycle. One challenge in this context is to pro-
vide evidence of consistency, correctness, and completeness
of system specifications over different work-products along
the entire product development process. This is a required
basis for the development of dependable systems. More-
over, the consolidation of the system specification enables
early bug finding and thus support reducing the costs for
bug fixes and late re-design.

To handle these issues, model-based development sup-
ports the description of the system under development in
a more structured way, enables different views for differ-
ent stakeholders, different levels of abstraction, and central
source of information.

The contribution of this paper is to bridge the existing gap
between model-driven system engineering tools and software
engineering tools for automotive real-time operating systems
(RTOS). More especially, the approach makes use of exist-
ing high level control system information in SysML format to
generate the configuration of automotive real-time operating

1= CPU TestCPU{
2 J/ASILD
05 RTOS{[]

APPMODE normal{[]

TASK OSTASK_C8_1MS{
PRIORITY = 128;
ACTIVATION = 1;
AUTOSTART = FALSE;
SCHEDULE = NON;

42 STACK = SHARED;

COUNTER OSTASK_COUNTER_8{
MINCYCLE = 5;
MAXALLOWEDVALUE = 10688;
TICKSPERBASE = 1;

49 5]

519 ALARM OSTASK_ALARM IMS{

52 ACTION = ACTIVATETASK{

53 TASK = OSTASK_C@_1MS;

54 H

55 COUNTER = OSTASK_COUNTER_@8;
56= AUTOSTART = TRUE{

57 APPMODE = normal;

CYCLETIME = 1@;
ALARMTIME = 5;

4 = platform:/resource/demo/conf.oil
4 4 System TestCPU
4 < Architectural
4 4 EcuTestCPU
< Cpu default_cpu
> 4 Signal OSTASK_ALARM_1MS
. 4 Signal OSTASK_ALARM_1OMS
> 4 Signal OSTASK_ALARM_100MS
> 4 Signal OSTASK_ALARM_XCP_10MS
- 4 Signal OSTASK_ALARM_XCP_100MS
< Signal OSTASK_ALARM_SCHM_10M5
4 4 CILALARM
4 QILALARM ACTION ACTIVATETASK OSTASK_C0_SCHM_10MS
< OILALARM AUTOSTART TRUE 50
. 4 Signal OSTASK_COUNTER_0
4 Task OSTASK_CO_1MS
<= Activation
< Scheduling
4 4 QILTASK
< OILTASK AUTOSTART FALSE
< OILTASK STACK SHARED
<4 OILTASK SCHEDULE NON
> < Task OSTASK_CO_10MS
. 4 Task OSTASK_CO_SCHM_10MS
4 4 Mapping
< Task Map

[N

[N

Figure 1: Comparison OIL File Normal View vs. Graphical Representation with Eclipse

systems in a standardized OSEK Implementation Language
file format (OIL files) [14]. Information from the control
system (such as control strategies) can thus be mapped to
a configuration at software level (e.g., required interfaces to
other SW components, allocation to a CPU respectively to
a task). The goal is to support a consistent and traceable re-
finement, as required by ISO 26262 standard, from the early
concept phase to individual configurations of the RTOS.
The document is organized as follows: Section 2 presents

an introduction to OSEK/VDX and OSEK OIL. Then, model-

based development and integrated tool chains, as well as
the base tool-chain for this approach are presented in Sec-
tion 3. In Section 4 a description of the proposed approach
for the generation of RTOS configuration files according to
OIL standard is provided. An application and evaluation of
the approach is presented in Section 5. Finally, this work
is concluded in Section 6 with an overview of the presented
approach.

2. OSEK/VDX RTOS OVERVIEW

The German OSEK consortium (German abbreviation for
open systems and their interfaces for electronics in motor
vehicles) was founded in 1993 by several German automotive
companies. VDX (Vehicle Distributed eXecutive) was the
French pendant from the French car manufacturers’ side,
which regrouped the OSEK/VDX consortium in 1994.

OSEK/VDX is an open standard for specifications for em-

bedded real-time operating systems (RTOS), designed to
provide a standard software architecture for the various elec-
tronic control units (ECUs), and partially standardized in
ISO 17356 [7].
The work of the OSEK/VDX consortium is today contin-
ued by the AUTOSAR consortium [1], which is based on
OSEK/VDX specifications. To describe the configuration of
an OSEK RTOS the OSEK implementation language files
(OIL) is intended to be used. These files can be generated
manually or via configuration tools. OIL files include all
object containers and information required to configure the
RTOS of one specific ECU.

2.1 OSEK Implementation Language

As mentioned previously, the OIL files inherit a normal-
ized description language for OS configuration and related
objects. OIL files are commonly used in the automotive
domain to configure the real-time operating systems of indi-
vidual ECUs. This is frequently done manually, due to the
simple human readable structure of OIL files and the lack of
tools supporting an automated information exchange. OIL
files typically consist of implementation specific definitions,
which are closely related to the hardware (ECU) in use and
specify the OIL object with all their possible attribute prop-
erties.

Due to the introduction of multi-core real-time systems
and the awareness of safety-criticality of such systems, tool
support and automation of OIL generation becomes increas-
ingly relevant. An example of safety-related configuration
parameters contained in the OIL file are shared task re-
sources or task priorities.

2.2 OSEK Related Tools and Publications

To our knowledge most development frameworks do not
include a tool for automatic OIL file generation from prior
information of previous development stages at a higher ab-
straction level. Nevertheless, within this work tool infor-
mation for commercial tools has been omitted due to non-
exhaustiveness of such an overview and the fact that this
information can be found up-to-date on the respective web-
site (e.g., Vector OIL Configurator or GOB - GUI based OIL
Builder).

Most frameworks either require manual generation of OIL
files by the developer, or they provide a dedicated graphical
user interface for support and guidance while generating the
OIL file. Figure 1 shows a comparison of the same OIL file
in typical editor view and in a guided graphical representa-
tion within an Eclipse-based development framework. Many
available OIL file configurators provide such a representation
of the OIL information. They thus provide guidance to min-
imize configuration failures, but do not reduce workload or
speed up the generation of OIL files. Also the import of

prior available information is very limited.

SmartOSEK’s visual designer [17] makes use of a DSL (do-
main specific language) approach. The visual designing tool
enables modeling of applications in a graphical way and au-
tomatic generation of OIL files. The main drawback of this
approach is the missing availability to feedback information
into the model.

Most OIL configurators focus on generating OIL files at
software development level, such as in the work of Koester
et al. [10]. The main disadvantage here is that prior infor-
mation of previous development phases cannot be used for
timing analysis or have to be transferred manually.

Kim et al. [9] suggest a lightweight AUTOSAR software
platform and additional extensions of OSEK OIL files. The
presented approach focuses on adding extensions to OIL
files, rather than supporting automated generation of OIL
files.

The work of Yang et al. [16] presents a conversion of UML
models into OSEK/VDX models for simulation and opti-
mization of the system design. The authors claim that by
converting UML representations into OSEK/VDX models
productivity can be improved, correctness of development
artifacts can be ensured more easily, and documentation can
be provided with less effort and better quality.

Gu et al. [5] focus on the description of automated mecha-
nisms for generating application codes and seamless integra-
tion of models for software development, but do not provide
methods of the transformation of UML and OSEK artifacts.

3. MODEL-BASED DEVELOPMENT AND
INTEGRATED TOOLCHAINS

This section provides a brief overview of model-based de-
velopment (MBD) tools and related works, as well as the
basic MBD framework of the presented approach. Again
a tool overview of commercial tools has been omitted due
to non-exhaustiveness and easy up-to-date online access of
such information on the respective website (e.g., Enterprise
Architect, Artisan Studio, EB studio, PREEvision).

3.1 Model-Based Development Tools and Pub-
lications

Fabbrini et al. [3] provide an overview of software en-
gineering in the European automotive industry and present
tools, techniques and countermeasures to prevent faults. This
work highlights the importance of tool integration and model-
based development approaches.

Broy et al. [2] mention model-based development as the
best approach to manage the large amount of information
and complexity of modern embedded systems. The authors
also illustrate why seamless solutions have not been achieved
so far, mention commonly used solutions, and problems that
arise by using an inadequate toolchain (e.g. redundancy,
inconsistency and lack of automation). This work presents
basic ideas and concepts of MBD, but not detailed solutions.

The work of Holtmann et al. [6] also highlights process and
tooling gaps between different development process steps.
A model-based development process is presented which con-

forms with the process reference model of Automotive SPICE.

With this use-case the authors highlight the lack of automa-
tion for artifact traceability and missing guidelines for model
selection at varying abstraction levels. The work exposes
two important gaps: First, missing links between system

level tools and software development tools. Second, incon-
sistency and redundant information, due to various very spe-
cific tools and a lack of automated information transfer.

Giese et al. [4] also highlight the step from system design
to software design as critical. System design models have to
be correctly transferred to the software engineering model,
and later changes must be kept consistent.

The work of Quadri and Sadovykh [15] presents approaches
for novel model-driven techniques and new tools supporting
design, validation, and simulation. The authors highlight
the possibility of high level model analysis for schedulability
and use a subset of UML and SysML for their approach.
However, configuration of real-time operating systems ac-
counting for timed resource constraints is not addressed in
this work.

3.2 Basic Framework

A brief overview of the model-based development toolchain
in use and the related preliminary work for the toolchain of
the proposed approach is given in this section. The proto-
type of our toolchain, proposed by Mader [13], is a spe-
cific implementation of a tool-independent and language-
independent methodology to support continuous safety anal-
yses of system architecture development according to ISO
26262 [8].

The basic concept behind this framework is to have a con-
sistent information repository as central source of informa-
tion. The toolchain allows different engineering domains to
work on one model which provides traces between different
artifact types, and ensures timeliness of data. Extension for
the modeling tool (Enterprise Architect ®) ensure seamless
and consistent transition of information between the reposi-
tory and various adequate special-purpose tools (such as OS
configurators). This approach also inherits an organizational
switch from document-centric development approaches to a
seamless model-based development approach. For a more
detailed overview of the concept and toolchain as a whole
see [12].

4. OVERVIEW OF THE CONTRIBUTION

The contribution proposed in this paper is an extension of
the previously mentioned framework towards RTOS config-
uration. The contribution (see also highlighting in Figure 3)
comprises the following aspects:

e UML modeling framework extension: Enhancement of
the software UML profile for visualization and process-
ing of OSEK OIL files. To enable configuration of the
OSEK OS by prior available constraints.

e OIL file generator: An extractor which automatically
generates OIL files from existing information at sys-
tem development level. This ensures consistency of
the specification and implementation for the RTOS.

e OIL file importer: The importer supports round-trip
engineering by re-importation of information updates
from OIL files.

This proposed extension is a constituent of the proposed
toolchain in [12] to close the gap between system-level de-
velopment at abstract UML-like representations and RTOS
configuration at software-level. This bridging extends the
work presented in [11] on basic software level, guarantees

Counter

© Task (4]

Alarm (4] +

Mincycle :int=1

Action :ActionTypekind
AlarmCallBack string
Autostart ‘boolean = TRUE
Alarmtime int=1

+ TidsPerBase ‘int=1

+ 44+ b

+ MaxAllowedValue :int= 10000

- _metatype string = Counter
- Type :CounterTypeKind = SYSTEMTIMER

- _image :int= <Image type="EA.
_metatype string = Task

ASIL :ASILKind

Autostart :boolean = TRUE
Priority int

Adlivation :int=1

Cycletime :int=1
- _metatype string = Alarm

«extendss
«extendss

™~

ISR gs

+ Category :ISRCatTypeKind = 1

ametaciasss
Class

/

- _metatype string = ISR «extendss

+ Priority :int

+ isActive :Boolesn

Schedule :ScheduleKindType = FULL
StackSize :int

TimingProtection :boolean

Type :TaskTypeKind = suto

Stack :StackTypekind = PRIVATE

TR

/

AUTOSARComponent (4]

- _image :int=<Image type="EA

- _metstype sting = AUTOSARComponent

ASIL :ASILKind = QM

+ Characteristic :ComponentTypekind = AUTOSAR Application

wextendss

Figure 2: UML Profile Addons for OIL Objects

BASIC SOFTWARE

rmmm s === ~ ’
| 1

s : |

’ 1
' ! | B
1 ! 1 Yy O -
| ! | wsw <
]] 1 Configurat
| x = i |
| N i i
! s \(0)) D= 1101000
V| s — ' 0001/
l 1 ose
1 |
1 T
\ \

A
g
i
i os.i
BRIDGING APPROACH
—— |
SYSTEM DEVELOPMENT U SOFTWARE DEVELOPMENT

Figure 3: Representation of the Bridging Approach
to Ensure Boundless Information Exchange

consistency of information due to the single source of infor-
mation principle, and shares information more precisely and
accurately. The approach minimizes redundant manual in-
formation exchange between tools and also takes IS0 26262
requirements (especially traceability) and constraints into
account.

Figure 3 shows the conceptual overview of the tool-chain
and highlights the OS configuration part. As can be seen
from the figure, a lack of tool support for information trans-
fer between system development tools and basic software
development tools exist, which has been reduced by the
proposed approach. The tight linking of the independent
system development and OS configuration tools, to a seam-
less model-based development toolchain interacting via OIL
files, further allows the inclusion of additional tools, such as
scheduling analysis tools, seamlessly into the toolchain.

4.1 UML Modeling Framework Extension

The UML profile add-on allows a graphical visualization
and processing of OSEK OIL objects. Figure 2 shows a
cutout of the profile. This additional information enables
the mapping of tasks to a specific core and clear arrangement
of dependencies and shared resources in terms of multi-core
development. Furthermore, the profile offers an intuitive
graphical way of generating OSEK OS configurations and
highlighting functionality for safety-related software tasks
and resources. This enables the possibility of a traceable
automatic OIL file configuration generation, which inherits
increasing significance in terms of safety-critical system de-
velopment according ISO 26262 and traceability. Note that

- - - - - - - - - —— - - - - - -

this profile has been integrated in the existing framework de-
scribed in Section 3.2. Consequently, the system description
can be refined down to the operating system, thus improv-
ing architecture consistency over skills boundaries (such as
systems and software engineering).

4.2 OIL File Generator

The second part of the approach is an exporter capable of
exporting the RTOS configuration available from the SysML
model to an OIL file. The exporter generates OIL files en-
riched with the available system and safety development ar-
tifact traces (such as required ASIL of task implementation).
Most state-of-the-art software development frameworks are
able to configure the RTOS according to the specifications
within such an OIL file. Consequently the use of this ex-
porter additionally improves communication of the (safety)
context to the software experts into their native development
tools, thus improving the consistency of the product develop-
ment. Furthermore, the toolchain is capable of multi-core or
multi-system development, therefore the generation of OIL
file is selectable for individual cores.

4.3 OIL File Importer

The third part of the approach is the import functionality
add-on for the system development tool. This functionality
enables bidirectional update of representation in the system
development tool and the software development tool. This
ensures consistency between system development artifacts
and changes done in the software development tool. The im-
porter also implies an overview of changes between database
and re-imported OIL file. This offers the possibility of se-
lective database updates and supports impact analysis (as
part of the change management process). Finally, the im-
porter enables reuse of available RTOS configurations, guar-
antees consistency of information, and thereby shares infor-
mation more precisely and less ambiguously. Figure 4 shows
a Screenshot of the import, selective update, and difference
highlighting functionality.

5. APPLICATION OF THE APPROACH

This section demonstrates the application of the intro-
duced approach. The application of this approach inherits
a tool change for the configuration of the RTOS, from text
editor or software development framework to a graphical

a2 Ollimporter

=8 231
]

0
3]
=

Please select the packagf * O!FileDBOift

Packagename | |OSTASK_ALARM_1MS

Autostat + TRUE
OSTASK_ALARM_10MS
Autostart + TRUE
OSTASK_ALARM_100MS
Autostart + TRUE
OSTASK_ALARM_XCP_10MS

OSTASK_ALARM_1MS
Autostart + FALSE
OSTASK_ALARM_10MS
Autostart + FALSE
OSTASK_ALARM_100MS
Autostart + FALSE
OSTASK_ALARM_XCP_10MS

L5 - Functions v

~ New updates are avd

- Autostat + TRUE Autostat + FALSE
Please select your ufl| |0STASK_ALARM_XCP_100MS OSTASK_ALARM_XCP_100MS
Autostat + Ti Autostart + FALSE

V| OSTASK_ALARM_1MS OSTASK_ALARM_SCHM_10MS

RUE
OSTASK_ALARM_SCHM_10MS
RUE Autostart + FALSE

Autostart + T
V] OSTASK_ALARM_10MS

V| OSTASK_ALARM_100MS

7] OSTASK_ALARM_XCP_10M§

7] OSTASK_ALARM_XCP_100MS C

V| OSTASK_ALARM_SCHM_10MS -

Show Diff | [update |
[(Sroudif | [updste]

Figure 4: Screenshot of the OIL File Importer

Table 1: OIL Objects of the Evaluation Use-Case

OIL Object Element-count Configurable
Attributes per

Element
CPU 4 2
OSs 1 15
APPMODE 2 1
TASKS 6 9
COUNTER 1 5
ALARMS 6 6

representation within the system development tool. Never-
theless, this tool change does not affect the work of the basic
software developer in negative ways, but offers a significant
benefit for development of safety-critical software in terms
of traceability and replicability of development decisions.

With the improvements presented in this paper the ex-
tra facility of mapping SW task to dedicated ECU cores
and their required resources enables the possibility to un-
ambiguously visualize dependencies and analyze scheduling
variants at early development phases. Furthermore, safety-
related software artifacts can be explicitly highlighted and
dependencies linked in an graphical way.

To provide a comparison of the improvements of our ap-
proach we selected a simplified multi-core use-case solely
consisting of tasks, alarms, counters, OS, CPU, and appli-
cation modes. Other OIL objects have been omitted because
of the variable multiplicity of these objects (such as resources
of a task). An overview of OIL objects within our use-case
is given in Table 1.

This amounts to a total of 20 OIL objects and 46 relations
between the elements. This small example already indicates
that relations between the elements increase quickly and be-
come confusing. To overcome this issue the model-based
development approach offers the possibility to hide specific
relations.

It might be argued that this approach does not reduce
the workload or speed up the generation of OIL files sig-
nificantly, due to the high number of relations that need
to be established. However, the approach provides guid-
ance to minimize configuration failures. Additionally, it
supports round-trip engineering features, which split work-
loads among different development phases and thus simpli-
fies reuse. Table 2 compares the proposed solution with

other approaches presented in Section 2.2 and discusses dif-
ferent improvement indicators. The labels for categoriza-
tions are:

+ supported or positive effects
- not supported or negative effects
o possible or no effects

In terms of safety-critical development and reuse the pre-
sented approach supports crucial additional features, such as
round-trip engineering by tool-supported information trans-
fer between separated tools and links to supporting safety-
relevant information. Furthermore, the approach eliminates
need of manual generation of OIL files without adequate syn-
tax and semantic checking support, ensuring reproducibility,
and traceability argumentation.

6. CONCLUSION

An important challenge for the development of safety-
critical real-time automotive systems is to ensure consis-
tency of the safety relevant artifacts (e.g., safety concepts,
requirements and configurations) over the development cy-
cle. This is especially challenging due to the large number
of skills, tools, teams and institutions involved in the de-
velopment. This work presents an approach to bridge tool
gaps between an existing model-driven system and safety en-
gineering framework and RTOS configuration tools, based
on domain standard OSEK. The implemented tool exten-
sion transfers artifacts from system development tools to
software development frameworks for RTOS configuration,
thereby creating traceable links across tool boundaries, and
relying on standardized OSEK OIL exchange files. The main
benefits of this enhancement are: improved consistency and
traceability from the initial design at the system level down
to the single CPU configuration, as well as a reduction of
error-prone manual work. Further improvements of the ap-
proach include the progress in terms of reproducibility and
traceability of safety-critical arguments, configurations for
software development, and support of multi-core system de-
velopment.

Acknowledgments

The authors would like to acknowledge the financial sup-
port of the "COMET K2 - Competence Centers for Excellent
Technologies Programme” of the Austrian Federal Ministry
for Transport, Innovation and Technology (BMVIT), the
Austrian Federal Ministry of Economy, Family and Youth
(BMWEJ), the Austrian Research Promotion Agency (FFG),
the Province of Styria, and the Styrian Business Promotion
Agency (SFG).

Furthermore, we would like to express our thanks to our
supporting project partners, AVL List GmbH, Virtual Ve-
hicle Research Center, and Graz University of Technology.

Table 2: Improvement Indicators

Improvement Indicators Proposed Visual SW Development Manual
Approach DSL Ap- Level Approach
proach Configurators
OIL syntax and semantic checks + + + o)
Reuse + + o o
Speed-up o o o) o)
Distribution of configuration activities + o o -
Automated configuration from available information + + - -
Additional (safety) constraints (such as ASIL indica- + - - o
tor, requirements)
Consistency, correctness, and completeness checks + o) -
Round-trip engineering support and bi-directional + o) o) o)
update features
Traceability of decision making process + + - -
Multi-core systems + o o -
7. REFERENCES [10] Lutz Koester, Thomas Thomsen, and Ralf Stracke.
[1] AUTOSAR development cooperation. AUTOSAR Connect.ing Simulink to OSEK: A.utomatic COd‘?
AUTomotive Open System ARchitecture, 2009. Generat}on for Real-Time Operatlng Systems with
[2] Manfred Broy, Martin Feilkas, Markus TargetLink. E'mbefided Intelligence 2001, ?091.
[11] Georg Macher, Eric Armengaud, and Christian

Herrmannsdoerfer, Stefano Merenda, and Daniel
Ratiu. Seamless Model-based Development: from
Isolated Tool to Integrated Model Engineering
Environments. IEEE Magazin, 2008.

Fabrizio Fabbrini, Mario Fusani, Giuseppe Lami, and
Edoardo Sivera. Software Engineering in the European
Automotive Industry: Achievements and Challenges.
In COMPSAC, pages 1039-1044. IEEE Computer
Society, 2008.

Holger Giese, Stephan Hildebrandt, and Stefan
Neumann. Model Synchronization at Work: Keeping
SysML and AUTOSAR Models Consistent. LNCS
5765, pages pp. 555 —579, 2010.

Zonghua Gu, Shige Wang, and Kang Shin. Issues in
Mapping from UML Real-Time Profile to OSEK. In
Proc SVERTS: Workshop on Specification and
Validation of UML models for Real Time and
Embedded Systems, Workshop at UML 2003, October,
page 7, 2003.

Joerg Holtmann, Jan Meyer, and Matthias Meyer. A
Seamless Model-Based Development Process for
Automotive Systems, 2011.

ISO - International Organization for Standardization.
ISO 17356 Road vehicles — Open interface for
embedded automotive applications, 2005.

ISO - International Organization for Standardization.
ISO 26262 Road vehicles Functional Safety Part 1-10,
2011.

JaeYoung Kim, JungWook Lee, Jeongho Son,
Kee-Koo Kwon, and Gwangsu Kim. Lightweight
AUTOSAR Software Platform for Automotive. In
IEEE International Conference on Consumer
Electronics, pages 307 — 308, 2012.

(12]

(13]

(14]

(15]

(16]

(17]

Kreiner. Automated Generation of AUTOSAR
Description File for Safety-Critical Software
Architectures. In Lecture Notes in Informatics, 2014.
Georg Macher, Eric Armengaud, and Christian
Kreiner. Bridging Automotive Systems, Safety and
Software Engineering by a Seamless Tool Chain. In
7th European Congress Embedded Real Time Software
and Systems Proceedings, pages 256 —263, 2014.
Roland Mader. Computer-Aided Model-Based Safety
Engineering of Automotive Systems. PhD thesis, Graz
University of Technology, 2012.

OSEK/VDX Steering Committee. OSEK/VDX
System Generation OIL: OSEK Implementation
Language.
http://portal.osek-vdx.org/files/pdf/specs/0il25.pdf,
2004.

Imran Rafiq Quadri and Andrey Sadovykh. MADES:
A SysML/MARTE high level methodology for
real-time and embedded systems, 2011.

Guogqing Yang, Minde Zhao, Lei Wang, and Zhaohui
Wu. Model-based Design and Verification of
Automotive Electronics Compliant with OSEK/VDX.
In Proceedings of the Second International Conference
on Embedded Software and Systems, ICESS ’05, pages
237-245, Washington, DC, USA, 2005. IEEE
Computer Society.

Mingde Zhao, Zhaohui Wu, Guoqing Yang, Lei Wang
0023, and Wei Chen 0005. SmartOSEK: A Real-Time
Operating System for Automotive Electronics. In
Zhaohui Wu, Chun Chen, Minyi Guo, and Jiajun Bu,
editors, ICESS, volume 3605 of Lecture Notes in
Computer Science, pages 437-442. Springer, 2004.

