
A light-weight compression method for Java Card
technology

Massimiliano Zilli, Wolfgang Raschke,
Reinhold Weiss and Christian Steger

Institute for Technical Informatics
Graz University of Technology

Graz, Austria
{massimiliano.zilli;wolfgang.raschke;

rweiss;steger}@tugraz.at

Johannes Loinig
NXP Semiconductors Austria GmbH

Gratkorn, Austria
johannes.loinig@nxp.com

ABSTRACT
Java Card is a Java running environment tailored for smart
cards. In such small systems, resources are limited, and
keeping application size as small as possible is a first order is-
sue. Dictionary compression is a promising technique taken
into consideration by several authors. The main drawback
of this technique is a degradation in the execution speed.
In this paper we propose combining the dictionary com-

pression with another compression technique based on the
folding mechanism; the latter is less effective in terms of
space savings, but has the advantage of speeding up the
execution. A combination of the two techniques leads to
higher space savings with a very low decrease in execution
time compared with the plain dictionary compression.

Categories and Subject Descriptors
C.2.5 [Special-purpose and application-based systems]:
Smartcards; D.4.7 [Organization and Design]: Real-time
systems and embedded systems; E.4 [Coding and Infor-
mation Theory]: Data compaction and compression

General Terms
Languages, Experimentation, Measurements, Performance

Keywords
Smart card, Java Card, virtual machine, bytecode compres-
sion

1. INTRODUCTION
Smart cards are a very widespread technology, applied in

the fields of banking, telecommunication and identification.
Because of their large scale diffusion, these systems have to
be cheap, hence with limited resources. Typical hardware
configurations are based on a 8/16 bit processor, have some
kilobytes of RAM and some hundreds of kilobytes of per-
sistent memory. The applications running on these systems
are often written in C or Assembly to keep the code size low
and the performance high, but with the drawback of a low
portability between different platforms. A virtual machine

EWiLi’14, November 2014, Lisbon, Portugal.
Copyright retained by the authors.

based system like Java resolves the portability problem, but
the resources needed to run Java do not meet the smart
card constraints. For this reason Java Card, a reduced set
of the Java language specific for smart card applications, has
been developed [8] [7]. Beyond the object-oriented program-
ming language, Java Card offers a high security environment
equipped with cryptographic functionalities and plays a role
analogous to an operating system for the smart card.

The distribution of applications in Java Card takes place
through the Java Card converted applet (CAP) file. The
CAP file contains all the classes of the package application
and it is organized in components. The Java Card envi-
ronment uses the latter at installation time to install the
application on the smart card.

Despite of the Java bytecode format being a compact in-
struction format, some research works based on dictionary
compression go into the direction of compressing it, but at
the price of a slower execution time. On the other hand
research work regarding the speed-up of the bytecode ex-
ecution does not usually take into consideration the ROM
size as an issue, because they are applied to systems that
are not as resource-constrained as smart cards.

In this work we focus on the compression of the method
component by combining two techniques. The first one
is based on the folding mechanism and substitutes fold-
able sequences of Java bytecodes with equivalent single su-
perinstructions introduced as an instruction set extension of
the virtual machine. The second one is based on the dic-
tionary compression and substitutes repeated sequences of
bytecodes with macros, whose definition is contained in a
dictionary. Both techniques reduce the ROM size of the ap-
plication, but while the second negatively affects the execu-
tion time of the application, the first speeds up its execution.
Thanks to this approach we obtain better compression ra-
tios paying a smaller price in terms of run-time performance
compared to the plain dictionary compression.

The structure of the rest of the paper is as follows. Sec-
tion 2 reviews the published research about code compres-
sion and execution speed-up that constitute the basis of this
work. Section 3 provides a description of the new technique
as a combination of the dictionary compression and the fold-
ing compression. Section 4 evaluates the proposed technique
in terms of space savings and execution performance. Fi-
nally, in Section 5 we report our conclusions and outlooks
on future work.

2. RELATED WORK
In the context of embedded systems, keeping the appli-

cation ROM size as small as possible is an important issue.
It is even more important in the case of smart cards, where
the memory size is smaller than in today’s typical embedded
systems. Compressing the executable code is one possible
solution to overcome this problem, beyond following good
programming practices.
Classic compression methods like Huffmann may demand

resources that are not available in smart cards systems [11].
These methods usually need significant RAM memory for
decompressing the entire information. Moreover, the de-
compression phase is time consuming and slows down the
application execution, making the time constraints of the
application domain hard to respect.
Dictionary compression does not have the limitations that

prevent classical compression methods to be applied in low-
end embedded systems [11]. It consists of the substitution of
repeated sequences of information with a macro whose def-
inition is stored in a dictionary. Claussen et al. introduce
dictionary compression for low-end embedded systems run-
ning Embedded Java or Java Card [4]. The authors show
that space savings up to 15% are achievable, but with an
increase in execution time between 5% and 30%.
Systems based on virtual machines such as Java have a

slower execution compared to systems where the applica-
tions are compiled in native machine instructions. The main
approach present in most widely spread Java environments
for speeding-up the execution is the ”Just In Time” (JIT)
compilation [5] [12]. It works by compiling sequences of
frequently executed bytecodes directly into machine instruc-
tions during run-time. Throughout the compilation, the JIT
mechanism performs optimizations within Java bytecodes
sequences, making their execution faster compared to the
plain Java bytecode interpretation. To store the temporary
compiled code, JIT compilation makes use of remarkable
quantities of RAM that are not available in smart cards.
One of the key-factors behind JIT compilation is the su-

peroperators concept, introduced by Proebsting in [10]. Ac-
cording to it, a sequence of bytecodes can be reduced to a
sequence of machine instructions where intermediate results
are kept in registers instead of using the operand stack. A
method for integrating superoperators in a low-end embed-
ded system deploying Java consists of introducing superin-
structions into the virtual machine instruction set [3] [9].
Thus, the new superinstruction can substitute the sequence
of bytecodes equivalent to the superoperator. In addition
to the advantages provided by the superoperators (e.g. less
memory accesses), superinstructions need only one instruc-
tion fetch compared to the number of fetches needed during
the execution of the sequence of bytecodes that they substi-
tute.
A different approach to make Java environment faster is

based on the use of a Java processor. The Java processor
executes the Java bytecodes directly in hardware, given that
the Java bytecodes constitute the machine instruction set.
In [6], McGahm et al. propose picoJava, an example of a
Java processor. Beyond the advantage provided by a direct
hardware execution, picoJava has an optimization mecha-
nism implemented in the Instruction Folding Unit [13]. This
mechanism consists of analyzing the bytecodes to be exe-
cuted next, and determining if they are foldable.
A software reproduction of the folding mechanism in a

Java virtual machine is proposed in [2]. In that work, the
virtual machine is able to recognize foldable instructions by
means of Java annotations. Azevedo et al. introduce a simi-
lar approach for the Java Card environment [1]. The execu-
tion time improvement obtained within that work is up to
120%, but the class size increases up to 14%, because of the
introduction of the annotations.

3. DESIGN AND IMPLEMENTATION
In this section we provide a brief description of the dic-

tionary compression and the folding compression. Then,
we present the light-weight compression technique analyz-
ing how the two techniques interact. In the last subsection
we discuss where the compression process can be inserted
within the Java Card installation process.

3.1 Dictionary Compression
Dictionary compression consists of substituting repeated

sequences of bytecodes with macros, whose definitions are
stored into a dictionary. The dictionary can be static if it
is used for every application, or dynamic if it is relative to
a specific application. Dictionary compression can be plain,
with wildcards or with generalized instructions [14]. The
former case consists of completely substituting repeated se-
quences with a simple macro; in the latter cases the macros
definitions are more general and can substitute similar se-
quences of bytecodes, keeping out of the definition the un-
common parts of the sequences as arguments of the macros.
In this work we apply the plain dictionary compression, but
the concept can be extended to the other two dictionary
methods.

The sequences that can be substituted cannot be arbi-
trary, but they must respect the rule of being Single Entry
Single Exit (SESE) blocks. Hence, no jumps are possible
into the block except into the first instruction, and jumps
are not possible from inside to outside the block but only
within the block.

After all possible sequences have been found and grouped
in sets of equal sequences that can be represented with the
same macro, the most convenient superset of macros is se-
lected. The number of elements of the superset is finite and
corresponds to the number of undefined Java Card byte-
codes reserved for the dictionary compression. In the Java
Card standard 187 of the 256 possible values are defined
bytecodes. In our experiments, we used only twelve unde-
fined bytecodes for the dictionary compression; ten of them
for one byte long macros (10 macros) and the remaining
two for two byte long macros (2 × 255 macros), potentially
allowing 522 macro definitions.

During bytecode execution, as sketched in Figure 1, when
the Java Card virtual machine encounters a macro, it saves
the return Java program counter (JPC RET← JPC). In the
second step, the virtual machine jumps through a look-up
table into the corresponding dictionary definition (JPC ←
macroAddr). Afterwards, the execution of the Java byte-
codes contained in the definition are performed. At the end
of the macro definition, the execution of a special Java byte-
code ret_macro will restore the Java program counter to the
return value (JPC ← JPC RET).

3.2 Folding Compression
We developed the folding compression technique on the

basis of the folding mechanism introduced for picoJava, a

……

JPC : 00 instr_1

JPC : 01 instr_2

JPC : 02 instr_3

JPC : 03 macro_1

JPC : 04 instr_7

JPC : 05 instr_8

JPC : 06 instr_9

……

JPC : 30 instr_4

JPC : 31 instr_5

JPC : 32 instr_6

JPC : 33 ret_macro

Macro definition

Method

JPC_RET<--JPC

JPC<--macroAddr

JPC<--JPC_RET

Figure 1: Execution flow in dictionary compressed
code

sload_1

sload 6

ssub

sstore_3

Op. Stack

LV

Op. Stack

LdLdOpSt
OP

(a)

(b)

Op. Stack

OP

Op. Stack

LV

LV

LV LV

LV

Figure 2: (a) Example of a foldable sequence; (b)
Equivalent folded superinstruction

Java processor [13]. The bytecodes can be classified accord-
ing to the usage of the Java Operand Stack as:

• Producers if they push an element onto the operand
stack (e.g. spush, sload, ...)

• Consumers if they pop an element from the operand
stack (e.g. sstore, ...)

• Operands if they pop one or two elements from the
operand stack and they perform an operation (e.g.
sadd, sxor, ifeq, ifscmpeq, ...)

Defined sequences of Java opcodes can be reduced to a sin-
gle register machine like instruction. From now on, we will
refer to these sequences as ”foldable sequences”. To clarify
the concept, Figure 2 (a) reports a typical example of fold-
able sequence. The two initial load instructions (sload_1
and sload 6) push the values of two local variables onto the
stack, the subtract instruction (ssub) pops them, executes
their addition and pushes the result onto the stack. Finally,
the store instruction (sstore_3) pops the value on the stack
and stores it in a local variable. The entire sequence can be
substituted with a single register like instruction (Figure 2
(b)) that takes the values directly from the local variables,

Instruction Argument Opt. Arg.

LdSt(PC) B1[St:Ld] -

PshSt(PC) B1[Op:Cnst] B2[BPsh]B3[SPsh]

OpSt(PO) B1[St:Op] -

LdIf s2b(PO) B1[Op:Ld] B2[Br]B3[Brw]

LdPshAdd(PPO) B1[Cnst:Ld] B2[BPsh]B3[SPsh]

LdPshOp(PPO) B1[Cnst:Ld]B2[Op:Ord]B3[BPsh]B4[SPsh]B5[Br]B6[Brw]

LdLdOp(PPO) B1[Ld2:Ld1]B2[Op] B3[Br]B4[Brw]

LdPshOpSt(PPOC) B1[Cnst:Ld]B2[St:Op] B3[BPsh]B4[SPsh]

PshLdOpSt(PPOC) B1[Ld:Cnst]B2[St:Op] B3[BPsh]B4[SPsh]

LdLdOpSt(PPOC) B1[Ld2:Ld1]B2[St:Op] -

Table 1: Instruction set extension

performs their addition and stores the results on the des-
tination local variable. The use of such a register-like in-
struction saves three instruction fetches and avoids all the
memory writes and reads to and from the operand stack.

Like dictionary compression, the folding compression also
makes use of undefined Java Card bytecodes. In the fold-
ing compression case, ten undefined bytecodes are used for
extending the Java Card instructions set with the new su-
perinstructions. In Table 1, we report all the new folded su-
perinstructions forming the instruction set extension. The
superinstructions consist of an initial byte identifying the
type of instruction, followed by a variable number of bytes
constituting the argument. In the first column of the table,
near the mnemonic of the superinstruction, there is the kind
of sequence (in terms of (P)roducer, (C)onsumer, (O)perand
classification) that the superinstruction substitutes.

The new superinstructions do not cover all the possible
foldable sequences but only the most frequent ones. In fact,
by means of the arguments, one superinstruction can rep-
resent many combinations (i.e. LdLdOpSt can represent
the sload_1 sload 6 ssub sstore_3 sequence as well as
the sload_3 sload_1 sxor sstore 10 sequence). Moreover,
within the instructions belonging to the foldable sequences,
the load and the store instructions are covered only for the
first sixteen local variables. This allows to encode the local
variable index with only four bits, thus we can express two
load instructions with a one byte long argument. Covering
only the first sixteen local variables allows to cover most
of the cases anyway; the analysis on a set of three indus-
trial applications (i.e. a statistically sound set of bytecodes
combinations) points out a coverage of about 95% of all the
foldable sequences.

To clarify how the space savings are obtained, we look
again at the example of Figure 2, where we can compare
the foldable sequence with the equivalent folded superin-
struction. The first byte argument of the latter will be 0x61
whose digits indicate respectively the first and the sixth local
variable for the load operations; the second byte will be 0x31
whose digits indicate respectively the subtraction operation
and the third local variable for the store operation. Com-
pared with the foldable bytecode sequence that occupies five
bytes of ROM memory, the new superinstruction occupies
only three bytes allowing space savings of two bytes.

3.3 The light-weight Compression
The combination of the folding compression and the dic-

tionary compression constitutes the light-weight compres-

Original Method Compr. Method

Dictionary

Original Method Compr. Method

Dictionary

Overlap

Original Method Compr. Method

Dictionary

OR

No overlap part

Dictionary

No dictionary

Compr. Method

Case A Case B Case C

Foldable sequence Dictionary sequenceLegend: Folded superinstruction Dictionary macro

Figure 3: Possible cases in the combination of the compression techniques

sion. The first step consists of the compression with the
folding method, while in the second step the application re-
sulting from the first step is compressed with the dictionary
method. The two techniques coexist with a small interfer-
ence that affects the dictionary compression space savings.
Figure 3 shows the three possible cases of interaction.
In case A the foldable sequence and the dictionary se-

quence are separated, hence there is no interference and the
space savings due to the dictionary compression does not de-
grade. In Case B the foldable sequence is contained into the
dictionary sequence, and it becomes part of the dictionary
definition. It is also possible that the foldable instruction
identifies with the dictionary definition, but the dictionary
definition cannot be contained into the foldable sequence.
Case C presents the case in which the foldable sequence and
the dictionary sequence partially overlap. In this case, either
the dictionary sequence is not substituted, or the dictionary
definition is shortened, depending on the convenience for
the overall space savings. However, in case C and B the
space savings owing to the dictionary compression dimin-
ishes. We can express the overall space savings S due to the
light-weight compression as:

S = Sf + (1− k1) · Sd

where Sf and Sd are the space savings due to the folding
compression and the dictionary compression respectively,
and k1 is the coefficient that expresses the degradation of
the dictionary compression due to the interference with the
folding compression. The coefficient k1 ranges between 0
and 1; where a value of 0 means absence of interference, and
hence the final space savings is the arithmetical sum of the
two partial space savings.
The two techniques have opposite effects on the execu-

tion time. While the dictionary compression decreases the
execution speed, the folding compression increases it. Also
in this case, if there is interference from the folding com-
pression on the dictionary compression, the slowing effect
on the run-time provided by the dictionary compression is
mitigated. The second option of case C in Figure 3 is the
only case in which the execution performance effect due to
the dictionary compression is reduced. Hence, the interfer-
ence of the two techniques in the execution performance is
lower than the interference they have in the space savings.
The overall run-time effect R due to the application of the

light-weight compression can be expressed with the formula:

R = Rf + (1− k2) ·Rd

where Rf and Rd are the effect on the execution time due
to the folding compression and to the dictionary compres-
sion, respectively, and k2 is the coefficient that accounts for
the reduction of the dictionary compression due to the in-
terference from the folding compression. In this case Rd

is negative, because the dictionary compression slows the
application execution; hence, a value of k2 greater than 0
would positively affect the overall effect of the light-weight
compression on the execution time.

Summing up, the combination of the two compression
techniques leads to space savings that approximately equal
the sum of the space savings due to the two techniques.
Regarding the speed performance, the two techniques com-
pensate each other.

3.4 Integrating the light-weight compression
into the JCVM

The installation process in Java Card is different than in
Java. It is split in two parts: one off-card and the other
on-card. After the compilation and the creation of the class
file, the off-card Java Card converts the class file into a CAP
file, which is the distribution format of the application. The
installation on the smart card starts with the verification of
the CAP file. During this operation, the off-card Java Card
checks the validity of the CAP file assuring a secure instal-
lation. At this point, the CAP file is handled by the off-card
installer that establishes a communication channel with the
on-card installer. The installer transfers and instantiates the
application on the smart card. Once that the application is
installed, the application exists until it is uninstalled; be-
tween a power-down and a power-on of the smart card, the
application status is saved into non-volatile memory.

In this architecture, the most convenient point to perform
the compression is after the verification and before the in-
stallation. In this way, the distributed CAP file is general
for all Java Card systems, whether they are enabled with
the light-weight compression or not. Moreover, the off-card
Java Card is able to distinguish between an on-card Java
Card enabled for the light-weight compression and one that
is not only at installation time. Therefore, the Java Card
verifier can be common for each Java Card and does not

Application Size [B]
Space Savings [%]

Dict. Compr. Fold. Compr.

XPay 1784 12.28 6.73

MChip 23305 9.16 4.02

MChip Advanced 38255 10.52 3.72

BubbleSort 239 5.44 2.51

BigInteger 650 3.39 1.54

Table 2: Applications memory size and partial space
savings

Application Space Savings [%]

XPay 15.70

MChip 12.43

MChip Advanced 11.73

BubbleSort 6.70

BigInteger 4.46

Table 3: Space savings of the light-weight compres-
sion

need to know the extended Java Card instruction set used
for the compression.

4. RESULTS AND DISCUSSION
In this section we report the space savings and the run-

time analyses obtained with the proposed technique. We
first analyze the folding compression and the dictionary com-
pression, separately; afterwards, we report the result of their
interaction in the light-weight compression technique.

4.1 Space Savings
For the assessment of the space savings, we took into

consideration a set of three industrial banking applications
(MChip, MChip Advanced and XPay). We also developed
two test-benches that we used for the evaluation of the exe-
cution performances. The first test-bench performs a ”bub-
ble sorting”, while the second implements a basic big-integer
class and performs a sequence of operations on big-integer
variables. The space saving SXcompr owing to the compres-
sion technique Xcompr is defined as

SXcompr =
AppSizeoriginal −AppSizeXcompr

AppSizeoriginal

where AppSizeoriginal is the application size of the original
application and AppSizeXcompr is the application size after
the compression with Xcompr.
Table 2 and Table 3 list all the space savings obtained

during the evaluation. The third and the fourth column of
Table 2 report the space savings obtained with the folding
compression and with the dictionary compression, respec-
tively. We see that the dictionary compression performs
better. In the second column of Table 3 we can see the
space savings for the light-weight compression. Comparing
the two tables, we see that the effects of the two techniques
are concordant and their combination (average space savings
of 12%) is better than a pure dictionary compression (aver-
age space savings of 10%) with an improvement of 20%.
In the results reported above, we took into consideration

the dictionary ROM space, but not the additional ROM

0

20

40

60

80

100

LdSt PshSt OpSt LdIf_s2b LdPshAdd LdPshOp LdLdOp LdPshOpSt
/

PshLdOpSt

LdLdOpSt

E
x
e
c
u
ti

o
n
 T

im
e
 [
%

]

Instruction

Foldable Sequence

Folded Instruction

Figure 4: Execution speed-up for foldable sequences

space needed for the implementation of the extended in-
struction set needed for the folding compression. The ad-
ditional ROM space needed for the implementation of the
extended instruction set is about 5kB. Java Card environ-
ment is designed for hosting multiple applications in a single
card. Hence, if we consider an average space savings of 12%
and an average applet size of 20kB, we can estimate that the
installation of two applets will balance the additional ROM
space needed for the instruction set extension (to be more
precise, the set of applications should occupy at least 42kB).

4.2 Run-time performance
For the evaluation of the run-time performance, we took

as a starting point the Oracle Java Card reference implemen-
tation, that we ported to the 8051 architecture, which is a
plausible platform for a smart card. Afterwards, we added
the instruction set extension for the folded instructions, and
the mechanism for managing the dictionary compression.

Regarding the dictionary compression, we evaluated the
increase in the execution time owing to the macro execu-
tion. For this purpose, we measured the time needed for the
execution of a bytecode sequence whose length corresponds
to the average number of bytecodes in the dictionary defi-
nitions of the test-set of industrial applications. We found
that the execution time of a dictionary macro increases by
about 50%, compared to the execution time of the average
sequence contained in the dictionary definition. This in-
crease is due to the jump through the look-up table to the
dictionary definition and to the execution of the ret_macro

instruction, as already discussed in Section 3.
To evaluate the folding compression mechanism, we com-

pared the time needed for the execution of a foldable se-
quence of Java bytecodes with the time needed for the exe-
cution of the equivalent folded instruction belonging to the
extended instruction set. Figure 4 shows the comparison; for
each instruction of Table 1, the background bar (light gray)
represents the time needed for the execution of the equiv-
alent foldable sequence, whereas the foreground bar (dark
gray) accounts for the execution time of the folded instruc-
tion. The execution of the folded instructions is about two
times faster compared to the execution of the equivalent
foldable sequences.

The industrial applets used for the assessment of the space
savings make use of proprietary libraries that are not avail-
able in the reference implementation. For this reason we per-
formed our test on our test-bench applications. We define
the execution speed-up UXcompr for the generic compression

Application
Execution Time [%]

Dict. C. Fold. C. LightW. C.

BubbleSort +3.2 -6.8 -3.8

BigInteger +1.7 -4.0 -2.2

Table 4: Applications execution time

technique Xcompr as

UXcompr =
ExTimeoriginal − ExTimeXcompr

ExTimeoriginal

where ExTimeoriginal is the execution time of the origi-
nal applet, and ExTimeXcompr is the execution time of
the applet compressed with the generic technique Xcompr.
Table 4 reports the measurements on the execution time af-
ter the application of the different compression techniques;
the results expressed in percentage are relative to the execu-
tion of the original applications. We point out that the dic-
tionary compression slightly slows down the execution time,
while the folding compression significantly speed it up. This
behavior derives from the nature of the test-benches that
have a small ROM size (dictionary compression is less effec-
tive in small application where there is a lower probability
of repeated sequences) and a high computation level (fold-
ing compression is more effective in parts of code involved
in computation). Considering the space savings of the in-
dustrial applications, we expect a slight slow-down of the
execution after the application of the light-weight compres-
sion because of the dominance of the dictionary compression.
The slow-down will be anyway lower compared to the case
where only the dictionary compression is applied.

5. CONCLUSIONS
In this work we have proposed a novel compression tech-

nique for applications running on smart cards enabled with
the Java Card System. The compression technique is the
result of the combination of two compression methods: the
dictionary compression and the folding compression. While
the former pays for a good compression ratio with a higher
application execution time compared to the original appli-
cation execution time, the latter has lower space savings but
offers at the same time a speed-up of the application execu-
tion. The final result is a light-weight compression method
with an average space savings of 12% and a slight execution
slow-down; compared to the plain dictionary compression,
the light-weight compression has higher space savings and
causes a lower slow-down in the execution of the application.
Providing a hardware support with an extension of the mi-

crocontroller instruction set specifically for the light-weight
compression technique seems to be promising for resolving
the execution slow-down, and it will therefore be the object
of investigation in future research work.

6. ACKNOWLEDGMENTS
Project partners are NXP Semiconductors Austria GmbH

and TU Graz. The project is funded by the Austrian Federal
Ministry for Transport, Innovation, and Technology under
the FIT-IT contract FFG 832171. The authors would like
to thank their project partner NXP Semiconductors Austria
GmbH.

7. REFERENCES
[1] A. Azevedo, A. Kejariwal, A. Veidenbaum, and

A. Nicolau. High Performance Annotation-aware JVM
for Java Cards. In Proceedings of the 5th ACM
international conference on Embedded software,
EMSOFT ’05, pages 52–61, New York, NY, USA,
2005. ACM.

[2] C. Badea, A. Nicolau, and A. V. Veidenbaum. A
Simplified Java Bytecode Compilation System for
Resource-Constrained Embedded Processors. In
Proceedings of the 2007 international conference on
Compilers, architecture, and synthesis for embedded
systems, CASES ’07, pages 218–228, New York, NY,
USA, 2007. ACM.

[3] K. Casey, D. Gregg, M. A. Ertl, and A. Nisbet.
Towards Superinstructions for Java Interpreters. In
Software and Compilers for Embedded Systems, pages
329–343. Springer, 2003.

[4] L. R. Clausen, U. P. Schultz, C. Consel, and
G. Muller. Java Bytecode Compression for low-end
Embedded Systems. ACM Trans. Program. Lang.
Syst., 22(3):471–489, May 2000.

[5] T. Cramer, R. Friedman, T. Miller, D. Seberger,
R. Wilson, and M. Wolczko. Compiling Java Just in
Time. Micro, IEEE, 17(3):36–43, 1997.

[6] H. McGhan and M. O’Connor. PicoJava: A Direct
Execution Engine For Java Bytecode. Computer,
31(10):22–30, 1998.

[7] Oracle. Java Card 3 Paltform. Runtime Environment
Specification, Classic Edition. Version 3.0.4. Oracle,
September 2011.

[8] Oracle. Java Card 3 Paltform. Virtual Machine
Specification, Classic Edition. Version 3.0.4. Oracle,
September 2011.

[9] I. Piumarta and F. Riccardi. Optimizing direct
threaded code by selective inlining. SIGPLAN Not.,
33(5):291–300, May 1998.

[10] T. A. Proebsting. Optimizing an ANSI C Interpreter
with Superoperators. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of
Programming Languages, POPL ’95, pages 322–332,
New York, NY, USA, 1995. ACM.

[11] D. Salomon. Data Compression: The Complete
Reference. Springer-Verlag New York Incorporated,
2004.

[12] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and
T. Nakatani. Overview of the IBM Java Just-in-Time
Compiler. IBM Systems Journal, 39(1):175–193, 2000.

[13] L.-R. Ton, L.-C. Chang, M.-F. Kao, H.-M. Tseng,
S.-S. Shang, R.-L. Ma, D.-C. Wang, and C.-P. Chung.
Instruction Folding in Java Processor. In Parallel and
Distributed Systems, 1997. Proceedings., 1997
International Conference on, pages 138–143, 1997.

[14] M. Zilli, W. Raschke, J. Loinig, R. Weiss, and
C. Steger. On the Dictionary Compression for Java
Card Environment. In Proceedings of the 16th
International Workshop on Software and Compilers
for Embedded Systems, pages 68–76. ACM, 2013.

