
Model-Based Policy Derivation for Usage
Control Enforcement

Prachi Kumari

kumari@cs.tum.edu
Technische Universität München, Germany

Supervisor: Prof. Dr. Alexander Pretschner, TUM

Abstract. Usage control is concerned with how data is used after ac-
cess to it has been granted. In existing usage control enforcements, poli-
cies are assumed to exist; the derivation of implementation-level policies
from end user specification-level policies has not been looked into. The
behaviour users expect from a usage controlled system, may therefore
differ from the actual behaviour. This research fills this gap. The thesis
is that it is possible to adaptively derive implementation-level policies
from specification-level policies in the context of usage control with lim-
ited input from system administrators (and no input from end users for
the derivation of policies) in distributed systems. Policy derivation uses a
model-based refinement of domain-specific abstractions like data and ac-
tion in terms of technical constructs like events and states of systems. A
methodological guidance to achieve this translation in a semi-automated
way is also discussed.

1 Introduction

Usage control [1,2] is an extension of access control that puts conditions on the
future usage of data. At the level of end users, such requirements are expressed
in abstract terms, for example, “picture may not be printed” or “document may
not be distributed”. Several enforcements of usage control exist for various policy
languages [3–7] and at different layers of abstraction in the system [8–11]. These
solutions focus on the enforcement of the policies and do not look into specifica-
tion, translation, conflicts and other policy-related issues. In other words, they
assume the policies to somehow exist and enable the enforcement of them. Such
solutions have a drawback that system implementations of usage control policies
might not always adequately reflect end user requirements. This is due to several
reasons, one of which is the problem of mapping concepts in the end user’s do-
main to technical events and artifacts. For instance, semantics of basic operators
such as “copy” or “delete”, which are fundamental for specifying policies, tend
to vary according to context. For this reason they might be mapped to incom-
plete or incorrect sets of system events in enforcement. This might allow events
that should have been inhibited and might wrongly block those that should have
been allowed. I fill this gap by addressing the translation of specification-level
policies into implementation-level policies in the context of the usage control



2 Prachi Kumari

model introduced in [6] and later extended in [12]. Enforcement of policies and
related guarantees are not in the scope of this work.
The problem. Usage control policies are specified as temporal and cardinality
constraints on user actions on data. In order to translate specification-level poli-
cies, we need, firstly, to define the meaning of actions on data in technical terms.
Secondly, because specification-level policies tend to be formulated in terms of
the future usage of data, we need to transform the constraints to their past
forms [6]; otherwise, the system would need to be able to look into the future.
Thirdly, a well-defined methodology is required to automate the translation.
The solution. To address the first challenge, I propose a domain meta-model
that captures the relationships among different artifacts in any domain, at dif-
ferent levels of technical details (step 1). This meta-model is then combined
with an existing usage control model to formalize policy derivation (step 2).
The second challenge, the translation of constraints, is essentially the problem
of deriving past-time rules. As there is no generic way to formulate this deriva-
tion, this part of policy translation is handled via fixed rules. To go from policies
to event-condition-action rules (that are finally deployed), predefined templates
are used. The methodological aspects of policy derivation are addressed in step
3 which runs parallel to step 1 and 2. Till step 3 however, I do not take into ac-
count the fact that the domain structure changes over time. Though unrealistic,
this assumption is reasonable in order to simplify the problem for initial results.
Step 4, which is also a part of the methodological aspect of the problem, handles
the dynamic domain structure and describes the adaptive policy translation.

The rest of this paper is structured as follows: §2 argues about the relevance of
this work with respect to related work; §3 discusses the general research method-
ology and briefly describes the results published so far. §4 discusses the current
status and the approach to complete the thesis and, §5 concludes.

2 Related Work & Relevance

The goal of this work is to achieve a model-based derivation of policies
in the context of usage control. In general, this aims to fill the gap between
user and system requirements which is a fundamental problem in the area of
Requirements Engineering. There are several approaches in the literature based
on goals, models, clasifications, ontologies etc. that attempt to fill this gap by
distinguishing between the user-level abstractions and the corresponding tech-
nical constructs at system levels. Some researchers have also addressed policy
derivation targeting issues like conflict prevention, where the focus has been on
the refinement of constraints rather than resources, objects or events [13].

Some of the prominent work on policy derivation have used resource hi-
erarchies [14], commitment/obligations analysis [15], goal decomposition [16]
and data classification [17]. In the context of action refinement, in [18], [19]
and [20], ontology-based refinement techniques are described for semi-automated
translation of access control policies. This is similar to my action refinement
model because of the hierarchical structure of the resources considered. How-



Model-Based Policy Derivation for Usage Control Enforcement 3

ever, their policies are refined from the abstract level (users, resources and ap-
plications) to the logical level (user ids, resource addresses and computational
commands like read/write); further technical representations of policy elements
in concrete systems are not considered. [21] also addresses action decomposition
for policy refinement: subjects perform operations on targets (services and de-
vices) which are specified at a higher level. Using a system model and a set of
refinement rules, actions are decomposed and one higher level policy is refined
into multiple policies. In the context of giving meanings to abstract actions,
although secure deletion is covered in [22], there is no further discussion on the
different interpretations of deletion. In contrast to these works, I give a formal
definition of policy refinement along with a generic way of modeling semantics of
actions like “copy” and “delete”. My approach is to classify the abstract and the
concrete elements according to the technical details into different models and
perform transformations on the elements of these models.

In the context of usage control, the only known work on policy derivation
is described in [23]. A major difference with my work however is the absence of
a generic and formal definition of the refinements. Other existing work on usage
control, as mentioned in §2, focus on the enforcement part, derivation of policies
from specification to implementation levels has not been addressed.

Contribution. Firstly, this work provides a formal definition of policy deriva-
tion and a generic way to model high-level actions like copy and delete for secu-
rity policies, specifically, usage control policies. Secondly, along with adding to
the expressiveness of the policy language, this work enables the derivation of se-
curity policies from specification to enforcement, in an automated way with lim-
ited user intervention. I am not aware of any other work that achieves automated
policy derivation and deployment for usage control. Hence the contribution of
this thesis with respect to related work.

3 Research Description & Results

Use Case. I explain the major steps of this work through an example from
the social network domain: Alice wants to protect the pictures she posts in
her profile so that her friends who get access to them should not be able to
make local copies of those pictures. Alice can specify the policy “never copy
photos” using one of the policy templates described in step 3 below. Because
of the domain model and the mappings already provided by an administrator
(step 1), this policy is translated to many technical policies at various levels of
abstraction (step 2) and, sets of implementation-specific executable rules are
generated, deployed and enforced in the machines of Alice’s friends who access
her photos. If her friends update/change the systems installed on their machines,
the adaptive policy translation accommodates these changes (step 4).

Step 1: The Domain Meta-Model. As user actions and data in usage control
policies vary according to the domain context, I address the problem at the
domain-level. In the meta-model, I distinguish between data and user actions



4 Prachi Kumari

(the platform-independent model), their corresponding technical representations
(the platform-specific model) and, the implementations of those technical repre-
sentations (the implementation-specific model). This is analogous to the MDA
viewpoints [24] with a minor difference in the naming of the different levels. The
meanings of all the model elements starting from action and data at the top level
are provided by mapping them to their next lower technical representations. A
detailed description of the meta-model, a high-level translation methodology and
the initial evaluation by example has been published in [25].

Step 2: Policy Derivation. For derivation of policies, the domain meta-model of
step 1 is combined with the extended usage control model of [12]. This is useful
in formalizing the semantics of the meta-model mappings. Additionally, it also
enables another type of action refinement: in terms of the states of the system as
states are already part of the extended usage control model. A few new operators
are also added to the policy language in order to model the semantics of actions
like “copy”. The combined model and the formalization of policy derivation that
includes action refinement and rule-based future to past translation of conditions
has been published in [26].

Step 3: Policy Derivation Methodology. In this step I address the methodological
aspect that consists of the definitions of various models and the specification,
derivation, instantiation and deployment of policies. The specification of policies
is simplified via templates defined by an administrator which are later configured
by the end user. The policy derivation is semi-automated. One of the reasons
that the complete process cannot be automated is that one specification-level
usage control policy can be enforced in different ways and a decision making
on enforcement strategy is required. For example, “never copy photos” can be
enforced by altogether inhibiting a copy action or replacing the original photo
by a predefined one or, allowing the copy with logs. I plan to partially automate
this decision making with templates where majority of cases are covered by the
predefined templates and only “exceptions” are handled by the administrators.
The complete policy derivation methodology is discussed in [25].

Step 4: Adaptive Policy Derivation. To provide a realistic solution to the problem
at hand, we must get rid of the assumption of static domain structures. However,
if the systems evolve over time, we need a way to keep track of all the changes
that take place. Additionally, we must handle cases of pending obligations and
modification of action refinements in the domain. For this, I am working on a
methodological guidance to dynamically accommodate changes in the domain
structure. Intuitively, this includes considering all cases when the domain model
needs to be updated, provide interfaces for systems to register, publish their
technical artifacts and eventually de-register.

Evaluation. The complete research work is planned in two phases: the deriva-
tion of policies for static domains; and the extension of the framework to enable
the adaptive policy derivation. The results of each phase are planned to be eval-
uated at the end of the phase by instantiating the translation of policies for
existing usage control enforcements for two use cases: one, a web-based social



Model-Based Policy Derivation for Usage Control Enforcement 5

network example with Firefox, X11 and OpenBSD; two, a semi-closed enterprise
setup with Thunderbird and Windows 7 OS. The results are to be evaluated
with respect to (i) requirements and (ii) related work answering if this work can
be classified as filling a gap or as improving an existing process or both. Also,
insights on generic semantics of actions are to be discussed.

4 Current Status & Future Work

By the time of submission of this paper, most of the work described in steps 1-3
has already been done for the translation of policies in static domains. This also
includes the investigation of typical specification-level policies in a web-based
social network and the design of templates to be used by end-users to specify
usage control policies. The respective publications at each step are mentioned
in §3. Currently, I am implementing static policy translation for a semi-closed
enterprise setup with Thunderbird and Windows 7. I am also working on the
adaptive semantics of actions and writing the dissertation. As next steps, I will
extend the implementations of policy translation for adaptive cases. I plan to
complete the work described in §3 by Autumn 2014.

5 Conclusion

Through this research, I want to fill the gap between the end user’s under-
standing of usage control policies and the actual enforcement of them in real
systems. For this, I provide a way to define the meanings of abstract constructs
in end-user policies. It is hard to establish a notion of correctness between the
meanings of low-level and high-level policies because the semantics of high-level
propositions is not explicitly defined but rather exists in the user’s mind. Hence
the correctness of the policy derivation is bound by that of the domain model
on which the derivation is based. The contribution comprises both the technical
and the methodological aspects of deriving implementation-level policies from
specification-level policies. It might be contended that the latter are too complex
for end users to understand and specify them at all. In that case, data protection
officers or any other trusted authority might specify these policies for particular
domains. Besides users, service providers would also benefit from this research
because their contracts/terms of use could be audited for compliance.

References

1. A. Pretschner, M. Hilty, and D. Basin. Distributed usage control. Commun. ACM,
49(9):39–44, 2006.

2. J. Park and R. Sandhu. The UCON ABC usage control model. ACM Trans. on
Information and System Security, 7(1):128–174, 2004.

3. R. Iannella (ed.). Open Digital Rights Language v1.1, 2008. http://odrl.net/1.
1/ODRL-11.pdf.

http://odrl.net/1.1/ODRL-11.pdf
http://odrl.net/1.1/ODRL-11.pdf


6 Prachi Kumari

4. Multimedia framework (MPEG-21) – Part 5: Rights Expression Language, 2004.
ISO/IEC standard 21000-5:2004.

5. X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu. A logical specification for
usage control. In Proc. SACMAT, pages 1–10, 2004.

6. M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A policy language
for distributed usage control. In Proc. ESORICS, pages 531–546, 2008.

7. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification
Language. In Proc. POLICY 1995, pages 18–39.

8. M. Harvan and A. Pretschner. State-based Usage Control Enforcement with Data
Flow Tracking using System Call Interposition. In Proc. 3rd Intl. Conf. on Network
and System Security, pages 373–380, 2009.

9. A. Pretschner, M. Buechler, M. Harvan, C. Schaefer, and T. Walter. Usage control
enforcement with data flow tracking for x11. In Proc. STM 2009, pages 124–137.

10. L. Desmet, W. Joosen, F. Massacci, K. Naliuka, P. Philippaerts, F. Piessens,
and D. Vanoverberghe. The S3MS.NET Run Time Monitor: Tool Demonstration.
ENTCS, 253(5):153–159, 2009.

11. P. Kumari, A. Pretschner, J. Peschla, and J. Kuhn. Distributed data usage control
for web applications: a social network implementation. CODASPY ’11.

12. A. Pretschner, E. Lovat, and M. Buechler. Representation-independent data usage
control. In Proc. 6th Intl. Workshop on Data Privacy Management, 2011.

13. Steven Davy, Brendan Jennings, and John Strassner. Policy conflict prevention
via model-driven policy refinement. In Proc DSOM 2006, pages 209–220.

14. L. Su, D. Chadwick, A. Basden, and J. Cunningham. Automated decomposition
of access control policies. In Proc. POLICY 2005, pages 6–8.

15. J. Young. Commitment analysis to operationalize software requirements from pri-
vacy policies. Requirements Engineering, 16:33–46, 2011.

16. A.K. Bandara, E.C. Lupu, J. Moffett, and A. Russo. A goal-based approach to
policy refinement. In Proc. POLICY 2004, pages 229–239.

17. Y.B. Udupi, A. Sahai, and S. Singhal. A classification-based approach to policy
refinement. In Proc. 10th IFIP/IEEE IM, 2007.

18. J. Beatty and J. Hulgan. Experiences with a requirements object model. Lecture
Notes in Comput. Sci., pages 104–117. Springer Berlin / Heidelberg, 2009.

19. A. Guerrero, V.A. Villagrá, J.E. López de Vergara, A. Sánchez-Macián, and
J. Berrocal. Ontology-based policy refinement using swrl rules for management
information definitions in owl. In DSOM, pages 227–232, 2006.

20. B. Aziz, A.E. Arenas, and M. Wilson. Model-based refinement of security policies
in collaborative virtual organisations. ESSoS, pages 1–14, 2011.

21. R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman. Decomposition techniques
for policy refinement. In Proc CNSM ’10, pages 72 –79, 2010.

22. Joel Reardon, David Basin, and Srdjan Capkun. Sok: Secure data deletion. In
Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP ’13, pages
301–315, Washington, DC, USA, 2013. IEEE Computer Society.

23. R. Neisse and J. Doerr. Model-based specification and refinement of usage control
policies. In Proc. PST’2013, pages 169–176.

24. J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical Report omg/03-06-01,
Object Management Group (OMG), June 2003.

25. Prachi Kumari and Alexander Pretschner. Deriving implementation-level policies
for usage control enforcement. CODASPY ’12, pages 83–94. ACM, 2012.

26. Prachi Kumari and Alexander Pretschner. Model-based usage control policy
derivation. In Proc. ESSOS 2013, pages 58–74. 2013.


	Model-Based Policy Derivation for Usage Control Enforcement
	Introduction
	Related Work & Relevance
	Research Description & Results
	Current Status & Future Work
	Conclusion


