
Valentina Ivanova, Tomi Kauppinen, Steffen Lohmann,

Suvodeep Mazumdar, Catia Pesquita, Kai Xu (Eds.)

VISUAL 2014

Proceedings of the International Workshop on

Visualizations and User Interfaces for Knowledge

Engineering and Linked Data Analytics

19th International Conference on Knowledge Engineering and

Knowledge Management (EKAW 2014)

November 24-28, 2014, Linköping, Sweden

Title: Proceedings of the International Workshop on Visualizations and User Interfaces for

Knowledge Engineering and Linked Data Analytics (VISUAL 2014)

Editors: Valentina Ivanova, Tomi Kauppinen, Steffen Lohmann, Suvodeep Mazumdar,

Catia Pesquita, Kai Xu

ISSN: 1613-0073

CEUR Workshop Proceedings

(CEUR-WS.org)

Copyright © 2014 for the individual papers by the papers' authors. Copying permitted for private

and academic purposes. This volume is published and copyrighted by its editors.

Preface

With data continuously generated as a result of daily activities within organizations and new data

sources (sensor streams, linked datasets, etc.) introduced within knowledge management, the growth

of information is unprecedented. Providing knowledge engineers and data analysts with

visualizations and well-designed user interfaces can significantly support the understanding of the

concepts, data instances, and relationships in different domains.

The development of appropriate visualizations and user interfaces is a challenging task, given the

size and complexity of the information that needs to be displayed and the varied backgrounds of the

users. Further challenges emerge from technological developments and diverse application contexts.

There is no “one size fits all” solution but the various use cases demand different visualization and

interaction techniques. Ultimately, providing better visualizations and user interfaces will foster user

engagement and likely lead to higher-quality results in different areas of knowledge engineering and

linked data analytics.

The workshop is divided into two half-day tracks, each focusing on one of the two workshop

themes: The first track addresses visualizations and user interfaces as an integral part of knowledge

engineering. They help to bridge the gap between domain experts and data management, and are

essential to handle the increasing diversity of knowledge that is being modeled in ontologies,

ensuring that it is easily accessible to a wide community. As knowledge-based systems and

ontologies grow in size and complexity, the demand for comprehensive visualization and optimized

interaction also rises.

A number of knowledge visualizations have become available in recent years, with some being

already well-established, particularly in the field of ontology development. In other areas of

knowledge engineering, such as ontology alignment and debugging, although several tools have

recently been developed, few have a user interface, not to mention navigational aids or

comprehensive visualization techniques. Other activities, such as data integration, rely on the

relationships between the concepts of different ontologies, which not only multiplies the number of

objects to be displayed but also compounds the problem with the portrayal of different kinds of

relationships between concepts.

The second track addresses visualizations and user interfaces for linked data analytics. New and

traditional knowledge practices, digitization of organizational processes, high performance

computing and affordable datastores create an unprecedented amount of data as a part of daily

organizational activities, at break-neck speed in a variety of formats. Conventional systems struggle

to capture, store and analyze such dynamic and large scale data continuously generated. On its own,

raw data has little value, but its value and significance is only unleashed when the data is extracted,

processed and interpreted.

Visual Analytics attempts to address this challenge by harmoniously combining the strengths of

human processing and electronic data processing. While semi-automated processes result in

generating visualizations, humans can use visual processing and interactions to quickly identify

trends, patterns and anomalies from large volumes of visual data. The growing challenges of

analyzing big data, social media, linked data, and data streams have created an excellent opportunity

for research in Visual Analytics.

The call for papers attracted high-quality submissions, and each paper was reviewed by at least

three members of the program committee. Based on the reviews, we selected six papers for

presentation at the workshop, which are included in this proceedings volume. We also reserved time

for discussions and a demo session, to encourage dialogue and identify current and future challenges

in the topic areas.

We thank all authors for their contributions and the members of the program committee for their

valuable work in reviewing the submissions. We are also grateful to the workshop chairs Eva

Blomqvist and Valentina Presutti as well as the general chairs Patrick Lambrix and Eero Hyvönen

for their suggestions and support with the organization of this workshop.

November 2014 Valentina Ivanova

Tomi Kauppinen

Steffen Lohmann

Suvodeep Mazumdar

Catia Pesquita

Kai Xu

Program Committee

Marius Brade, TU Dresden

Amparo Cano, The Open University

Isabel Cruz, University of Illinois at Chicago

Aba-Sah Dadzie, University of Birmingham

Anna Lisa Gentile, University of Sheffield

Willem van Hage, SynerScope

Eero Hyvönen, Aalto University & University of Helsinki

Bum Chul Kwon, University of Konstanz

Patrick Lambrix, Linköping University

Enrico Motta, The Open University

Paul Mulholland, The Open University

Stefan Negru, MSD IT Global Innovation Center

Heiko Paulheim, University of Mannheim

Silvio Peroni, University of Bologna & CNR-ISTC

Chris Rooney, Middlesex University

Harald Sack, University of Potsdam

Gem Stapleton, University of Brighton

Margaret-Anne Storey, University of Victoria

Vojtěch Svátek, University of Economics, Prague

Cagatay Turkay, City University London

Stuart Wrigley, University of Sheffield

Leishi Zhang, Middlesex University

Contents

A Vision for Diagrammatic Ontology Engineering
Gem Stapleton, John Howse, Adrienne Bonnington, Jim Burton 1

OntoViBe: An Ontology Visualization Benchmark
Florian Haag, Steffen Lohmann, Stefan Negru, Thomas Ertl 14

What Can the Ontology Describe? Visualizing Local Coverage in PURO
Modeler
Marek Dudáš, Tomáš Hanzal, Vojtěch Svátek 28

User Involvement for Large-Scale Ontology Alignment
Valentina Ivanova, Patrick Lambrix 34

Sensemaking on Wikipedia by Secondary School Students with SynerScope
Willem Robert Van Hage, Fernando Núñez-Serrano, Thomas Ploeger, Jesper
Hoeksema 48

Towards a Visual Annotation Tool for End-User Semantic Content Authoring
Torgeir Lebesbye, Ahmet Soylu 57

A Vision for Diagrammatic Ontology
Engineering

Gem Stapleton1, John Howse1, Adrienne Bonnington2, and Jim Burton1

1 University of Brighton, UK,
{g.e.stapleton,john.howse,j.burton}@brighton.ac.uk,

2 Horizons Regional Council, NZ,
adrienne.bonnington@horizons.govt.nz

Abstract. Ontology engineering is becoming more important, given the
rapid rise of data in this information age. To better understand and rea-
son about this data, ontologies provide us with insight into its structure.
With this comes the involvement of a wide range of stakeholders, such as
information analysts, software engineers, lawyers, and domain experts,
alongside specialist ontology engineers. These specialists are likely to be
adept at using existing approaches to ontology development, typically
description logic or one of its various stylized forms. However, not all
stakeholders can readily access such notations, which often have a very
mathematical style. Many stakeholders, even including fluent ontology
engineers, could benefit from visual approaches to ontology engineering,
provided those approaches are accessible. This paper presents ongoing re-
search into a diagrammatic approach to ontology engineering, outlining
key research advances that are required.

Keywords: ontology engineering, diagrams, visualization

1 Introduction

Ontologies are used as structural frameworks for organizing information and
are a form of knowledge representation. Ontology engineering - the process of
producing ontologies - is becoming increasingly important and ubiquitous in
society as a way of understanding the vast deluge of data that now exists in this
information age. Notable examples include the semantic web, medicine (including
SAPPHIRE for public health, SNOMED-CT for healthcare) and bioinformatics
(e.g. the gene ontology GenNav). Indeed, there are various large repositories of
freely available ontologies such as the Manchester OWL Corpus which contains
over 4500 ontologies including, between them, over 3 million axioms [4], the
Swoogle repository contains over 10000 ontologies [7] and BioPortal contains
nearly 400 ontologies from the biomedical domain [3].

Ontology engineering requires the involvement of domain experts, who need
to be able to communicate domain knowledge to ontology engineers. In turn,
ontology engineers need to verify ontological choices with the domain experts
and amend or refine the ontology based on feedback. Thus, the process of pro-
ducing ontologies is very much bidirectional and depends on cross-disciplinary

1

communication. Barriers to communication can lead to errors, compounding an
already difficult task.

Description logics and OWL are the commonly used (symbolic) notations
for ontology engineering, and the latter is often seen as a stylized form of the
former; the W3C’s most recent specification of the web ontology language, called
OWL 2.0 [5] is a decidable description logic [9]. Description logics promote a hi-
erarchical taxonomy of concepts (called classes in OWL) as a primary modelling
feature. Individuals can be members of concepts. Binary relations over concepts,
called roles in description logic and properties in OWL, are used to relate in-
dividuals and concepts. In particular, individuals, concepts and roles form the
vocabulary over which the axioms that form the ontology are defined. The term
description logic actually refers to a family of logics, with the simplest such logic
of significance being called ALC and perhaps the most practically used being
called SHOIN (D). The latter description logic is supported in the prominent
ontology engineering tool called Protégé [6], which has a strong community of
users including academics, governments and corporations [6].

As well as Protégé, other software tools have been implemented to support
the creation of symbolically specified ontologies. However, when people meet
to develop conceptual structures, including models of knowledge intended to
become ontologies, they sometimes quickly move to sketching images to commu-
nicate their thoughts; see Howse et al. [16]. The inaccessibility of the DL family
of symbolic notations is recognised by Rector et al. [18]: “Understanding the
logical meaning of any description logic or similar formalism is difficult for most
people, and OWL-DL is no exception.”

Warren et al. back this insight up with an empirical study of the most
commonly used OWL constructs, including class subsumption, disjointness and
equivalence alongside All Values From and other role restrictions [24]. They
found that “despite training, users are prone to certain misconceptions” and
they observed that “one-third of [participants] commented on the value of draw-
ing a diagram ... In the context of [description logics], diagrams offer a strategy
to overcome misconceptions and generally support reasoning.” Warren et al.
further recognise that existing visualizations are “chiefly aimed at viewing the
structure of the overall ontology or parts of the ontology rather than the more
cognitively difficult features of Description Logics” and they identify that con-
cept diagrams [16] are the exception. A major aim of our research is to address
this identified shortcoming of symbolic notations by providing a diagrammatic
alternative based on concept diagrams.

This paper presents an overview of the challenges that must be addressed in
order to deliver a practical framework for using concept diagrams for ontology
engineering. Key challenges include

1. devising a novel pattern-driven diagrammatic method for ontology engineer-
ing,

2. producing a heterogeneous logic that allows diagrams and symbols to be
used in combination, and

3. developing techniques for automatically visualizing symbolically ontologies.

A Vision for Diagrammatic Ontology Engineering

2

Throughout this paper we discuss the advances necessary to address these
challenges. To begin, we present a brief overview of the state-of-the-art in on-
tology visualization research. We then discuss the design of concept diagrams,
showing how they reflect known theories of what constitutes a good diagram.
This motivates them as a suitable choice of notation for approaching the chal-
lenges set out above. We recognise the need for extensive empirical evaluations
to ensure that concept diagrams are an accessible alternative to notations such
as description logic, but for space reasons we do not discuss this further.

Our ambition is not only to visualize ontologies, but to enable them to be
engineered and maintained visually, placing diagrams on an equal footing with
traditional approaches. Throughout the paper, we illustrate key points using
a real world ontology concerning cemeteries and burials. Ontology engineers
interested in using concept diagrams are able to download a free practical user
guide from http://www.ontologyengineering.org, under downloads.

2 State-of-the-Art Ontology Visualization Research

Ontology visualization improves access to information by ontology engineers,
domain experts and other end-users. Benefits of visualization include reveal-
ing information that could be somewhat hidden, or unapparent, when using
traditional symbolic notations. Such benefits have long been recognised in the
related area of software engineering, as has the need to ensure that software
models (akin to ontologies) are accessible to as wide a range of stakeholders as
possible [8]. Katifori et al. survey the state-of-the-art in ontology visualization
techniques up to 2007 [17], with examples including OWLViz [2], OntoGraf [1],
and CMap Tools [14]. Like OWLViz, OntoGraf exploits node-link diagrams (also
called graphs) to visualize subsumption relationships between concepts, but does
not depict disjointness relationships. There is potential, therefore, for confusion
to arise because of the partial information given. CMap Tools also exploit node-
link diagrams and, as with OntoGraf, uses directed edges (arrows) to represent
both subsumption relationships and role restrictions. Consequently, the saliency
of these two different types of information is significantly reduced.

An example produced using CMAP Tools can be seen in figure 1. The fact
that each Deceased is also a Person is asserted by the arrow labelled is a between
Deceased and Person. The fact that each Deceased has a memorial of some sort is
asserted by the use of the same syntactic device: the arrow labelled hasMemorial
between Deceased and Memorial. CMaps are also capable of depicting disjointness
information via arrows, though none is shown in figure 1. Thus, node-link-based
visualizations such as CMaps and OntoGraf use arrows for role restrictions,
subsumption and (where these can be depicted) disjointness relationships.

Similarity theory tells us that saliency is an important visual factor and,
in particular, that different syntactic devices should represent different types of
information [11]. This is because when visually searching for particular types
of information, increasing degrees of similarity between the target syntax (rep-

A Vision for Diagrammatic Ontology Engineering

3

Fig. 1. A CMap visualization. Fig. 2. A concept diagram.

resenting the required information) and distracter syntax (representing other
information) leads to an increase in the time taken to perform tasks.

Concept diagrams aid information saliency by avoiding the use of identical
syntactic types for different informational types: dots (or, in general, node-link
diagrams), closed curves, and arrows represent individuals, concepts and roles
respectively. An example concept diagram, expressing similar information to the
CMap visualization, is in figure 2. The placement of (the curve labelled) Deceased
inside Person expresses that Deceased is subsumed by Person. Since Person and
Memorial do not overlap, the diagram also expresses that these two concepts
are disjoint (have no individuals in common). The arrow labelled firstName,
sourced on Person and targeting the unlabelled curve inside Name asserts that
people’s first names are all names (in DL, this is an All Values From restriction:
Person v ∀firstName.Name). Here, the unlabelled curve represents an anonymous
concept containing precisely the names that are people’s first names. The other
two arrows are interpreted in the same way.

One visualization technique which was developed specifically as a diagram-
matic logic equivalent to the simple description logic ALC is a variation on
existential graphs by Dau and Eklund [10]. An example of an existential graph
is given in figure 3 that expresses the All Values From restriction Person v
∀firstName.Name. The existential graph literally translates to ‘it is not the case
that there is a person who has a first name that is not a Name’; curves rep-
resent negation, lines represent anonymous individuals and the written words
correspond to concepts and roles. Existential graphs are not readily accessible
since their syntax is somewhat restrictive: they have the flavour of a minimal
first-order logic with only existential quantification, negation and conjunction.

Fig. 3. An existential graph. Fig. 4. Representing individuals.

A Vision for Diagrammatic Ontology Engineering

4

3 The Design of Concept Diagrams

The design of concept diagrams has been informed by theories as to what con-
stitutes an effective visualization. We have already seen that similarity theory
leads us to use different syntactic items for different kinds of constructions. This
is consistent with the Gestalt principle of good form, which tells us that there
is a tendency for people to group together graphical objects that share some
property, such as colour or shape. In concept diagrams, individuals are visual-
ized using nodes, concepts by closed curves and role restrictions by arrows. We
have already seen the use of curves and arrows; figure 4 shows how individuals
are represented. This diagram asserts that Clifton is a Cemetery but not a Plot,
with the same being true of the other seven individuals. Using different types of
graphical objects ensures the same type of syntax is used to represent the same
type of semantic property. Further, we use shape to partition the curves into two
distinct sets: those which represent named concepts and, respectively, unnamed
concepts are represented using rounded rectangles and, respectively, circles.

Similarly, graphical objects that have different properties will typically be
considered as being in different groups by people. This suggests that different
semantic constructs should be represented by different graphical objects, consis-
tent with similarity theory. Colour could also be used to good effect, if we want
to give visual clues about some semantic commonality or distinctness. We have
adopted the convention, when colouring concept diagrams, that nodes, curves,
and arrows are assigned different colours (in this paper, red, blue and green
respectively). Rectangles, which identify diagram boundaries, are all black.

The way in which concept diagrams use this syntax to make statements has
been carefully considered. In particular, the spatial relationship between curves
reflects the semantic relationships that they convey: concept subsumption, dis-
jointness and intersection are represented by enclosure, disjointness and overlap
of curves respectively. Likewise, the location of nodes either inside or outside of
curves corresponds to the individuals represented being either members of, or not
members of respectively, the corresponding concepts. Properties are directional
relationships which are captured by arrows, indicating direction. These types of
features, embodied in concept diagrams’ design, are known as well-matched [13].

An important feature of concept diagrams is that they are fully formal-
ized [22]. As is standard with visual languages [12, 15], concept diagrams are
formalized using an abstract syntax (sometimes called type syntax). Their se-
mantics are defined using a standard model-theoretic approach, akin to that
used for description logics. Due to space reasons, we refer the reader to [22] for
the full details on the formalization of concept diagrams.

4 Patterns

We believe that concept diagrams are able to readily express commonly occur-
ring symbolic axioms, for which we have devised a set of simple diagrammatic
patterns [23]. Such an approach is thought to aid building ontologies (i.e. defining

A Vision for Diagrammatic Ontology Engineering

5

the axioms), since the patterns will, essentially, be standard templates for com-
monly occurring constraints. However, using a separate diagram for each piece
of information does not allow the exploitation of many important diagrammatic
features. In particular, single diagrams that express rich information can do so
in an accessible way and such diagrams can correspond to many symbolic ax-
ioms (discussed further in section 5). To this end, we demonstrate how simple
diagrammatic patterns can be merged to produce informationally rich diagrams.

4.1 Simple Patterns

A series of simple patterns was presented in [23], expressing concept subsump-
tion and disjointness as well as All Values From and Some Values From role
restrictions. Here, we illustrate eight of these simple patterns.

Figures 5 and 6 show instances of patterns for asserting that individuals are
and, respectively, are not members of concepts. In particular, figure 5 asserts
that M (short for ‘male’) is a Gender whereas figure 6 asserts that M is not an
Occupation. Figures 7 and 8 are instances of the concept subsumption and con-
cept disjointness patterns. The former figure tells us that Deceased is subsumed
by Person whereas the latter expresses that Person and Gender are disjoint.

Fig. 5. Inclusion. Fig. 6. Exclusion.

Fig. 7. Subsumption. Fig. 8. Disjointness.

Turning our attention to roles, figure 9 diagrammatically expresses an All
Values From restriction. In particular, it tells us that under the role gender, Per-
son has all values from the concept Gender. This concept diagram illustrates the
use of multiple boundary rectangles. The spatial relationships between syntactic
items are only of semantic importance within innermost boundary rectangles. In
this case, the two innermost rectangles mean that the diagram does not tell us
that Person and Gender are disjoint (even though this happens to be true, given
the information in figure 8).

A Vision for Diagrammatic Ontology Engineering

6

Fig. 9. All Values From. Fig. 10. Some Values From.

Fig. 11. Role subsumption. Fig. 12. Role disjointness.

The Some Values From pattern used in figure 10 (which is different from the
Some Values From pattern in [23]) illustrates two further features of concept
diagrams: dashed arrows and the use of quantifiers to talk about anonymous
individuals. This concept diagram makes an assertion about all individuals that
are people, using the quantification expression For all Person, p. The dashed
arrow targets an anonymous individual that is a Gender. This dashed arrow tells
us that the individual, p, is related to at least the individual at the target. That
is, the person p has at least one gender.

Patterns for role subsumption and role disjointness are instantiated in fig-
ures 11 and 12 respectively. As with concept subsumption and disjointness, they
also exploit the topological properties of containment and disjointness to express
the required information. For example, figure 11 tells us that, for each thing t,
the set of t’s headstones in subsumed by the set of t’s memorials.

4.2 Merging Patterns

Using one diagram to express a small amount of information may be helpful
when developing ontologies, but sometimes having diagrams containing rich in-
formation can give a better overview of how concepts and roles interact. We
plan to develop methods of merging simple patterns together in order to pro-
duce richer diagrams. Such a merging process is illustrated in figures 13 to 15.
Firstly, figure 8 tells us that Person and Gender are disjoint, meaning that we
can delete the two innermost rectangles from figure 9. The result is in figure 13,
which expresses the same information as the two original patterns. The other
diagrams in figures 14 and 15 are similarly obtained; here the graph labelled M
indicates that M is a Gender where the edge represents disjunction.

Using merging techniques, semantically rich diagrams that display significant
proportions of ontologies can be produced. An example is given in figure 16,

A Vision for Diagrammatic Ontology Engineering

7

Fig. 13. Merging figures 8 and 9.

Fig. 14. Merging figures 13 and 7

Fig. 15. Merging figures 14 and 5

which depicts a large fragment of a cemetery ontology. This diagram depicts 13
inclusion axioms, four subsumption axioms, 709 (binary) disjointness axioms
and 46 all values from axioms. It is an interesting avenue of future work to
determine which patterns can be merged, and how. For example, in figure 16
only axioms whose patterns do not include explicit quantification have been
merged. A key aspect of this work will be to devise heuristics that identify
diagrams that can be merged to produce effective visualizations. The fact that
figure 16 depicts 772 axioms in a single readable diagram indicates that the
notation scales to some reasonable extent; of course, screen real estate presents
a scalability problem for both visual and symbolic notations.

5 Heterogeneous Ontology Engineering

Unlike many stakeholders, expert ontology engineers are fluent in the use of
symbolic logics. The framework for diagrammatic ontology engineering that we
envisage will allow ontologies to be engineered symbolically and diagrammati-
cally and, as a by-product, allow the visualization of already developed symbolic
ontologies. A major challenge is to allow diagrams and symbols to be used in
tandem by providing a seamless integration of the two paradigms. This requires
the two ‘views’ (diagrammatic and symbolic) of the ontology to be kept in sync,
so any update made to the symbolic axioms is reflected diagrammatically and

A Vision for Diagrammatic Ontology Engineering

8

Fig. 16. A large fragment of the cemetery ontology.

A Vision for Diagrammatic Ontology Engineering

9

vice versa; this idea of two views is illustrated using figure 15 and the DL ax-
ioms: Person v ∀gender.Gender, Person u Gender v ⊥, Deceased v Person, and
Gender(M).

Core to solving this challenge is the derivation of effective translations be-
tween diagrammatic axioms and symbolic axioms. It is expected that the pat-
terns described above, with the merging results, will form a basis for translat-
ing symbolically-specified ontologies into concept diagrams. However, significant
advances are required, using patterns as a starting point. Requirements of the
translation methods are likely to include, but not be limited to: visualize the
entire ontology; visualize all concepts; visualize all axioms involving a particular
concept or set of concepts; and visualize all axioms involving a particular role
or set of roles.

Further, we expect to devise translations that permit multiple levels of visu-
alization: top-level overviews, some means of exploring the overview including
zooming and filtering, and drilling down to low-level detail as required. Lastly,
when symbolic axioms are altered, as will often happen during the refinement
and debugging phases of ontology development, the corresponding diagrammatic
axioms must be updated. Translations from concept diagrams to description logic
will also be devised but, again, finding an optimal symbolic set of axioms will
be difficult; as a trivial example, one must choose between the axioms C1 v C2

and C1 v C3 and the single axiom C1 t C2 v C3.

6 Automated Layout

When devising heterogeneous approaches to ontology engineering, it is impor-
tant that one is able to automatically draw – or lay out – concept diagrams.
When automatically drawing diagrams, one starts with the abstract syntax of
the required diagram or diagrams. The problem is to draw effective diagrams,
with the given abstract syntax. There is considerable choice of layout, where
figure 17 shows what we consider to be a bad layout of the diagram shown in
figure 2.

Fig. 17. A bad layout.

Indeed, the problem of drawing multiple diagrams, where common parts of
two or more diagrams should – for effective use – look identical substantially in-
creases the difficulty. This is illustrated in figures 18 and 19. Figure 18 presents, in

A Vision for Diagrammatic Ontology Engineering

10

separate diagrams, some relationships involving the classes Memorial and Head-
stone. The two diagrams have been drawn so that they have a layout that reflects
the structurally similar information represented. However, we expect that the di-
agrams in figure 19 are a more effective pair of visualizations than those figure 18,
since their common parts have the same relative positioning in the plane.

Fig. 18. Some Deceased relationships and some Memorial relationships.

Fig. 19. Memorial relationships redrawn to align with layout of Deceased relationships

The problem of drawing multiple-diagrams when translating between nota-
tions, where many diagrams can arise from symbolic axioms. Whilst the drawing
problem is inherently computationally complex, it is necessary to seek drawing
and layout algorithms that have acceptable run times for most cases that arise
in practice and that produce usable results. Empirical evaluations will be neces-
sary to determine what constitutes an effective layout, informing choices about
diagram topology and geometry.

As a staring point for a general drawing algorithm for concept diagrams, ex-
isting Euler diagram drawing methods such as [19–21] can be extended to simply
add the extra syntax required (giving primacy to the Euler diagram). However,

A Vision for Diagrammatic Ontology Engineering

11

this approach will require extensive modifications to existing algorithms, since
the initially drawn Euler diagram may compromise the layout of the subsequently
drawn syntax. Ideally, the drawing algorithms will consider the entirety of the
to-be-drawn diagram when making layout choices, not assigning primacy to any
one syntactic part. Moreover, general drawing algorithms are computationally
expensive and may not always produce effective layouts. For this reason, we plan
to devise, first, a layout algorithm for classes of concept diagrams that commonly
arise in practice.

Lastly, drawing algorithms are required that incrementally update diagrams
when edits are made to a symbolically specified ontology, to keep the two views in
sync. These edits can include: deleting axioms, adding new axioms or amending
existing axioms (which can be considered as a deletion followed by an addi-
tion). When an axiom is deleted, this can have profound effects on the layout of
diagrams. For instance, deleting a disjointness axiom may require some of the
(non-overlapping) curves in a diagram to be re-routed (so they overlap, thus not
asserting disjointness). Similarly, adding an axiom can also require significant
changes to parts of the diagrams, such as removing an overlap between curves.
When diagrams include a lot of syntax, making such changes to curves is not
necessarily straightforward.

7 Conclusion

Our vision is to produce a fully supported diagrammatic logic for ontology engi-
neering, which includes implementing software to support its use. If successful,
this diagrammatic logic will provide more accessible ways to develop, update and
maintain ontologies. Since the diagrammatic framework that we envisage will be
fully integrated with existing symbolic approaches, expert ontology engineers
will be able to effectively collaborate with stakeholders who prefer a diagram-
matic approach. We view this integration as necessary for the take-up of concept
diagrams generally.

Acknowledgements We are indebted to Rangitikei District Council for pro-
viding us with access to the cemetery data on which the examples in this paper
are based.

References

1. OntoGraf. http://protegewiki.stanford.edu/wiki/OntoGraf (2014), accessed Aug
2014

2. OWLViz. http://protegewiki.stanford.edu/wiki/OWLViz (2014), accessed Aug
2014

3. The BioPortal ontology repository. http://bioportal.bioontology.org/ (2014), ac-
cessed Aug 2014

4. The Manchester OWL Corpus. http://owl.cs.manchester.ac.uk/publications/
(2014), accessed Aug 2014

A Vision for Diagrammatic Ontology Engineering

12

5. The OWL 2 Web Ontology Language. http://www.w3.org/TR/owl2-overview/
(2014), accessed Aug 2014

6. The Protégé web site. http://protege.stanford.edu/ (2014), accessed Aug 2014
7. The Swoogle ontology repository. http://swoogle.umbc.edu/ (2014), accessed Aug

2014
8. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Founda-

tion. IEEE Softw. 20, 36–41 (Sep 2003)
9. Baader, F., Calvanese, D., McGuinness, D., Nadi, D., (eds), P.P.S.: The Description

Logic Handbook. CUP (2003)
10. Dau, F., Eklund, P.: A diagrammatic reasoning system for the description logic

ACL. Journal of Visual Languages and Computing 19(5), 539–573 (2008)
11. Duncan, J., Humphreys, G.W.: Visual search and stimulus similarity. Psychological

review 96(3), 433 (1989)
12. Erwig, M.: Abstract syntax and semantics of visual languages. Journal of Visual

Languages and Computing 9, 461–483 (1998)
13. Gurr, C.: Effective diagrammatic communication: Syntactic, semantic and prag-

matic issues. Journal of Visual Languages and Computing 10(4), 317–342 (1999)
14. Hayes, P., Eskridge, T.C., Mehrotra, M., Bobrovnikoff, D., Reichherzer, T., Saave-

dra, R.: Coe: Tools for collaborative ontology development and reuse. In: Knowl-
edge Capture Conference (K-CAP). vol. 2005 (2005)

15. Howse, J., Molina, F., Shin, S.J., Taylor, J.: Type-syntax and token-syntax in
diagrammatic systems. In: Proceedings FOIS-2001. pp. 174–185. ACM Press (2001)

16. Howse, J., Stapleton, G., Taylor, K., Chapman, P.: Visualizing ontologies: A case
study. In: International Semantic Web Conference. pp. 257–272. Springer (2011)

17. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology
visualization methods a survey. ACM Comput. Surv. 39(4), 10+ (Nov 2007)

18. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R.,
Wang, H., Wroe, C.: OWL Pizzas: Practical Experience of Teaching OWL-DL. In:
Motta, E., Shadbolt, N., Stutt, A., Gibbins, N. (eds.) Engineering Knowledge in
the Age of the Semantic Web, LNCS, vol. 3257, chap. 5, pp. 63–81. Springer (2004)

19. Riche, N., Dwyer, T.: Untangling Euler diagrams. IEEE Transactions on Visual-
ization and Computer Graphics 16(6), 1090–1099 (2010)

20. Simonetto, P.: Visualisation of Overlapping Sets and Clusters with Euler Diagrams.
Ph.D. thesis, Université Bordeaux (2012)

21. Stapleton, G., Flower, J., Rodgers, P., Howse, J.: Automatically drawing Euler
diagrams with circles. Journal of Visual Languages and Computing 23(3), 163–193
(2012)

22. Stapleton, G., Howse, J., Chapman, P., Delaney, A., Burton, J., Oliver, I.: For-
malizing Concept Diagrams. In: Visual Languages and Computing. pp. 182–187.
Knowledge Systems Institute (2013)

23. Stapleton, G., Howse, J., Taylor, K., Delaney, A., Burton, J., Chapman, P.: To-
wards Diagrammatic Ontology Patterns. In: 4th Workshop on Ontology and Se-
mantic Web Patterns. CEUR, Sydney, Australia (Oct 2013)

24. Warren, P., Mulholland, P., Collins, T., Motta, E.: The Usability of Description
Logics. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai,
A. (eds.) The Semantic Web: Trends and Challenges, LNCS, vol. 8465, pp. 550–564.
Springer (2014)

A Vision for Diagrammatic Ontology Engineering

13

OntoViBe: An Ontology Visualization
Benchmark

Florian Haag1, Steffen Lohmann1, Stefan Negru2, and Thomas Ertl1

1Institute for Visualization and Interactive Systems, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany

{Florian.Haag,Steffen.Lohmann,Thomas.Ertl}@vis.uni-stuttgart.de
2Faculty of Computer Science, Alexandru Ioan Cuza University,

Strada General Henri Mathias Berthelot 16, 700483 Iasi, Romania
stefan.negru@info.uaic.ro

Abstract. A variety of ontology visualizations have been presented in
the last couple of years. The features of these visualizations often need
to be tested during their development or for evaluation purposes. How-
ever, in particular for the testing of special concepts and combinations
thereof, it can be difficult to find suitable ontologies. We have developed
OntoViBe, an ontology covering a wide variety of OWL 2 language con-
structs for the purpose of testing ontology visualizations. We describe
the design principles underlying OntoViBe and present the supported
features in coverage matrices. Finally, we load OntoViBe with ontology
visualization tools and point to some noteworthy aspects of the respec-
tive visualizations that become apparent and demonstrate how OntoViBe
can be used for testing ontology visualizations.

Keywords: Ontology, visualization, benchmark, evaluation, OWL.

1 Introduction

Developing and working with ontologies can be supported by ontology visu-
alizations. Over the past years, a number of visualization approaches geared
towards the peculiarities of ontologies have been proposed. Most of the available
approaches use node-link diagrams to depict the graph structure of ontologies,
while some apply other diagram types like treemaps or nested circles [7,9,11].

During the development of such ontology visualizations, testing with a variety
of existing ontologies is required to ensure that the concepts from the underlying
ontology language are adequately represented. The same needs to be done to
determine the features of an ontology visualization and get an impression of how
different ontology language constructs are visually represented. Still, repeatedly
loading a set of ontologies that cover a wide variety of language constructs can
be a tedious task, even more so as the most common constructs tend to appear
over and over in each of the tested ontologies. In order to help that process
with respect to ontologies based on the OWL 2 Web Ontology Language, we
developed OntoViBe, an Ontology Visualization Benchmark.

14

Basically, OntoViBe is an ontology that has been designed to incorporate
a comprehensive set of OWL 2 language constructs and systematic combina-
tions thereof. While it is oriented towards OWL 2, it also includes the concepts
of OWL 1 due to the complete backwards compatibility of the two ontology
languages, i.e., all OWL 1 ontologies are valid OWL 2 ontologies [17].

As opposed to most other benchmarks found in the computing world, On-
toViBe is not meant for testing the scalability of visualizations with respect to
the number of elements contained in ontologies, but rather aims for the scope of
visualizations in terms of supported features. Related to this, it focuses on the
representation of what is usually called the TBox of ontologies (i.e., the classes,
properties, and datatypes), while it does not support the testing of ABox in-
formation (i.e., individuals and data values), which is the focus of most related
work.

2 Related Work

Several benchmarks for ontology tools have been developed in the past. One well-
known benchmark in this area is the Lehigh University Benchmark (LUBM),
published by the SWAT research group of Lehigh University [8]. It consist of
three components: 1) an ontology of moderate size and complexity describing
concepts and relationships from the university domain, 2) a generator for random
and repeatable instance data that can be scaled to an arbitrary size, and 3) a
set of test queries for the instance data as well as performance metrics.

Since the LUBM benchmark is bound to the university domain, the SWAT
research group developed another benchmark that can be tailored to different
domains [18]. It uses a probabilistic model to generate an arbitrary number of
instances based on representative data from the domain in focus. As an example,
the Lehigh BibTeX Benchmark (LBBM) has been created with the probabilistic
model and a BibTex ontology. Another extension of LUBM has been proposed
with the University Ontology Benchmark (UOBM) [12]. UOBM aims to include
the complete set of OWL 1 language constructs and defines two ontologies, one
being compliant with OWL Lite and the other with OWL DL. Furthermore, it
adds several links to the generated instance data and provides related test cases
for reasoners.

All these benchmarks focus primarily on performance, efficiency, and scala-
bility, but do not address the visual representation of ontologies. Furthermore,
they are mainly oriented towards instance data (the ABox), while systematic
combinations of classes, properties, and datatypes (the TBox) are not further
considered. Even though UOBM provides comparatively complete TBox infor-
mation, it has been designed to test OWL reasoners and not ontology visual-
izations. This is also the case for JustBench [4], which uses small and clearly
defined ontology subsets to evaluate the behavior of OWL reasoners.

There are also some benchmarks addressing specific aspects of ontology en-
gineering. A number of datasets and test cases emerged, for instance, as part
of the Ontology Alignment Evaluation Initiative (OAEI) [1]. A related dataset

OntoViBe: An Ontology Visualization Benchmark

15

has been created in the OntoFarm project, which provides a collection of on-
tologies for the task of of testing and comparing different ontology alignment
methods [16]. An extension of the OntoFarm idea is the MultiFarm project,
which offers ontologies translated into different languages with corresponding
alignments between them [13]. Overall, the test cases are intended to evaluate
and compare the quality and performance of matching algorithms, in the latter
case with a special focus on multilingualism.

The W3C Web Ontology Working Group has also developed test cases for
OWL 1 [6] and OWL 2 [15]. They are meant to provide examples for the norma-
tive definition of OWL and can, for instance, be used to perform conformance
checks. However, there is not yet any benchmark particularly addressing the
visualization of ontologies to the best of our knowledge. To close this gap, we
developed OntoViBe, which will be described in the following.

3 Ontology Visualization Benchmark (OntoViBe)

The structure and content of OntoViBe is based on the OWL 2 specifications [17],
with the following requirements:

– A wide variety of OWL 2 language constructs must appear. This includes
constructs such as class definitions or different kinds of properties, as well
as modifiers for these, such as deprecated markers.

– Subgraphs that represent compound concepts must appear. This includes
small groups of classes that are coupled by a particular property.

Moreover, we tried to keep the overall ontology as small as possible in number of
elements. Like this, rather than a mere enumeration of the elements and concepts
supported by OWL 2, chances are that the ontology can be completely displayed
and grasped “at a single glance” and thereby convey a complete impression of
the features supported by the visualization being examined.

OntoViBe was assembled by creating an instance of each of the subgraph
structures. Where possible, classes were reused to keep the ontology small. For
instance, to include the OWL element object property, a subgraph structure
consisting of two classes connected by an object property was added. Hence,
two classes were inserted into the ontology, and an object property that uses
either of the two classes as its domain and range, respectively, was defined.
Furthermore, the element datatype property needed to appear in the ontology. A
compact subgraph structure to express that element consists of a class linked to a
datatype property. As the class does not need to have any specific characteristics
of its own, one of the two previously inserted classes could be reused.

After that, some of the existing elements were modified to cover all elements
and features that we wanted to consider at least once in the ontology. For exam-
ple, some properties were declared as functional or deprecated. For any element
type that still did not appear in the ontology, a minimal number of extra classes
were added (the addition of extra properties and datatypes was not necessary).

OntoViBe: An Ontology Visualization Benchmark

16

Listing 1.1. Concepts based upon set operators are featured in two variants, a small
set with two elements, and a larger one with more elements.

30 this:UnionClass a owl:Class ;
31 owl:unionOf (this:Class1 this:DeprecatedClass).
32

33 this:LargeUnionClass a owl:Class ;
34 owl:unionOf (this:UnionClass other:ImportedClass this:PropertyOwner).

Listing 1.2. OntoViBe defines custom OWL data ranges.

94 this:DivisibleByFiveEnumeration a rdfs:Datatype ;
95 owl:equivalentClass [
96 a rdfs:Datatype ;
97 owl:oneOf (5 10 15 20)
98].
99

100 this:UnionDatatype a rdfs:Datatype ;
101 owl:unionOf (this:DivisibleByTwoEnumeration this:

DivisibleByFiveEnumeration).

Lastly, all elements in the ontology were named in a self-descriptive manner
to allow for an easier interpretation and analysis. For instance, a deprecated
class is called DeprecatedClass, while the larger of the union classes is called
LargeUnionClass.

3.1 Exemplary Parts of OntoViBe

Many of the structures could be added in a straightforward way. In some cases,
further considerations were required to adequately address the more flexible
features of OWL.

Concepts defined based upon set operators (unionOf, intersectionOf, comple-
mentOf) come in two variants. One of them uses a set comprising two elements
as an example for a small set, while the other features more set elements, usually
three (Listing 1.1).

OntoViBe also includes OWL data ranges (Listing 1.2). Visualizations may
or may not represent the exact definitions of these data ranges, but even if they
do not, support for datatype properties with custom data ranges needs to be
tested. Therefore, custom data ranges are used by some datatype properties in
OntoViBe, while common datatypes are used for most other properties (List-
ing 1.3).

In order to check how imported ontology elements are treated, OntoViBe
consists of two components. The core ontology1 contains most of the definitions,
but a few classes, properties, and datatypes are defined in an additional module2,
whose content is imported into the core ontology (Listing 1.4).

1 http://ontovibe.visualdataweb.org/1.0#
2 http://ontovibe.visualdataweb.org/1.0/imported#

OntoViBe: An Ontology Visualization Benchmark

17

Listing 1.3. Both custom and common datatypes are used by properties.

114 this:standardTypeDatatypeProperty a owl:DatatypeProperty ;
115 rdfs:domain this:PropertyOwner ;
116 rdfs:range xsd:integer .
117

118 this:customTypeDatatypeProperty a owl:DatatypeProperty ;
119 rdfs:domain this:PropertyOwner ;
120 rdfs:range this:DivisibleByFiveEnumeration .

Listing 1.4. Some of the definitions are imported from a separate ontology module.

9 <http :// ontovibe.visualdataweb.org/1.0#> a owl:Ontology ;
10 owl:versionIRI <http :// ontovibe.visualdataweb.org/1.0#> ;
11 owl:imports <http :// ontovibe.visualdataweb.org /1.0/ imported#> ;
12 <http :// purl.org/dc/elements /1.1/ title > "Ontology Visualization Benchmark

(OntoViBe)" .

Listing 1.5. Sets of properties connected to the same classes allow for testing whether
a visualization positions such properties in a non-overlapping way. This example shows
two cyclic properties connected to the same class.

173 this:cyclicProperty2 a owl:ReflexiveProperty ;
174 rdfs:domain this:MultiPropertyOwner ;
175 rdfs:range this:MultiPropertyOwner .
176

177 this:cyclicProperty3 a owl:ObjectProperty ;
178 rdfs:domain this:MultiPropertyOwner ;
179 rdfs:range this:MultiPropertyOwner .

In ontology visualizations, sets of properties between the same pair of classes
(or the same class and literal) pose a particular challenge, as they may lead to
overlapping and thus illegible representations. Several of these cases have been
considered in OntoViBe. For instance, Listing 1.5 shows two cyclic properties
(i.e., properties whose domain and range are identical) connected to the same
class.

Finally, a few of the ontology elements are provided with labels, to check
how visualizations cope with multilingual labels that may also contain non-
ASCII characters (Listing 1.6). For all non-ASCII characters, the escaped ASCII
representation is used in the ontology file, as that maximizes the chances for a
good compatibility with the parser reading the file.

3.2 Verification of Coverage and Omissions

To verify that OntoViBe covers most of the features defined by the OWL 2 spec-
ifications, we provide two coverage matrices. Table 1 juxtaposes the elements of
OntoViBe with systematically listed OWL 2 features as described in the spec-
ifications. Table 2 shows which OntoViBe elements use which concrete OWL 2
identifiers, as per the IRIs declared in the OWL 2 Namespace Document [3].

OntoViBe: An Ontology Visualization Benchmark

18

Listing 1.6. Multilingual labels, some of which contain characters from different
scripts, exist for a few of the ontology elements.

135 this:importedTypeDatatypeProperty a owl:DatatypeProperty ;
136 rdfs:domain this:PropertyOwner ;
137 rdfs:range other:DivisibleByThreeEnumeration ;
138 rdfs:label "imported type datatype property"@en ;
139 rdfs:label "propri\u00E9t\u00E9 d’un type de donn\u00E9es import\u00E9"

@fr ;
140 rdfs:label "\ u4E00\u79CD\u5BFC\u5165\u7C7B\u578B\u7684\u6570\u636E\u7C7B\

u578B\u6027\u8D28"@zh -Hans .

The tables also reveal some parts of OWL that are intentionally not included
in OntoViBe:

Cardinalities: OntoViBe defines only a few cases of cardinality constraints for
properties: Structurally, these can be distinguished as no cardinality, car-
dinality on one end of a property relation and cardinality on both ends of
a property relation. Regarding the concrete cardinality constraints applied,
exact cardinality, a minimum cardinality, and a combination of a minimum
and a maximum cardinality are included in OntoViBe. Moreover, one of the
cardinality constraints is qualified and thus applies only to instances of a
specific class. These cases can thus only be used for checking whether cardi-
nalities are displayed at all.
We have opted against integrating all supported cardinalities in OntoViBe,
as the number of possible combinations would be considerable—in particu-
lar, when considering that “special values” such as zero and one might be
displayed in special ways. The total number of properties in OntoViBe would
have to be increased while providing only minor additional insight into the
tested visualization.

Annotations: Informative metadata has no effect on the conceptual structure
of an ontology, which is focused in OntoViBe. For that reason, only the most
prevalent metadata attributes, such as labels or the ontology title, have been
integrated into OntoViBe.

Equivalent constructs: In cases of conceptually equivalent ways to express
statements in OWL, only one way was integrated into OntoViBe. For in-
stance, deprecation of ontology elements can either be expressed by adding
the owl:deprecated attribute or by declaring the element as belonging to
one of the classes owl:DeprecatedClass or owl:DeprecatedProperty.

Deprecated elements: Deprecated language constructs of OWL itself are not
used in OntoViBe. An example is owl:DataRange that has been deprecated
as of OWL 2 in favor of rdfs:Datatype [3].

Moreover, statements referring to particular individuals have not been included,
as OntoViBe focuses on visualizations of the TBox of ontologies.

OntoViBe: An Ontology Visualization Benchmark

19

4 Examples of Application

In the following, we demonstrate the usefulness of OntoViBe by applying four
ontology visualizations to it: SOVA, VOWL, OWLViz, and OntoGraf. The latter
two come with the default installation of the popular ontology editor Protégé [2]
(desktop version 5.0), while the first two are comparatively well-specified with
regard to the visual elements they are based on. Moreover, we analyze the ontol-
ogy documentation generated for OntoViBe by the Live OWL Documentation
Environment (LODE).

We present screenshots of all these ontology visualizations that give an im-
pression of the supported features. We point out peculiarities of the visualiza-
tion approaches and their implementations that become apparent based on On-
toViBe. By this, we would like to provide some examples of how to use OntoViBe
for the qualitative analysis of ontology representations, and to confirm that such
an analysis is feasible by using OntoViBe.

It should be noted that a comprehensive analysis of ontology visualizations
requires additional methods, such as a checklist comprising further evaluation
criteria. These methods are typically not generic but tailored to the type of
visualization. For instance, measures for graph visualizations of ontologies could
include the total number of edges and edge crossings. However, such additional
measures are outside the scope of this work.

4.1 SOVA

Fig. 1. OntoViBe visualized with SOVA.

OntoViBe: An Ontology Visualization Benchmark

20

SOVA is a plugin for Protégé that provides graph visualizations of ontolo-
gies [5]. When displaying OntoViBe in SOVA 0.8.4 (Figure 1), the distinction
of classes, object and datatype properties is instantly visible—though relying
purely on colors. Based on OntoViBe, support for functional, inverse functional,
and symmetric properties can be seen, as they are marked by little brown circles
with short abbreviations for the property characteristics.

Furthermore, some of the limitations of the SOVA implementation can be
identified. PropertyOwner and MultiPropertyOwner are classes, but at the same
time, they are instances of the class PropertyOwnerType. SOVA displays them
twice, once as classes and once as individuals, rather than as a single concept.
Cardinality constraints are displayed as small colored circles, which are easy to
spot—for a combined minimum and maximum cardinality constraint, however,
only the lower bound (the number 5 in the green circle) is shown. Overall, the
visualization contains many edges and edge crossings, which significantly reduce
its readability. A large number of these edges result from the fact that all implicit
subclass relations to owl:Thing are depicted in the SOVA visualization, and that
every piece of information is shown in a separate node.

4.2 VOWL

classToClkkk
1disjointA

1disjointA

1disjointA

Subclassmof

1disjointA

1disjointA

oppositekkk

functionalkkk
1functionalA

cyclicProperty

realProperty
[equivalentDatkkk]

Subclassmof

1disjointA

intersectikkk

1disjointA

cyclicPropkkk

Subclassmof

disjointPropkkk

untypedClkkk

classToUnkkk
1symmetricA

customTykkk

untypedDatkkk

inverseFunkkk
1inversemfunctionalA

functionalkkk
1functionalA

standardTkkk

unionTypekkk

functionalPkkk
1functionalA

rationalProkkk

cyclicPropkkk

complemenkkk

1disjointA

一种导kkk

cyclicPropkkk

classToClkkk
classToClkkk

subproperty

deprecatekkk

equivalentkkk
[dummyProperty]

deprecatekkk

DeprecatedImpkkk
1deprecatedBmexternalA

EquivalentToPkkk
[PropertyOwner]

PlainClass

Intersekkk

Class-

AlsoEquivalenkkk
[SubclassBmEquivalekkk]

DeprecatedClass
1deprecatedA integer

UnionDkkk

FunctionalAnchor

DivisibleByFivkkk

DivisibleByTwkkk

Literal

Literal

disjunktemKlasse

hexBinary

Divisikkk

Thing

rational

Divisikkk

Literal

Thing

Thing

PropertyOwnekkk

MultiSubclass

ImportedClass
1externalA

multiLpropertymkkk

date

Fig. 2. OntoViBe visualized with VOWL.

VOWL, the Visual Notation for OWL Ontologies, was developed as a means
to both obtain a structural overview of OWL ontologies and recognize vari-
ous attributes of ontology elements at a glance [11]. It has been implemented

OntoViBe: An Ontology Visualization Benchmark

21

in two different tools, a plugin for Protégé and a responsive web application.
Figure 2 has been created with version 0.2.15 of the web application (called
WebVOWL [10]) that is available at http://vowl.visualdataweb.org.

Applying VOWL to OntoViBe shows some typical characteristics of VOWL
visualizations, such as equivalent classes being represented as one class with a
double border, other special elements being multiplied in the visualization (e.g.,
owl:Thing), or text in brackets below the labels indicating attributes such as
functional or symmetric. Like in SOVA, custom data ranges are not (yet) com-
pletely shown, as is seen by the respective nodes that simply display the names
of the data ranges (e.g., “Divisib...” for “DivisibleByFiveEnumeration”) but no
more information on how they are defined. Moreover, it becomes apparent that
the WebVOWL implementation tends to route edges between the same pairs of
nodes in a way so as to avoid overlapping labels. As the implicit subclass rela-
tions to owl:Thing are not shown in VOWL, the nodes of the graph visualization
are less connected than in SOVA.

4.3 OWLViz

Fig. 3. OntoViBe visualized with OWLViz.

The OWLViz visualization is aimed at visualizing exclusively the hierarchical
class structure of ontologies. When used to visualize OntoViBe (Figure 3), the
fact that only inheritance (“is-a”) relationships are shown by OWLViz 4.1.2, gets
apparent. Also, it gets clear that equivalence relationships between classes are
expressed as bidirectional inheritance. Other property relations are not visualized
in OWLViz, and also further class or property characteristics are not included,
making OWLViz an ontology visualization with very limited expressiveness.

4.4 OntoGraf

OntoGraf (Figure 4) depicts property relations between classes with colored lines.
Given that OntoViBe includes properties of different types and with different
characteristics, it is notable that these are not displayed by OntoGraf 1.0.1 in
an inherently distinct way. Again, the graph is highly connected, as the implicit
subclass relations to owl:Thing are explicitly shown.

Like in OWLViz (Section 4.3), equivalence between classes is displayed by two
opposite inheritance arrows. Additionally, classes that are equivalent to others

OntoViBe: An Ontology Visualization Benchmark

22

Fig. 4. OntoViBe visualized with OntoGraf.

are highlighted by an equivalence symbol. Other than that, the test shows that
OntoGraf copes well with several cyclic properties applied to the same class.

4.5 LODE

LODE is a documentation generator for ontologies [14]. While LODE is not
a visualization approach, the output of version 1.2 after processing OntoViBe
can be examined in a similar fashion. Features that get apparent in the excerpt
shown in Figure 5 include the transformation of the camel-cased element names
into separate words (e.g., DeprecatedClass becomes deprecated class), and the
lists of superclasses, subclasses, and connected properties per class.

5 Conclusion and Future Work

Based on the OWL 2 specifications, we have defined OntoViBe, a benchmark
ontology for testing ontology visualizations. We did not focus on scalability or
other common benchmark goals, such as execution speed, but rather on feature
completeness and flexibility in terms of combination of elements with regard to
the OWL 2 specifications. Since OWL may further evolve in the future, On-
toViBe needs to keep being updated accordingly.

Features not included in OntoViBe may be considered for future adjuncts
of the ontology. For instance, these could be separate modules that focus on

OntoViBe: An Ontology Visualization Benchmark

23

Fig. 5. Excerpt of the HTML documentation for OntoViBe generated by LODE.

testing specific aspects, such as combinations of cardinality constraints or the
population of OntoViBe with individuals and other ABox information.

Generally, we hope that our experiences from the development of OntoViBe
can benefit other projects, including benchmark data models beyond the task of
ontology visualization.

References

1. Ontology alignment evaluation initiative. http://oaei.ontologymatching.org

2. Protégé ontology editor. http://protege.stanford.edu

3. The OWL 2 schema vocabulary (OWL 2). http://www.w3.org/2002/07/owl.rdf
(2009)

4. Bail, S., Parsia, B., Sattler, U.: JustBench: A framework for OWL benchmarking.
In: Proceedings of the 9th International Semantic Web Conference (ISWC ’10),
pp. 32–47. Springer (2010)

5. Boinski, T., Jaworska, A., Kleczkowski, R., Kunowski, P.: Ontology visualization.
In: Proceedings of the 2nd International Conference on Information Technology
(ICIT ’10). pp. 17–20. IEEE (2010)

6. Carroll, J.J., Roo, J.D.: OWL web ontology language test cases. http://www.w3.
org/TR/owl-test/ (2004)

7. Dudáš, M., Zamazal, O., Svátek, V.: Roadmapping and navigating in the ontology
visualization landscape. In: Proceedings of the 19th International Conference on
Knowledge Engineering and Knowledge Management (EKAW ’14), pp. 137–152.
Springer (2014)

8. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Web Semantics 3(2–3), 158–182 (2005)

9. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontol-
ogy visualization methods – a survey. ACM Computing Surveys 39(4), 10:1–10:43
(2007)

OntoViBe: An Ontology Visualization Benchmark

24

10. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: Web-based visualiza-
tion of ontologies. In: Proceedings of EKAW 2014 Satellite Events. Springer (to
appear)

11. Lohmann, S., Negru, S., Haag, F., Ertl, T.: VOWL 2: User-oriented visualization of
ontologies. In: Proceedings of the 19th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW ’14), pp. 266–281. Springer (2014)

12. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL on-
tology benchmark. In: Proceedings of the 3rd European Semantic Web Conference
(ESWC ’06), pp. 125–139. Springer (2006)

13. Meilicke, C., Garćıa-Castro, R., Freitas, F., Van Hage, W.R., Montiel-Ponsoda,
E., Ribeiro De Azevedo, R., Stuckenschmidt, H., Šváb Zamazal, O., Svátek, V.,
Tamilin, A., Trojahn, C., Wang, S.: MultiFarm: A benchmark for multilingual
ontology matching. Web Semantics 15, 62–68 (2012)

14. Peroni, S., Shotton, D., Vitali, F.: The live OWL documentation environment:
A tool for the automatic generation of ontology documentation. In: Proceedings
of the 18th International Conference on Knowledge Engineering and Knowledge
Management (EKAW ’12). pp. 398–412. Springer (2012)

15. Smith, M., Horrocks, I., Krtzsch, M., Glimm, B.: OWL 2 web ontology language
conformance (second edition). http://www.w3.org/TR/owl2-conformance/ (2012)

16. Šváb, O., Svátek, V., Berka, P., Rak, D., Tomášek, P.: OntoFarm: Towards an
experimental collection of parallel ontologies. In: Poster Track of ISWC 2005 (2005)

17. W3C OWL Working Group: OWL 2 web ontology language document overview
(second edition). http://www.w3.org/TR/owl2-overview/ (2012)

18. Wang, S.Y., Guo, Y., Qasem, A., Heflin, J.: Rapid benchmarking for semantic web
knowledge base systems. In: Proceedings of the 4th International Semantic Web
Conference (ISWC ’06), pp. 758–772. Springer (2005)

OntoViBe: An Ontology Visualization Benchmark

25

Table 1. Coverage table of OntoViBe elements with respect to OWL 2 features.Table 1. Coverage table of OntoViBe elements with respect to OWL 2 features.

“�” indicates that the re-
spective OntoViBe element
represents the feature in
question, while “�” signifies
that the OntoViBe element
is linked to something that
represents the feature.

Namespace prefix a: de-
notes elements of the core
ontology, while elements
from the additional module
are marked with b:.

a

a:PlainClass

a:DeprecatedClass

a:Class1

a:ComplementClass

a:UnionClass

a:LargeUnionClass

a:IntersectionClass

a:LargeIntersectionClass

a:DisjointUnionClass

a:LargeDisjointUnionClass

a:PropertyOwnerType

a:PropertyOwner

a:MultiPropertyOwner

a:DisjointClass

:DisjointClassGroup

a:Subclass

a:MultiSubclass

a:DivisibleByTwoEnumeration

a:DivisibleByFiveEnumeration

a:UnionDatatype

a:IntersectionDatatype

a:ComplementDatatype

a:standardTypeDatatypeProperty

a:untypedDatatypeProperty

a:customTypeDatatypeProperty

a:unionTypeDatatypeProperty

a:intersectionTypeDatatypeProperty

a:complementTypeDatatypeProperty

a:importedTypeDatatypeProperty

a:classToClassProperty

a:classToUntypedClassProperty

a:untypedClassToClassProperty

a:EquivalentToPropertyOwner

a:EquivalentToSubclass

a:AlsoEquivalentToSubclass

a:cyclicProperty

a:cyclicProperty1

:HasSelfRestriction

a:cyclicProperty2

a:cyclicProperty3

a:classToClassProperty1

a:classToClassProperty2

a:deprecatedDatatypeProperty

a:deprecatedObjectProperty

a:dummyProperty

a:oppositeDummyProperty

a:equivalentObjectProperty

a:subproperty

a:realProperty

a:equivalentDataProperty

a:anotherEquivalentDataProperty

a:rationalProperty

a:FunctionalAnchor

a:functionalProperty

a:inverseFunctionalProperty

a:functionalPropertyAsInverse

a:functionalDatatypeProperty

a:disjointProperty

:DisjointPropertyGroup

b

b:ImportedClass

b:DeprecatedImportedClass

b:DivisibleByThreeEnumeration

b:importedObjectPropertyWithRange

b:importedObjectPropertyWithDomain

b:importedDatatypeProperty

b:deprecatedImportedObjectProperty

b:deprecatedImportedDatatypeProperty

ELEMENTS

c
la

s
s
e
s

p
la

in
c
la

s
s

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

d
e
p
r
e
c
a
t
e
d

c
la

s
s

�
�

im
p
o
r
t
e
d

c
la

s
s

�
�

�
�

�
�

�

d
e
p
r
e
c
a
t
e
d
,
im

p
o
r
t
e
d

c
la

s
s

�

c
o
m

p
le

m
e
n
t

c
la

s
s

�

u
n
io

n
c
la

s
s

�
�

�
�

�

in
t
e
r
s
e
c
t
io

n
c
la

s
s

�
�

�
�
�

�

d
is
jo

in
t

u
n
io

n
c
la

s
s

�
�
�

�
�

�

o
w
l:T

h
in

g
�

�
�

�
�

�

o
w
l:N

o
t
h
in

g
d
a
t
a
t
y
p
e
s

e
n
u
m

e
r
a
t
io

n
t
y
p
e

�
�

�
�

u
n
io

n
t
y
p
e

�
�

�

in
t
e
r
s
e
c
t
io

n
t
y
p
e

�
�

�

c
o
m

p
le

m
e
n
t

t
y
p
e

�
�

b
y

e
x
is
t
e
n
t
ia

l
q
u
a
n
t
ifie

r
s

b
y

u
n
iv

e
r
s
a
l
q
u
a
n
t
ifie

r
s

im
p
o
r
t
e
d

t
y
p
e

�
�

lit
e
r
a
ls

u
n
t
y
p
e
d

�

t
y
p
e
d
,
a
s

s
t
a
n
d
a
r
d

t
y
p
e

�
�

�
�

�

t
y
p
e
d
,
a
s

o
w
l:r

a
t
io

n
a
l

�

t
y
p
e
d
,
a
s

o
w
l:r

e
a
l

�
�

�

t
y
p
e
d
,
a
s

c
u
s
t
o
m

t
y
p
e

�
�

t
y
p
e
d
,
a
s

u
n
io

n
t
y
p
e

�
�

t
y
p
e
d
,
a
s

in
t
e
r
s
e
c
t
io

n
t
y
p
e

�
�

t
y
p
e
d
,
a
s

c
o
m

p
le

m
e
n
t

t
y
p
e

�
�

t
y
p
e
d
,
a
s

im
p
o
r
t
e
d

t
y
p
e

�

p
r
o
p
e
r
t
ie

s
s
u
b
p
r
o
p
e
r
t
y

�

p
r
o
p
e
r
t
y

w
it
h
o
u
t

d
o
m

a
in

o
r

r
a
n
g
e

�
�

�
�

�
�

d
a
t
a
t
y
p
e

p
r
o
p
e
r
t
y

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

o
b
je

c
t

p
r
o
p
e
r
t
y

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

s
u
b
c
la

s
s

�
�
�

s
u
b
p
r
o
p
e
r
t
y

�
�

t
y
p
e

p
r
o
p
e
r
t
y

�
�

�

d
is
jo

in
t

p
r
o
p
e
r
t
y

�
�

�
�

�
�

la
b
e
l
p
r
o
p
e
r
t
y

�
�

d
e
p
r
e
c
a
t
e
d

p
r
o
p
e
r
t
y

�
�

�
�

�

im
p
o
r
t
e
d

p
r
o
p
e
r
t
y

�
�

�
�

�

d
e
p
r
e
c
a
t
e
d
,
im

p
o
r
t
e
d

p
r
o
p
e
r
t
y

c
la

s
s

e
q
u
iv

a
le

n
c
e

�
�

�
�

�

p
r
o
p
e
r
t
y

e
q
u
iv

a
le

n
c
e

�
�

�
�

�

in
v
e
r
s
e

p
r
o
p
e
r
t
y

�

fu
n
c
t
io

n
a
l
p
r
o
p
e
r
t
y

�
�

�
�

in
v
e
r
s
e

fu
n
c
t
io

n
a
l
p
r
o
p
e
r
t
y

�
�

r
e
fle

x
iv

e
p
r
o
p
e
r
t
y

�
�

ir
r
e
fle

x
iv

e
p
r
o
p
e
r
t
y

�
�

�

s
y
m

m
e
t
r
ic

p
r
o
p
e
r
t
y

�
�

a
s
y
m

m
e
t
r
ic

p
r
o
p
e
r
t
y

�
�

t
r
a
n
s
it
iv

e
p
r
o
p
e
r
t
y

�

p
r
o
p
e
r
t
y

w
it
h

h
a
s
S
e
lf

r
e
s
t
r
ic

t
io

n
�

�
�

STRUCTURES

c
o
n
n
e
c
t
io

n
s

c
la

s
s

t
o

c
la

s
s

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

c
la

s
s

t
o

lit
e
r
a
l

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

e
q
u
iv

a
le

n
t

c
la

s
s
e
s

�
�

�
�

�

m
o
r
e

t
h
a
n

t
w
o

e
q
u
iv

a
le

n
t

c
la

s
s
e
s

�
�

�

e
q
u
iv

a
le

n
t

p
r
o
p
e
r
t
ie

s
�

�
�

�
�

�

m
o
r
e

t
h
a
n

t
w
o

e
q
u
iv

a
le

n
t

p
r
o
p
e
r
t
ie

s
�

�
�

lin
k

fr
o
m

o
n
e

c
la

s
s

t
o

it
s
e
lf

�
�

�
�

�
�

s
e
v
e
r
a
l
lin

k
s

fr
o
m

o
n
e

c
la

s
s

t
o

it
s
e
lf

�
�

�
�

s
e
v
e
r
a
l
lin

k
s

b
e
t
w
e
e
n

p
a
ir

o
f
c
la

s
s
e
s

�
�

�
�

�
�

�

in
v
e
r
s
e

lin
k
s

b
e
t
w
e
e
n

p
a
ir

o
f
c
la

s
s
e
s

�
�

�
�

�
�

�

c
a
r
d
in

a
lit

y
o
n

o
n
e

s
id

e
o
f
p
r
o
p
e
r
t
y

�
�

�
�

�

c
a
r
d
in

a
lit

y
o
n

b
o
t
h

s
id

e
s

o
f
p
r
o
p
e
r
t
y

�
�

�

q
u
a
lifie

d
c
a
r
d
in

a
lit

y
o
n

p
r
o
p
e
r
t
y

�
�

d
is
jo

in
t

r
e
la

t
io

n
s
h
ip

b
e
t
w
e
e
n

t
w
o

c
la

s
s
e
s

�
�

d
is
jo

in
t

r
e
la

t
io

n
s
h
ip

b
e
t
w
e
e
n

n
c
la

s
s
e
s

�
�

�
�

d
is
jo

in
t

r
e
la

t
io

n
s
h
ip

b
e
t
w
e
e
n

t
w
o

p
r
o
p
e
r
t
ie

s
�

�

d
is
jo

in
t

r
e
la

t
io

n
s
h
ip

b
e
t
w
e
e
n

n
p
r
o
p
e
r
t
ie

s
�

�
�

�
�

�

m
e
t
a
in

fo
r
m

a
t
io

n
s
e
v
e
r
a
l
la

n
g
u
a
g
e
-t

a
g
g
e
d

la
b
e
ls

�

o
n
t
o
lo

g
y

t
it
le

�

o
n
t
o
lo

g
y

IR
I

�
�

o
n
t
o
lo

g
y

v
e
r
s
io

n
�

�

OntoViBe: An Ontology Visualization Benchmark

26

Table 2. Coverage table of OntoViBe elements with respect to OWL 2 identifiers.Table 2. Coverage table of OntoViBe elements with respect to OWL 2 identifiers.

Namespace prefix a: de-
notes elements of the core
ontology, while elements
from the additional module
are marked with b:.

a

a:PlainClass

a:DeprecatedClass

a:Class1

a:ComplementClass

a:UnionClass

a:LargeUnionClass

a:IntersectionClass

a:LargeIntersectionClass

a:DisjointUnionClass

a:LargeDisjointUnionClass

a:PropertyOwnerType

a:PropertyOwner

a:MultiPropertyOwner

a:DisjointClass

:DisjointClassGroup

a:Subclass

a:MultiSubclass

a:DivisibleByTwoEnumeration

a:DivisibleByFiveEnumeration

a:UnionDatatype

a:IntersectionDatatype

a:ComplementDatatype

a:standardTypeDatatypeProperty

a:untypedDatatypeProperty

a:customTypeDatatypeProperty

a:unionTypeDatatypeProperty

a:intersectionTypeDatatypeProperty

a:complementTypeDatatypeProperty

a:importedTypeDatatypeProperty

a:classToClassProperty

a:classToUntypedClassProperty

a:untypedClassToClassProperty

a:EquivalentToPropertyOwner

a:EquivalentToSubclass

a:AlsoEquivalentToSubclass

a:cyclicProperty

a:cyclicProperty1

:HasSelfRestriction

a:cyclicProperty2

a:cyclicProperty3

a:classToClassProperty1

a:classToClassProperty2

a:deprecatedDatatypeProperty

a:deprecatedObjectProperty

a:dummyProperty

a:oppositeDummyProperty

a:equivalentObjectProperty

a:subproperty

a:realProperty

a:equivalentDataProperty

a:anotherEquivalentDataProperty

a:rationalProperty

a:FunctionalAnchor

a:functionalProperty

a:inverseFunctionalProperty

a:functionalPropertyAsInverse

a:functionalDatatypeProperty

a:disjointProperty

:DisjointPropertyGroup

b

b:ImportedClass

b:DeprecatedImportedClass

b:DivisibleByThreeEnumeration

b:importedObjectPropertyWithRange

b:importedObjectPropertyWithDomain

b:importedDatatypeProperty

b:deprecatedImportedObjectProperty

b:deprecatedImportedDatatypeProperty

�
A
llD

is
jo

in
t
C
la

s
s
e
s

�

�
A
llD

is
jo

in
t
P
r
o
p
e
r
t
ie

s
�

A
n
n
o
t
a
t
io

n
A
n
n
o
t
a
t
io

n
P
r
o
p
e
r
t
y

�
A
s
y
m

m
e
t
r
ic

P
r
o
p
e
r
t
y

�

A
x
io

m
�

C
la

s
s

�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

D
a
t
a
R
a
n
g
e

�
D

a
t
a
t
y
p
e
P
r
o
p
e
r
t
y

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

D
e
p
r
e
c
a
t
e
d
C
la

s
s

D
e
p
r
e
c
a
t
e
d
P
r
o
p
e
r
t
y

�
F
u
n
c
t
io

n
a
lP

r
o
p
e
r
t
y

�
�

�

�
In

v
e
r
s
e
F
u
n
c
t
io

n
a
lP

r
o
p
e
r
t
y

�

�
Ir

r
e
fle

x
iv

e
P
r
o
p
e
r
t
y

�

N
a
m

e
d
In

d
iv

id
u
a
l

N
e
g
a
t
iv

e
P
r
o
p
e
r
t
y
A
s
s
e
r
t
io

n
N
o
t
h
in

g
�

O
b
je

c
t
P
r
o
p
e
r
t
y

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
O

n
t
o
lo

g
y

�
�

O
n
t
o
lo

g
y
P
r
o
p
e
r
t
y

�
R
e
fle

x
iv

e
P
r
o
p
e
r
t
y

�

�
R
e
s
t
r
ic

t
io

n
�

�
S
y
m

m
e
t
r
ic

P
r
o
p
e
r
t
y

�

�
T
h
in

g
�

�
T
r
a
n
s
it
iv

e
P
r
o
p
e
r
t
y

�

a
llV

a
lu

e
s
F
r
o
m

a
n
n
o
t
a
t
e
d
P
r
o
p
e
r
t
y

a
n
n
o
t
a
t
e
d
S
o
u
r
c
e

a
n
n
o
t
a
t
e
d
T
a
r
g
e
t

a
s
s
e
r
t
io

n
P
r
o
p
e
r
t
y

b
a
c
k
w
a
r
d
C
o
m

p
a
t
ib

le
W

it
h

b
o
t
t
o
m

D
a
t
a
P
r
o
p
e
r
t
y

b
o
t
t
o
m

O
b
je

c
t
P
r
o
p
e
r
t
y

�
c
a
r
d
in

a
lit

y
�

�

�
c
o
m

p
le

m
e
n
t
O

f
�

�

d
a
t
a
t
y
p
e
C
o
m

p
le

m
e
n
t
O

f
�

d
e
p
r
e
c
a
t
e
d

�
�

�
�

�
�

d
iffe

r
e
n
t
F
r
o
m

�
d
is
jo

in
t
U
n
io

n
O

f
�

�

�
d
is
jo

in
t
W

it
h

�

d
is
t
in

c
t
M

e
m

b
e
r
s

�
e
q
u
iv

a
le

n
t
C
la

s
s

�
�

�
�

�
�

�
e
q
u
iv

a
le

n
t
P
r
o
p
e
r
t
y

�
�

�

h
a
s
K

e
y

�
h
a
s
S
e
lf

�

h
a
s
V
a
lu

e
�

im
p
o
r
t
s

�

in
c
o
m

p
a
t
ib

le
W

it
h

�
in

t
e
r
s
e
c
t
io

n
O

f
�
�

�

�
in

v
e
r
s
e
O

f
�

�
m

a
x
C
a
r
d
in

a
lit

y
�

m
a
x
Q

u
a
lifie

d
C
a
r
d
in

a
lit

y
�

m
e
m

b
e
r
s

�
�

�
m

in
C
a
r
d
in

a
lit

y
�

�
m

in
Q

u
a
lifie

d
C
a
r
d
in

a
lit

y
�

�
o
n
C
la

s
s

�

o
n
D

a
t
a
R
a
n
g
e

o
n
D

a
t
a
t
y
p
e

�
o
n
e
O

f
�

�
�

o
n
P
r
o
p
e
r
t
ie

s
�

o
n
P
r
o
p
e
r
t
y

�
�

�
�

p
r
io

r
V
e
r
s
io

n
p
r
o
p
e
r
t
y
C
h
a
in

A
x
io

m
�

p
r
o
p
e
r
t
y
D

is
jo

in
t
W

it
h

�

q
u
a
lifie

d
C
a
r
d
in

a
lit

y
s
a
m

e
A
s

s
o
m

e
V
a
lu

e
s
F
r
o
m

s
o
u
r
c
e
In

d
iv

id
u
a
l

t
a
r
g
e
t
In

d
iv

id
u
a
l

t
a
r
g
e
t
V
a
lu

e
t
o
p
D

a
t
a
P
r
o
p
e
r
t
y

t
o
p
O

b
je

c
t
P
r
o
p
e
r
t
y

�
u
n
io

n
O

f
�
�

�

v
e
r
s
io

n
In

fo
�

v
e
r
s
io

n
IR

I
�

�

w
it
h
R
e
s
t
r
ic

t
io

n
s

OntoViBe: An Ontology Visualization Benchmark

27

What Can the Ontology Describe?
Visualizing Local Coverage in PURO Modeler

Marek Dudáš, Tomáš Hanzal, and Vojtěch Svátek

University of Economics, Prague,
marek.dudas|xhant00|svatek@vse.cz

Abstract. Ontologies and vocabularies written in OWL are a crucial
part of the semantic web. OWL however allows to model the same part
of reality using different combinations of constructs, constituting ‘mod-
eling styles’. Comparing how different ontologies from a similar domain
cover a specific part of reality might be more difficult when each ontology
uses a different style. PURO, a language for ontological background mod-
els, can serve as mediator, as it allows to create models that are directly
mappable to OWL but overcome its unnatural modeling limits dictated
by description logic. By highlighting the parts of the PURO model cov-
ered by particular ontologies, the ontology coverage comparison can be
visualized. We demonstrate this approach using a simple graphical tool.

1 Introduction

OWL [8], the language of ontologies on the semantic web, allows to model the
same real-world state of affairs using different combinations of language con-
structs, a kind of modeling styles. For example, in a lightweight ontology, data
properties might be preferred, while in a more complex ontology, object proper-
ties might be used for describing the same relationships, allowing to state more
facts about the property value. Current ontology visualization tools (as surveyed
in [4,6]) either display the OWL constructs directly or only offer very lightweight
generalization, as in [5]. When the user wants to compare, in a visual manner,
the local coverage1 of different ontologies, i.e. their capability to express a certain
cluster of relationships, s/he has to first translate the OWL language constructs
into his/her mental model to abstract from the modeling differences.

A possible solution in such a situation is to express the above mentioned
cluster of relationships in a modeling language that allows to abstract from the
modeling style differences and thus make the mental model explicit. We believe
that PURO ontological background models (OBMs) [9] might fit this use case.
We are developing PURO Modeler, a Javascript-based tool for graphical design
of OBMs and ontology local coverage comparison.2 In the paper, we demonstrate
its usage on two examples.

1 We assume that typically only a few entities and relationships are considered from
the analyzed models (e.g., a book, its author and its subject). To differ from the
coverage of the whole domain (e.g., bibliography), we use the term ‘local coverage’.

2 The development version is available at http://protegeserver.cz/puromodeler.

28

Related Research We are unaware of any prior research on visual comparison of
ontology local coverage. Creating and visualizing mappings [3] between the com-
pared ontologies might be useful but it only shows what the ontologies have in
common. There is research on ontology comparison (e.g., [7]), but that is rather
focused on automatic computation of ontology similarity. In our approach the
actual analysis is left to the user; we however propose a method and means for
supportive visualization. The PURO language, designed to be easily mappable
to OWL, is used as interlingua for this purpose. Other modeling languages, e.g.,
entity-relationship diagrams [2], might be considered as alternatives to PURO.
Of those, OntoUML [1], a version of UML for conceptual modeling, is probably
the closest match; an existing tool, OLED, even allows to transform OntoUML
models into OWL fragments. However, the purpose of OntoUML is conceptual
modeling with easy validation and it is not designed for OWL ontology develop-
ment or usage.

2 PURO Ontological Background Models

The long-term vision of the PURO OBM language is to model the real world,
as much as possible, ‘as it is’, while remaining ‘very close’ to OWL. It is only
intended to serve as an aid in ontological engineering, i.e. models created in it
are not supposed to serve (in large scale) as schema for data or input to reason-
ers. The liberation from the constraints dictated by description logic allowed to
drop some constraints of OWL (DL, or even Full) that are often perceived as
unnatural; most notably, meta-concepts (such as classes of classes, or classes as
‘property values’) and arbitrary n-ary relationships can be expressed in PURO.

PURO OBMs are based on two main distinctions: between particulars and
universals and between relationships and objects (hence the PURO acronym:
Particular-Universal, Relationship-Object). In simple terms: universals, i.e. types,
can have instances, while particulars cannot (P-U distinction); objects and rela-
tionships are differed by their identification: objects are entities with their own
identity that can be ‘talked about’ independently, while talking about relation-
ships always ‘brings in’ their participating entities (R-O distinction). There are
six basic terms: B-object (particular object), B-type (type of objects/types),
B-relationship (particular relationship), B-relation (type of relationship), B-
valuation (particular assertion of quantitative value) and B-attribute (type of
valuation).

An OBM consists of named instances of these terms and relationships be-
tween them.3 To say, it captures a concrete situation that serves as basis for
either analyzing existing ontologies or generating new ones.

3 Using PURO Modeler for Local Coverage Comparison

PURO Modeler is basically a graph editor. The user can create an OBM where
the terms are represented by nodes and the relationships between them by edges.

3 The description of the language is simplified, more details are in [10].

What Can the Ontology Describe? Visualizing Local Coverage in PURO Modeler

29

As the OBMs are models of specific real-world situations, such an example cluster
of relationships has to be chosen. After constructing the model,4 or loading an
already existing one (possibly created by another user and shared), the user
can select each node and annotate it with the ontologies that this particular
instance of PURO term is covered by (i.e., the instance can be described with
that ontology). The parts of the graph locally covered by each vocabulary are
then highlighted so that the coverage could be easily compared in one diagram.

3.1 Example 1: A Book and its Issue

Let us say we need to annotate data about books and their various issues (i.e.
their manifestations). We can find several ontologies that might be used for it.
BIBFRAME5 contains class Text as a subclass of Work, class Print as a sub-
class of Instance and the hasInstance property for stating that an instance of
Print is a manifestation of some Text. Figure 1b shows an example of possible
usage of BIBFRAME to describe the book The Semantic Web for the Work-
ing Ontologist and its printed paperback manifestation. FRBR ontology6 (and
its extension Fabio7) distinguishes between four different ‘levels of abstraction’
represented by classes Work, Expression, Manifestation and Item, each with sub-
classes representing more specific types. There is a set of properties that can be
used to link the instances of the classes, as shown in Figure 1c. Schema.org
does not distinguish between the work and its manifestation through class mem-
bership, but contains properties exampleOfWork and workExample that serves
that purpose. It contains the class Book and allows to specify the format of
its instances by linking them to instances of BookFormatType with property
bookFormat (Figure 1a).

For the purposes of the local coverage comparison, we chose the book The
Semantic Web for the Working Ontologist (as an instance of the B-type Text,
which is a subtype of Work) and its 2009 paperback issue (an instance of the B-
type Paperback, a subtype of Book). An OBM of these two entities accompanied
by a B-object representing an exemplar of the paperback issue (as a tangible
item) and the relationships between them is in Figure 2 (exported as a screenshot
from PURO Modeler). The color-coded highlighted parts of the model shows
what of it can be expressed in each vocabulary.

We can see that, e.g., the physical exemplar of the issue can only be de-
scribed with FRBR (which ’implements’ the whole OBM), BIBFRAME allows
to describe an issue of a book, but without specifying its format, and Schema.org
does not allow to say that an instance of work is a Text.

4 The methodology for the OBM modeling is yet to be formalized.
5 http://bibframe.org/vocab
6 http://purl.org/vocab/frbr/core#
7 http://purl.org/spar/fabio/

What Can the Ontology Describe? Visualizing Local Coverage in PURO Modeler

30

Fig. 1. Diagrams showing three different OWL modeling styles of the relationship
between a book and its issue.

Fig. 2. The OBM of the relationship between a book and its issue. The amount of its
coverage in various OWL representations (shown in Figure 1) is highlighted.

What Can the Ontology Describe? Visualizing Local Coverage in PURO Modeler

31

3.2 Example 2: A Dish and a Recipe

In the second example, we compare the local coverage of the relationships be-
tween ingredients, a recipe and a dish produced by it. We analyzed8 three ontolo-
gies: Schema.org, Food Ontology9 and Linked Recipes.10 Their local coverage is
highlighted in Figure 3 (for simplicity, we made up a ’boiled egg recipe’ with only
one ingredient and we did not include all possible B-attributes of the B-objects,
like ’protein content’ of the dish).

We can see that Schema.org allows to describe the recipe in terms of its
origin, ingredients and time needed; the carbohydrates, fat and energy content;
and size of the produced food. It does not allow to model the recipe instructions:
there is only one datatype property for entering a free text description. Linked
Recipes does not allow to describe the characteristics of the recipe product,
but (unlike Schema.org) allows to type it as ’Food’. It can be used to annotate
instructions including their order, and ingredients including their quantity. Food
Ontology can only be used for the (quite detailed) description of the ingredients
and the resulting dish. It does not contain classes/properties relevant for cooking
instructions. None of the three ontologies covers the whole situation as modeled
by the OBM, however, we can see that a combination of two of them might
be sufficient, e.g., using Linked Recipes for recipes in combination with Food
Ontology for more detailed ingredient and dish description.

4 Conclusions and Future Work

We argued that the task of ontology comparison in terms of local coverage is
difficult if the ontologies use different modeling styles. We proposed that using
a more general modeling language for visualizing the local coverage of several
ontologies in one place, abstracting from the OWL modeling differences, might
make the comparison easier, and that the PURO OBM language might be suit-
able for such a use case. As a first step towards the evaluation of the approach we
implemented PURO Modeler: a Javascript application for PURO OBM models
design and visualization of the amount of their local coverage in various ontolo-
gies. We demonstrated the usage of PURO Modeler for local coverage comparison
on two examples, each consisting of an analysis of three ontologies.

The future work might include, besides the full evaluation, building a portal
where the developers could publish visualizations of their ontology/vocabulary
local coverage of typical situations. Such a website could then serve as an addition
or enhancement of the existing Linked Open Vocabularies11 portal. Intense on-
going research also addresses the obvious bottleneck of the approach: the design
of plausible PURO OBMs. It is going to be supported by interactive guidelines
and NLP-based model verbalization widgets.

This research is supported by the VŠE IGA project no. F4/34/2014.

8 See http://tomhanzal.github.io/owl-modeling-styles/#part2 for full analysis.
9 http://data.lirmm.fr/ontologies/food/

10 http://linkedrecipes.org/schema/
11 http://lov.okfn.org/dataset/lov/

What Can the Ontology Describe? Visualizing Local Coverage in PURO Modeler

32

Fig. 3. The OBM of a recipe, ingredients and dish. The amount of its coverage in
various OWL representations is highlighted.

References

1. Albuquerque, A., Guizzardi, G.: An ontological foundation for conceptual modeling
datatypes based on semantic reference spaces. In Research Challenges in Information
Science (RCIS), 2013 IEEE Seventh International Conference, 2013.

2. Chen, P.: The entity-relationship model – toward a unified view of data. In: ACM
Transactions on Database Systems (TODS), 1976, 1.1: 9-36.

3. Choi, N., Song, I. Y., Han, H.: A survey on ontology mapping. ACM Sigmod Record,
35(3), 34-41. 2006.

4. Dudáš, M., Zamazal, O., Svátek, V.: Roadmapping and Navigating in the Ontology
Visualization Landscape. Accepted to EKAW 2014.

5. Hayes, P., et al.: Collaborative knowledge capture in ontologies. In: Proceedings of
the 3rd international conference on Knowledge capture – K-CAP 2005, ACM, 2005.

6. Katifori, A., et al.: Ontology Visualization Methods – A Survey. ACM Comput.
Surv. 39, 10143. 2007.

7. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Knowledge
engineering and knowledge management: Ontologies and the semantic web. Springer
Berlin Heidelberg, 2002. p. 251-263.

8. OWL 2 Web Ontology Language Document Overview. W3C Recommendation, 2009.
9. Svátek, V., et al.: Mapping Structural Design Patterns in OWL to Ontological

Background Models. In: K-CAP 2013, ACM, 2013.
10. Svátek, V., et al.: Metamodeling-Based Coherence Checking of OWL Vocabulary

Background Models. In: OWLED 2013, online http://ceur-ws.org/Vol-1080/

owled2013_6.pdf.

What Can the Ontology Describe? Visualizing Local Coverage in PURO Modeler

33

User Involvement for Large-Scale Ontology Alignment

Valentina Ivanova and Patrick Lambrix

Department of Computer and Information Science and the Swedish e-Science Research Centre
Linköping University, 581 83 Linköping, Sweden

Abstract. Currently one of the challenges for the ontology alignment commu-
nity is the user involvement in the alignment process. At the same time, the focus
of the community has shifted towards large-scale matching which introduces an
additional dimension to this issue. This paper aims to provide a set of require-
ments that foster the user involvement for large-scale ontology alignment tasks
and a state of the art overview.

1 Motivation

The growth of the ontology alignment area in the past ten years has led to the develop-
ment of a number of ontology alignment tools. The progress in the field has been accel-
erated by an annual evaluation initiative (Ontology Alignment Evaluation Initiative—
OAEI) which has provided a discussion forum for developers and a platform for an
annual evaluation of their tools. The number of systems participating in the evaluation
increases each year, yet few provide a user interface and even fewer navigational aids or
complex visualization techniques. Some systems provide scalable ontology alignment
algorithms, however, for achieving high-quality alignments user involvement during the
process is indispensable.

Nearly half of the challenges identified in [24] are directly related to user involve-
ment. These include explanation of matching results to users, fostering the user involve-
ment in the matching process and social and collaborative matching. Another challenge
aims at supporting users’ collaboration by providing infrastructure and support during
all phases of the alignment process. All these challenges can be addressed by providing
user interfaces in combination with suitable visualization techniques.

The demand for user involvement has been recognized by the alignment community
and resulted in the introduction of the OAEI Interactive track in 2013. Quality measures
for evaluation of interactive ontology alignment tools have been proposed in [20]. The
results from the first edition of the track [3] show the benefits from introducing user
interactions (in comparison with the systems’ non-interactive modes) by means of in-
creasing the precision for all (five) participants and the recall for three of them. The test
cases presented in [9] show that simulating user interactions with 30% error rate during
the alignment process has led to the same results as a non-interactive matching.

With the development of the ontology engineering field the size and complexity of
the ontologies, the alignments and, consequently, the matching problems increase as
emphasized in [24] by the large-scale matching evaluation challenge. This trend is de-
manding scalable and (perhaps) novel user interfaces and interactions which is going to
impose even stricter scalability requirements towards the algorithms in order to provide

34

timely response to the users. For instance, graph drawing algorithms should not intro-
duce delays in order for a tool to provide interactive visualization. Scalability, not only
in terms of computation, but also in terms of interaction is one of the crucial features
for the ontology alignment systems according to [9]. According to [22] user interactions
are essential (in the context of large ontologies) for configuring the matching process,
incremental matching and providing feedback to the system regarding the generated
mapping suggestions.

Currently the alignment systems focus on their main task—ontology alignment—
with little or no support for an infrastructure or functionalities which are not directly
related to the alignment process. Coping with the increasing size and complexity of on-
tologies and alignments will require not only comprehensive visualization and user in-
teractions but also supporting functionalities not directly related to them as discussed in
subsection 2.2. For instance, the authors in [6] identify cognitive support requirements
for alignment tools not directly related to the alignment process—interrupting/resuming
the alignment process and providing a feedback on its state. Achieving collaborative
matching, discussed above, is going to need a suitable environment.

This paper aims to provide requirements for ontology alignment tools that encour-
age user involvement for large-scale ontology alignment tasks (section 2). Several on-
tology alignment systems are evaluated in section 3 in connection with the requirements
in section 2. Section 4 provides a discussion and section 5 concludes the paper.

2 Requirements for User Support in Large-Scale Ontology
Alignment

This section presents requirements for ontology alignment systems meant to foster user
engagement for large-scale ontology alignment problems. Subsection 2.1 summarizes
the requirements presented in [6] which address the cognitive support that should be
provided by an alignment system to a user during the alignment process. While they are
essential for every alignment system, the focus in the community has shifted towards
large-scale matching since the time they have been developed. Thus other requirements
to assist the user in managing larger and more complex ontologies and alignments are
in demand (subsection 2.2). They may not always be directly related to visualization
and user interactions but contribute to the development of a complete infrastructure that
supports the users during large-scale alignment tasks. Those requirements are extracted
from existing works and systems and from the authors’ personal experience from the
development of ontology alignment and debugging systems ([13], [12]). Since those
requirements address user involvement as well they sometimes overlap with those in
subsection 2.1 and can be considered complementary to them.

The requirements discussed in this section are crucial for large-scale alignment
tasks, but also beneficial for aligning small and medium size ontologies. While the
alignment of two medium size ontologies is feasible on a single occasion by a single
user even without techniques for reducing user interventions, the alignment of large-
scale ontologies without such techniques would be infeasible.

The authors in [7] identify requirements for supporting user interactions in align-
ment systems which can be seen as a subset of those in subsections 2.1 and 2.2. The

User Involvement for Large-Scale Ontology Alignment

35

Dimensions Requirements
Analysis #3.1: automatic discovery of some mappings;
and #3.2: test mappings by automatically transforming instances between ontologies;
Generation #3.3: support potential interruptions by saving and returning users to given state;
Dimension #3.4: support identification and guidance for resolving conflicts;

#4.1: visual representation of the source and target ontology; (I)
#4.2: representation of a potential mapping describing why it was suggested,

where the terms are in the ontologies, and their context; (I,E)
Repre- #4.3: representation of the verified mappings that describe why the mapping
sentation was accepted, where the terms are in the ontologies, and their context; (I,E)
Dimension #4.4: identify visually candidate-heavy regions; (I)

#4.5: indicate possible start points for the user; (E)
#4.6: progress feedback on the overall mapping process; (E)
#4.7: feedback explaining how the tool determined a potential mapping; (E)

Analysis #1.1: ontology exploration and manual creation of mappings; (I,M)
and tooling for the creation of temporary mappings; (M)
Decision #1.2: method for the user to accept/reject a suggested mapping; (M)
Making #1.3: access to full definitions of ontology terms; (I)
Dimension #1.4: show the context of a term when a user is inspecting a suggestion; (I)

#2.1: interactive access to source and target ontologies; (I)
Interaction #2.2: interactive navigation and allow the user to accept/reject suggestions; (I,M)
Dimension #2.3: interactive navigation and removal of verified mappings; (I,M)

#2.4: searching and filtering the ontologies and mappings; (I)
#2.5: adding details on verified mappings and manually create mappings; (M)

Table 1. Cognitive support requirements adapted from [6].

same applies for those in [5] which lists requirements for alignment editors and visu-
alizers relevant for individual and collaborative matching and explanation of the align-
ments.

2.1 Cognitive Support Requirements

The requirements identified in [6] are based on research in the area of cognitive theories
and a small user study with four participants. They are grouped in four conceptual
dimensions (table 1).

The Analysis and Generation dimension includes functions for automatic compu-
tation and trial execution of mapping suggestions (potential mappings), inconsistency
detection/resolution and services for interrupting/resuming the alignment process. The
mappings and mapping suggestions together with explanations why/how they are sug-
gested/accepted are visualized by services in the Representation dimension. Other func-
tions include interactions for overview and exploration of the ontologies and alignments
and feedback for the state of the process. Requirements 1, 2 and 3 from [7] and the first
and the third requirements in [5] focus on similar services. The Analysis and Decision
Making dimension considers the users’ internal decision making processes and involves
exploration of the ontology terms and their context during the process of discovering

User Involvement for Large-Scale Ontology Alignment

36

and creating (temporary) mappings, and validating mapping suggestions. During the In-
teraction dimension the user interacts with the system through its exploration, filtering
and searching services in order to materialize his/her decisions by creating mappings
and accepting/rejecting mapping suggestions. Requirements 4, 5 and 6 from [7] cover
similar interactions. Such requirements are also identified in [5]. The requirements for
the Analysis and Decision Making dimension can be considered to utilize the function-
alities represented by the requirements in the Interaction dimension.

The requirements provided by the Representation and Interaction dimensions are
involved in the human-system interaction and can be roughly separated in the following
three categories—manipulation (M), inspection (I) and explanatory (E) requirements.
Those in the first category include actions for transforming the mapping suggestions in
an alignment—accept/reject mapping suggestions, add metadata and manually create
mappings, etc. Similar functionalities are needed for the ontologies (#5.0), as well, since
the user may need to, for instance, introduce a concept in order to provide more accurate
mappings, as described in [16] as well. Those in the second category cover a broad set
of actions for inspecting the ontologies and alignments—exploring the ontologies, map-
pings and mapping suggestions, search and filter by various criteria, zoom, overview,
etc. The third category includes services for presenting information to the user, for in-
stance, reasons to suggest/accept a mapping suggestion, how the tool has calculated it,
hinting at possible starting points and showing the current state of the process.

2.2 Ontology Alignment in Large Scale

Various requirements arise from the tendency of increasing the size and complexity
of the ontologies, alignments and alignment problems. They need to be supported by
scalable visualization and interaction techniques as well. For instance, an introduction
of a debugging phase during the alignment process (discussed below) will demand ad-
equate presentation of the defects and their causes which is a problem of the same
scale as the main problem discussed in this paper. This subsection does not discuss
the techniques for large-scale matching identified in [22] or matching with background
knowledge since they are not directly related to user involvement. However some of
those techniques affect the interactivity of the systems and thus indirectly influence the
user involvement.

Aligning large and complex ontologies cannot be handled on a single occasion.
Thus the user should be able to suspend the process, preserve its state and resume it at
another point in time (#3.3). Such interruptions of the alignment process (#5.1) may
take place during different stages, for instance, during the computation of mapping sug-
gestions, during their validation, etc. At the time of interruption the system may provide
partial results which can be reused when the alignment process has been resumed. The
SAMBO system [13] implements such approach introducing interruptible computation,
validation and recommendation sessions. Requirement 9 in [7] can be seen as similar,
but without saving and reusing already validated suggestions.

Another strategy to deal with large-scale tasks is to divide them into smaller tasks
(#5.2). This can be achieved by clustering algorithms or grouping heuristics. Smaller
problems can be more easily managed by single users and devices with limited re-
sources. Requirement 8 from [7] proposes distributing parts of the task among several

User Involvement for Large-Scale Ontology Alignment

37

users. The authors of AlViz [15] highlight that clustering the graph improves the interac-
tivity of the program (by reducing the size of the problem). Clustering of the ontologies
and alignments will allow reusing visualization techniques that work for smaller prob-
lems. A fragment-based strategy is implemented in [4] where the authors also note that
not all fragments in one schema would have corresponding fragments in another.

In the context of large-scale matching it is not feasible for a user to validate all map-
ping suggestions generated by a system, i.e., tools’ developers should aim at reducing
unnecessary user interventions (#5.3). The authors in [20] define a measure for eval-
uating interactive matching tools based on the number and type of user interventions
in connection with the achieved F-measure. LogMap2 [9] only requires user validation
for problematic suggestions. In [13] the authors demonstrate that the session-based ap-
proach can reduce the unnecessary user interventions by utilizing the knowledge from
previously validated suggestions. GOMMA [11] can reuse mappings between older
ontology versions in order to match their newer versions. PROMPT [17] logs the op-
erations performed for merging/aligning two ontologies and can automatically reap-
ply them if needed. Reducing the user interventions, but at the same time effectively
combining manual validation with automatic computations are two of the challenges
identified in [19]. The authors in [2] and [23] discuss criteria for selecting mapping
suggestions that are shown to the user and strategies for user feedback propagation in
order to reduce the user-system interactions.

Matching large ontologies is a lengthy and demanding task for a single user. It can
be relaxed by involving several users who can discuss together and decide on problem-
atic mappings in a collaborative environment. The social and collaborative matching
(#5.4) is still a challenge for the alignment community [24]. Requirement 7 in [7] ad-
dresses this open opportunity. It has potential to reduce the load of a single user and the
number of incorrect mappings by building on the collective knowledge of a number of
people who can review mappings created by other participants [5]. One of the quality
aspects for ontology alignment discussed in [16] is the social aspect—it can be achieved
by means of collaboration and information visualization techniques.

Another challenge insufficiently addressed [24] by the alignment community is re-
lated to the environment (#5.5) where such collaboration could happen. Apart from
aligning ontologies it should also support a variety of functions for managing align-
ments such as storing/editing/retrieving/sharing alignments as explained in [5]. Accom-
modating different versions of alignments, for instance, would require an entire infras-
tructure on its own and probably a permanent storage similarly to GOMMA/COMA++.
The environment should support services for communication between its members like
discussion lists, wikis, subscriptions/notifications, messages, annotations, etc.

Providing recommendations (#5.6) is another approach to support the user dur-
ing the decision making process. Such recommendations can be based on external re-
sources, previous user actions, based on other users’ actions (in a collaborative environ-
ment), etc. They can be present at each point user intervention is needed—choosing an
initial matcher configuration [1], validating mapping suggestions [12], choosing a start-
ing point, etc. The authors in [13] implement recommendation sessions which match
small parts of the selected ontologies in order to recommend the best settings for match-
ing them. Different weights can be assigned to the recommendations depending on their

User Involvement for Large-Scale Ontology Alignment

38

sources. Suitable ranking/sorting strategies could be applied to present them in a par-
ticular order.

The outcome of the applications that consume alignments is directly dependent
on the quality of the alignments. A direct step towards improving the quality of the
alignments and, consequently, the results from such applications is an introduction of
a debugging step during the alignment process (#5.7). It was shown in [8] that a
domain expert has changed his decisions regarding mappings he had manually created,
after an interaction with a debugging system. Most of the alignments produced in the
Anatomy, LargeBio and even Conference (which deals with medium size ontologies)
tracks in OAEI 2013 [3] are incoherent which questions the quality of the results of
the semantically-enabled applications utilizing them. According to [9] reasoning-based
error diagnosis is one of the three essential features for alignment systems. Almost half
of the quality aspects for ontology alignment defined in [16] address lack of correctness
in the alignment in terms of syntactic, semantic and taxonomic aspects. The trends to-
ward increasing the size and complexity of the alignment problem demand debugging
techniques more than ever. In this context a debugging module should be present in
every alignment system. The authors in [10] show that repairing alignments is feasible
at runtime and improves their logical coherence when (approximate) mapping repair-
ing techniques are applied. Since ontology debugging presents considerable cognitive
complexity (due to the, potentially, long chains of entailments) adequate visual support
to aid user interactions is a necessity.

In the field of ontology debugging there is already ongoing work that addresses
explanation of defects to users. These techniques could be borrowed and applied in the
ontology alignment to address the challenge for explaining the matching results to
the users (#4.2, #4.7). The authors in [19] specify generating human understandable
explanations for the mappings as a challenge as well. The authors in [1] implement
advanced interfaces for configuring the matching process (#5.8) which provide the
users with insights of the process and contribute to the understanding of the matching
results.

Trial execution of mappings (#5.9.1) (what-if) mentioned above in the context of
confirming user’s expectations (#3.2) will be of even greater help during the debugging
and alignment by aiding the user in the propagation of the consequences of his/her
actions. Additionally support for temporary decisions (#5.9.2) in general, including
temporary mappings (#1.1), list of performed actions and undo/redo actions, will help
the user to explore the effects of his/her actions (and reduce the cognitive load).

3 Overview of Ontology Alignment Systems

The systems in this literature study are selected because they have mature interfaces,
often appear in user interface evaluations and accommodate features addressing the
alignment of large ontologies.

3.1 AlViz

AlViz [15] is a Protégé plug-in which uses the linking and brushing paradigm for con-
necting multiple views of the same data where navigation in one of the views changes

User Involvement for Large-Scale Ontology Alignment

39

Requirements AlViz SAMBO PROMPT CogZ RepOSE AML COMA
m

an
ip

ul
at

e #2.5;1.1 create mapping manually X(*) X X X + - X(*)
#2.2;1.2 accept/reject suggestion X(*) X X X X - X(*)
#2.5 add metadata to mapping - X X X - - -
#2.3 move a mapping to list - X X X + - -
#5.0 ontology X - X X - - -

in
sp

ec
t

#2.2;1.4 mapping suggestions X(*) X X X + - X(*)
#2.3 mappings X(*) X X X X X X(*)
#4.4 heavy-regions X - - X - - +
#2.4 filter/search -/X -/X -/- X/X -/- +/X -/-
#4.1/2/3;2.1;1.1/3 ontologies X X X X X + X

ex
pl

ai
n

#4.2/7;5.8 why/how suggested + + X X + + +
#4.3 why accepted - X X X - - -
#4.5 starting point + - - + X - +
#4.6 process state X + + X + - +

la
rg

e-
sc

al
e

#5.1;3.3 sessions + X + + + - +
#5.2 clustering X + - X X X X
#5.3 reduce user interventions - + + - - - -
#5.4 collaboration - - - - - - -
#5.5 environment - + + - - + +
#5.6 recommend/rank - X + + X - X
#5.7;3.4 debugging - X X X X X -
#5.8;4.2/7 matchers configuration - X - - X X X
#5.9.1;3.2 trial execution - - - - - - -
#5.9.2;1.1 temporary decisions X + + X - - -

Table 2. Requirements to support user involvement in large-scale matching tasks. (supported(X);
partly supported(+); special case, details in the text(*); not supported(-))

the representation in the other. During the alignment process each ontology is repre-
sented as a pair of views—a tree and a small world graph—i.e., four in total. The trees
provide well-known editing and exploratory functionalities. There is no clear distinction
between mappings and mapping suggestions (X(*)). Mappings are edited, accepted and
rejected in the tree views by toolbar buttons for defining the type of mappings. The small
world graphs represent an ontology as a graph where the nodes (represent the entities)
are clustered according to a selected level of detail. The size of the clusters corresponds
to the number of nodes in them. The edges between the clusters represent the selected
relation (mutual property). Intuitive exploration is achieved by the linking and brushing
technique, adjustable level of details (by means of a slider) and selecting a relationship
to present (from a drop-down list). The small world graphs provide and overview of
the ontologies where color-coding provides an overview of the similar clusters (in the
two ontologies) and the colors of the clusters are inherited from the underlying nodes
according to one (out of three) strategy. Tooltips and labels can be switched on and off.

Different sessions are not directly supported, but simple interruption and resumption
of the alignment process can be achieved by saving and loading the input file which

User Involvement for Large-Scale Ontology Alignment

40

Fig. 1. SAMBO [13].

contains the mappings. Temporary decisions for questionable mappings are supported
by a tracking button. Undo/redo buttons and history of activities are also provided.

3.2 SAMBO

SAMBO [13] (based on [14]) is an ontology alignment system that addresses the chal-
lenges related to user involvement by introducing interruptible sessions—computation,
validation and recommendation sessions. The computation session computes mapping
suggestions between two ontologies and can utilize results from previous validation and
recommendation sessions. The user validates the mapping suggestions during the vali-
dation session. A reasoner may be used during both sessions to check the consistency
of the (validated) mapping suggestions in connection with the ontologies. Both sessions
can provide partial results upon interruption thus the validation session may start before
the end of the computation and not all of the mapping suggestions need to be validated
at once. The recommendation session matches small parts of the two ontologies of-
fline using an oracle or previous validation decisions if available and employs different
(combination of) algorithms and filtering strategies in order to recommend the best fu-
ture settings for matching the two ontologies. The results of the sessions are stored in a
database. The user may choose to start a new or to resume a saved session.

The user interface allows selection of matchers, their weights and strategies for com-
bination. Two alternating modes are available during the validation—suggestion (shown
in Figure 1) and manual mode. All suggestions for a concept are shown at once during
the suggestion mode. The user can give a name for and annotate a mapping/concept.
The user can accept/reject a suggestion by pressing a dedicated button. Both ontologies
are shown as indented trees during the manual mode and the user can create a mapping
by selecting a concept in each tree. A search function is implemented for locating a
term of interest. Lists with the previous accepted/rejected and remaining suggestions
are available. An undo button is available as well.

User Involvement for Large-Scale Ontology Alignment

41

Fig. 2. RepOSE [12].

3.3 RepOSE

RepOSE [12], shown in Figure 2, is based on an integrated taxonomy alignment and
debugging framework. The system can be seen as an ontology alignment system with a
debugging component for detecting and repairing modelling defects in taxonomy net-
works (missing and wrong subsumption relations/mappings). The alignment process
goes through three phases—generation of mapping suggestion, validation and repair-
ing. Separate panels are provided for the validation and repairing phases to guide the
user through them. Possible starting points, recommendations and ranking strategies
are available during both phases. The alignment process can be configured by selecting
matchers, their weights and the threshold for filtering the mapping suggestions. The
algorithm for detecting defects in the debugging component can be seen as a structure-
based alignment algorithm—as such it is configured separately. The suggestions com-
puted from it are logically derivable and they are presented to the user together with
their derivation paths. The rest are only presented with their confidence values.

During the validation phase the mapping suggestions are shown as graphs in groups
where the last group in the list contains the most suggestions. The nodes in the graph
represent concepts and the edges—relations and mappings. The nodes are color-coded
according to their hosting ontology and the edges—the state of the represented re-
lations/ mappings—mapping suggestions, asserted/added/removed relations/mappings.
When the user accepts/rejects a suggestion the corresponding edge is labeled accord-
ingly and it is moved to the list for repairing. The user can validate only a portion of the
suggestions and start the repairing phase. The user can see each pair of ontologies and
their current alignment and the entire ontology network upon request. During the repair-
ing phase the system provides alternative repairing actions instead of directly adding the
validated mapping. Logically derivable wrong mappings can be also repaired.

User Involvement for Large-Scale Ontology Alignment

42

The system checks for contradictions after each group of suggestions is validated
and after a repairing action and warns the user if such are found. There is no indication
for the process state but it can be observed by reflecting on the validation and repairing
phases. Sessions are only supported through saving/loading the ontologies and map-
pings, but the suggestions are not preserved and have to be computed from scratch.

3.4 AML

AML has been designed based on AgreementMaker with the purpose of matching very
large ontologies. Its user interface is presented in [21]. The working area in AML is
divided into two panels—a Resource Panel, on the top, provides a summary of the
ontologies, alignment, etc., and a Mapping Viewer where modules extracted from the
ontologies and alignment are represented as graphs. Instead of showing the entire net-
work, the visualization is focused on a single mapping where the graph depicts the
mapping, up to five (default is two) levels of ascending/descending concepts of the con-
cepts in the mapping and other mappings between the displayed concepts (if any). The
nodes and edges are labeled with the names of the classes and relations (subsumptions
are not labeled), respectively, and colored depending on the ontology they belong to.
The mappings are labeled with their confidence values and their directions are denoted
with arrows. Three options are provided for navigating through the mappings—list of
mappings, previous/next buttons and search (in combination with auto-complete). The
user can configure the alignment process by selecting a matcher, its threshold, cardinal-
ity for the alignment and sources of background knowledge. The final alignment can be
repaired and evaluated against a reference alignment.

3.5 COMA++

COMA++ is an alignment system for matching large schemata and ontologies [1].
The system consists of five components accessible through a user interface [4]. The
repository stores the ontologies and alignments. The Workspace tab provides access
to the schema and mapping pools which manage the ontologies and alignments in
memory. Other operations involving alignments, such as merging schema and align-
ments, add/remove mappings in edit mode, comparing (evaluating an alignment against
a reference alignment using different quality measures) and diff/intersect (determin-
ing the different/shared mappings between two alignments) are provided as well. The
Match menu provides a variety of options for configuring the matching process through
the match customizer—creating/modifying/deleting/resetting matchers and strategies,
showing the dependencies between them and saving them (into the repository) for future
use. The matching process is performed in the execution engine. Some of the strategies
support iterations, where the user can modify the output prior to the execution of the
next iteration. The toolbar has buttons for configuring/running/interrupting the process,
step-by-step execution and editing mappings. The ontologies are shown side-by-side
as unmodifiable indented trees and the mappings between them are represented as lines
color-coded depending on their confidence values. There is no clear distinction between
mappings and mapping suggestions (X(*)). The highest confidence value is assigned to
the manually created mappings. The regions with many mappings can be observed by

User Involvement for Large-Scale Ontology Alignment

43

Fig. 3. The latest version of CogZ.

the high number of lines between them. The process state can be observed by the pre-
dominant color of the mappings. Sessions are supported as in RepOSE.

3.6 PROMPT

The PROMPT suite [18] is a set of Protégé plug-ins for managing ontologies and their
versions: iPROMPT merges and aligns ontologies interactively employing the local
context of the concepts; AnchorPROMPT computes additional mapping suggestions
acting on a larger scale than iPROMPT; PROMPTDiff performs structural comparison
between different versions of an ontology and PROMPTFactor extracts an independent
modules from an ontology. These plug-ins share interface components, data structures,
some algorithms and heuristics.

The first version of PROMPT, [17], shows the source and target ontologies as in-
dented trees on both sides of the screen where the mapping suggestions are presented as
a list of pairs between them. An explanation for why this pair is a mapping suggestion
is provided to the user. The user can examine the suggestions from the list, save those
that are correct or create new mappings. Upon user action the tool detects conflicts, if
any it suggests solutions and generates new suggestions in the area the latest operation
has happened. The suggestions/conflicts are resorted to first list those in the area of the
latest operation. PROMPT can log operations and execute them again if needed. The
process state can be observed indirectly.

User Involvement for Large-Scale Ontology Alignment

44

3.7 CogZ

CogZ, shown in Figure 3, addresses the cognitive support requirements from [6]. It is a
visualization plug-in which extends the PROMPT user interface and reuses the rest of
its components.

The first version of CogZ, Jambaprompt, includes a graph visualization of the neigh-
borhood of each of the concepts in a mapping suggestion—direct super and subclasses.
Each of the classes can be expanded thus providing an incremental navigation. The Jam-
baprompt plug-in also supports filtering of the mapping suggestions by various criteria.
It is extended in [6] to provide an overview of the ontologies and mappings by employ-
ing treemaps. The user can identify potentially ’heavy regions’ using the treemaps in
combination with color-coding. Pie-charts provide additional details regarding already
mapped concepts and mapping suggestions. Temporary mappings, different from the
mapping suggestions, are introduced in CogZ to relieve the users’ memory and help
them to write down potential solutions. Similarly to COMA++, the mappings between
the ontologies (shown as trees) are presented with lines which can be annotated to pro-
vide additional details. CogZ provides semantic zoom and interactive search.

4 Discussion

Table 2 shows the systems’ support for the requirements identified in section 2. The ma-
nipulation and inspection requirements are almost entirely supported by the first four
systems. However to be able to draw conclusions for the level of usability of the differ-
ent visualization approaches, a user study is needed. It is worth noting that COMA++
and AlViz do not distinguish between mappings and mapping suggestions, a function-
ality that may help the users to keep track which correspondences have been already
visited. The least supported category from the requirements in [6] is the one that as-
sists the users most in understanding the reasons for suggesting/accepting mapping
suggestions—while PROMPT and CogZ provide a textual description to explain the
origin of mapping suggestions, the other tools only present a confidence value (which
may (not) be enough depending on how familiar the domain expert already is with
the ontology alignment field). Other requirements in this category include providing a
starting point and a state of the process. Even though rarely supported they can often be
observed by the number/status of the verified suggestions.

Some systems limit the amount of data presented to the user by using sessions and
clustering. Only one system preserves the state of the process during interruptions. The
others partially address the session requirement by save/load (ontologies and align-
ments) functions but without preserving the already computed suggestions. Almost all
of the tools support clustering of the content presented to the user (not necessary for
all views/modes) to avoid cluttering of the display, clustering during the computations
is also often supported. Another possibility could be to guide the user (through com-
plex interfaces and huge input) by presenting different interfaces connected to different
phases of the process, for instance, by providing a different view for each phase. The
existence of different phases in general could also allow for more opportunities for fine-
tuning of the process.

User Involvement for Large-Scale Ontology Alignment

45

The session-based approach in [13] helps reducing the user interventions during
the alignment process by reusing previously validated mappings. PROMPT takes into
account the area of the latest user intervention while computing a new portion of sug-
gestions to maintain the user’s focus. To assist the user decision making process some
systems provide recommendations in various forms—SAMBO provides a recommen-
dation session, COMA++ default matchers configuration, RepOSE recommendations
(from external sources) during the validation. Matchers’ configuration is also supported
to different extent—COMA++ provides advanced matchers’ combinations while Re-
pOSE only supplies a list with matchers and their weights. To support temporary deci-
sions CogZ introduces temporary mappings and AlViz a tracking button. SAMBO par-
tially presents such functionality by an undo button and history of actions, PROMPT
by reapplying the user actions. Trial execution is not supported by any of the tools.

Looking at the table we can conclude that most of the systems provide debugging
techniques, but this is not the case in reality as discussed in subsection 2.2. Although
these systems consider debugging of the alignment, they address different kinds of
defects—RepOSE detects/repairs modelling defects in taxonomies, SAMBO checks
for inconsistencies and AML addresses disjointness assuming the ontologies are co-
herent. Further, RepOSE relies on manual repairing while AML repairs the alignment
automatically.

The social and collaborative matching is still a challenge. SAMBO, PROMPT and
CogZ provide mapping annotations but it is unlikely they have been developed to ad-
dress this issue. While implementing other functionalities SAMBO and COMA++ took
first steps in providing a collaborative environment by introducing permanent storages.
AML, PROMPT and COMA++ have functions for evaluating an alignment against a
reference alignment and for comparing two alignments.

5 Conclusions

This paper defines a set of requirements to address the user involvement in large-scale
ontology alignment tasks. It provides a literature based overview of several systems
selected due to their mature interfaces and features that address the alignment of large
ontologies.

Since the papers describing the systems mostly focus on algorithms and rarely on
user interfaces such assessment of the coverage of the requirements is inherently im-
precise. In order to provide better understanding for how the systems support the re-
quirements identified in section 2 we intend to conduct an observational user study as
a future work. The study will consider the requirements in the manipulation, inspection
and explanation categories by developing tasks that address them in a large-scale set-
ting. It will provide detailed overview of the advantages and disadvantages of the user
interfaces of several selected systems. Changes in the list with requirements may occur
as a consequence of the study.

Acknowledgments. We thank the National Graduate School in Computer Science (CUGS)
and the Swedish e-Science Research Centre (SeRC) for financial support.

User Involvement for Large-Scale Ontology Alignment

46

References

1. D Aumüller, H H Do, S Maßmann, and E Rahm. Schema and ontology matching with
COMA++. In SIGMOD, pages 906–908, 2005.

2. I F Cruz, C Stroe, and M Palmonari. Interactive user feedback in ontology matching using
signature vectors. In ICDE, pages 1321–1324, 2012.

3. B Cuenca Grau et al. Results of the ontology alignment evaluation initiative 2013. In OM,
pages 61–100, 2013.

4. H H Do. Schema Matching and Mapping-based Data Integration. PhD thesis, 2005.
5. J Euzenat and P Shvaiko. User Involvement. In Ontology Matching, pages 353–375. 2013.
6. S M Falconer and M D Storey. A Cognitive Support Framework for Ontology Mapping. In

ISWC/ASWC, pages 114–127, 2007.
7. M Granitzer, V Sabol, K W Onn, et al. Ontology Alignment—A Survey with Focus on

Visually Supported Semi-Automatic Techniques. Future Internet, pages 238–258, 2010.
8. V Ivanova, J L Bergman, U Hammerling, and P Lambrix. Debugging taxonomies and their

alignments: the ToxOntology-MeSH use case. In WoDOOM, pages 25–36, 2012.
9. E Jiménez-Ruiz, B C Grau, Y Zhou, and I Horrocks. Large-scale Interactive Ontology

Matching: Algorithms and Implementation. In ECAI, pages 444–449, 2012.
10. E Jiménez-Ruiz, C Meilicke, B C Grau, and I Horrocks. Evaluating Mapping Repair Systems

with Large Biomedical Ontologies. In Description Logics, pages 246–257, 2013.
11. T Kirsten, A Gross, et al. GOMMA: a component-based infrastructure for managing and

analyzing life science ontologies and their evolution. Journal of Biomedical Semantics, 2(1),
2011.

12. P Lambrix and V Ivanova. A unified approach for debugging is-a structure and mappings in
networked taxonomies. Journal of Biomedical Semantics, 4:10, 2013.

13. P Lambrix and R Kaliyaperumal. A Session-Based Approach for Aligning Large Ontologies.
In ESWC, pages 46–60. 2013.

14. P Lambrix and H Tan. SAMBO - a system for aligning and merging biomedical ontologies.
Journal of Web Semantics, 4(3):196–206, 2006.

15. M Lanzenberger, J Sampson, and M Rester. Ontology visualization: Tools and techniques
for visual representation of semi-structured meta-data. J.UCS, 16(7):1036–1054, 2010.

16. M Lanzenberger, J Sampson, M Rester, Y Naudet, and T Latour. Visual ontology alignment
for knowledge sharing and reuse. Journal of Knowledge Management, 12(6):102–120, 2008.

17. N F Noy and M A Musen. Algorithm and Tool for Automated Ontology Merging and Align-
ment. In AAAI, pages 450–455, 2000.

18. N F Noy and M A Musen. The PROMPT suite: interactive tools for ontology merging and
mapping. Journal of Human-Computer Studies, 59(6):983–1024, 2003.

19. L Otero-Cerdeira, F J Rodrı́guez-Martı́nez, and A Gómez-Rodrı́guez. Ontology matching:
A literature review. Expert Systems with Applications, 2014.

20. H Paulheim, S Hertling, and D Ritze. Towards Evaluating Interactive Ontology Matching
Tools. In ESWC, pages 31–45, 2013.

21. C Pesquita, D Faria, E Santos, J Neefs, and F M Couto. Towards Visualizing the Alignment
of Large Biomedical Ontologies. In DILS, pages 104–111, 2014.

22. E Rahm. Towards large-scale schema and ontology matching. In Schema matching and
mapping, pages 3–27. 2011.

23. F Shi, J Li, J Tang, G Xie, and H Li. Actively learning ontology matching via user interaction.
In ISWC, pages 585–600. 2009.

24. P Shvaiko and J Euzenat. Ontology Matching: State of the Art and Future Challenges.
Knowledge and Data Engineering, 25(1):158–176, 2013.

User Involvement for Large-Scale Ontology Alignment

47

Sensemaking on Wikipedia
by Secondary School Students with SynerScope

W.R. van Hage1,2, F. Núñez Serrano2,3, T. Ploeger1, and J.E. Hoeksema1,2

1 SynerScope B.V.
2 VU University Amsterdam

3 Universidad Politécnica de Madrid

Abstract. Visual analytics of linked data can be done by secondary school stu-
dents with minimal preparation. We study the learning curve of students while
answering typical Web analytics questions on Wikipedia and DBpedia using Syn-
erScope visual analytics software. We find that after a short tutorial students are
able to answer most complex questions in a few minutes, learning by trial and er-
ror. Older students are faster on average, but motivation appears to be a stronger
factor than age for success. Answering speed doubles within two hours of expe-
rience while correctness increases.

1 Introduction

The world will soon face a critical shortage of data scientists, professionals with ana-
lytical expertise that can take advantage of (linked) data to answer questions [7]. One
strategy to mitigate this problem is to enable non-experts to take over part of the data
science tasks. We pose that data science is comprised of many tasks that do not all re-
quire expert-level knowledge. In this article we restrict ourselves to a category of data
science sensemaking tasks on Web data that is common in data journalism and involves
basic analytics operations, search, and Web browsing. We hypothesise that, given the
right tools, untrained people can quickly be trained to do such tasks, avoiding a com-
plete data science education.

The goal of this article is to test this hypothesis by doing an experiment to demon-
strate the feasibility of having untrained people do prototypical sensemaking tasks given
visual analytics tools. Specifically, we look at secondary school students with no ana-
lytical experience, and ask them to answer complex questions about Wikipedia content
using the SynerScope4 visual analytics software illustrated in Figure 1. We want to
know if users can get to an answer after a minimal amount of training in the tool. We
want to know how long it takes them to find an answer and if their time-to-answer de-
creases as their experience with the tool increases, and what the influence is of their age
and corresponding level of education.

The line of reasoning we follow is that the required skills for such sensemaking data
science tasks can be rapidly acquired or substituted with appropriate tools. If this is the
case and if SynerScope is an appropriate tool for the task, then we should be able to
show that unskilled people can accomplish the sensemaking tasks.

4 http://www.synerscope.com

48

This idea of empowering people by means of augmented reasoning through human-
computer interaction is not new [6], but in recent years the development of interactive
tools for visual analytics have intensified. Some of these tools are targeted at program-
mers (e.g., [1, 10, 11]), while other tools target non-programmers (e.g., [13, 12, 14, 9, 2,
8]). For this experiment we need a tool from the latter category that is network centric
and allows search and Web browsing. We use SynerScope [13, 5, 4], one of the tools
that meets these requirements.

Fig. 1. A screenshot of the SynerScope visual analytics tool showing Wikipedia and DBpedia
data. This picture shows two coordinated views: a hierarchical edge bundling network view and
a Web browser.

The rest of this paper is organised as follows: Section 2 describes the SynerScope
software in more detail. Section 3 outlines the experimental set-up, including the tasks,
tooling, and procedure. Section 4 shows our findings. Section 5 discusses our findings,
draws conclusions and suggests future work.

2 The SynerScope Software

SynerScope is a visual analytics application that delivers real time interaction with dy-
namic network-centric data. SynerScope supports simultaneous visualisations and coor-
dinates user interaction, enabling the user to identify causal relationships and to uncover
unforeseen connections.

The central interaction paradigm of SynerScope is Multiple and Coordinated Views.
SynerScope shows a number of different perspectives on data, for example, relations

Sensemaking on Wikipedia by Secondary School Students with SynerScope

49

and time, and each selection made in either of these views causes an equivalent selection
to be made in all other views. This enables the user to explore correlations between
different facets of data.

SynerScope is designed to work with a very basic information schema. This schema
consists of two object types: Nodes and Links. Links connect two Nodes. Both Nodes
and Links can have additional attributes of a number of data types, including integers,
floating point numbers, free text, date and time, latitude and longitude.

What follows is a short overview of each visualisation that is offered by SynerScope.

Table View The Table View provides a traditional spreadsheet view on the data. For
each type of Node and each type of Link, there is a separate sheet. The Table View
shows all the data as a table of values.

Hierarchical Edge Bundling View The Hierarchical Edge Bundling View (HEB) is the
primary network view in SynerScope. Each Node is visualised as a point on a circle,
and each Link is visualised as a curved line between its source and target Node.

The Nodes are grouped hierarchically, based on one or more of their attributes. The
Links between Nodes of the same hierarchical category are bundled together (as if they
were tied together with a cable tie).

Massive Sequence View The Massive Sequence View (MSV) is the primary temporal
view in SynerScope. Each Node gets a fixed position on the horizontal axis. Nodes are
grouped hierarchically in the same fashion as in the HEB. Links between Nodes are
represented by a horizontal line between the respective positions of the Nodes. On the
vertical axis the user can select a scalar attribute, typically a time or date. This orders
the Links temporally.

Map View The Map View is the primary spatial view in SynerScope. The user can
select two attributes from any Node or Link data source to interpret as WGS84 latitude
and longitude coordinates. These attributes are used to plot the Nodes (not the Links)
on a map as points.

Scatter Plot View The Scatter Plot View uses Cartesian coordinates to relate the val-
ues of two attributes of either Nodes or Links. Dots are drawn on a two-dimensional
chart, the positioning relative to the horizontal and vertical axis being determined by
the attribute’s values. A third attribute can used to set the size of the dots.

Search and Filter View The Search and Filter View is an interactive view that allows
the user to select Nodes or Links by searching by value.

Web View The Web View is an interactive view that allows the user to view any URL’s
that are an attribute of a node or a link.

The user can interact with SynerScope’s views in several ways: By selecting and
highlighting data, drilling down to or up from a selection, and expanding selections
from nodes to connected links or vice versa. Every interaction method is coordinated
across multiple views.

Sensemaking on Wikipedia by Secondary School Students with SynerScope

50

3 Experimental Set-up

Sensemaking Tasks In the experiment we look at 10 exemplar Web analytics ques-
tions that each require a combination of at least two of the following operations to
answer: network navigation, filtering on categorical and numerical variables, grouping
and counting, search, Web browsing within Wikipedia, and zooming in on data selec-
tions. Examples of the questions are: “How many former AFC Ajax soccer players died
in Paramaribo and what was the cause of death?”, or “Which page about a disease
is linked to most from pages about physicists?”. The complete set of questions can be
found on FigShare [15]. Question number 8 is marked as a difficult question, because it
is the only question that involves a set intersection between two sets of network patterns.

SynerScope Visual Analytics Tooling The SynerScope tool used by the students is a
graphically accelerated visual analytics application that combines a number of views on
networked data. It offers real-time interactive exploration using scatter plots, timelines,
maps, hierarchical edge bundling network layouts, an integrated Web browser, a search
engine, and a spreadsheet table view. The selections made in any of these views are
propagated to all the other views. A video illustrating interaction with the Wikipedia
data can be found on FigShare [3].

Procedure The experiment consists of five parts: (1) a 30m plenary introduction to
the experiment and the data sets used, (2) a 15m plenary tutorial to the SynerScope
visual analytics tool, (3 and 4) two 45m sessions where students try to answer questions
using SynerScope, (5) a concluding discussion and personal interviews. The students
are asked to answer as many as possible of 10 questions about 3 subsets of Wikipedia
within 90m. Each set centers around pages on a specific topic.

Data Sets The topics covered in the experiment are: (1) Athletes classified as soccer
players and trainers of AFC Ajax, FC Barcelona, and Manchester United, (2) Scientists
classified as physicist, (3) Artists in the pop genre. Each of these three sets consist of
around 3000 Wikipedia pages about the topic (the seed set), all the pages that are linked
to from the seed pages (the “out” context), all pages that link to the seed pages (the
“in” context), and all the links between the seed, “out” context, and “in” context pages.
This amounts to three sets of around 100k–200k pages and 300k–500k page links. Each
page is assigned around 18 attributes with information about the page, such as the page
title, the number of words on the page, the in degree and out degree, a three-level hi-
erarchical topic classification of the main subject of the page (e.g. Actor-Artist-Person,
or Building-ArchitecturalStructure-Place) derived from the DBpedia rdf:type property
of the corresponding DBpedia resource, birth/death date and place, and topic-specific
properties such as respectively soccer team, university, or band. An example of the three
schemas can be found in the hand-outs for the students [15]. We made a selection of
the DBpedia types (downloaded september 2013) that form a hierarchical partitioning
of the Wikipedia pages. We only considered types from the DBpedia ontology, ignoring
other type hierarchies such as Yago, FreeBase, and Schema.org. The selection process
involved dividing the types into three hierarchical layers, and imposing a preferential

Sensemaking on Wikipedia by Secondary School Students with SynerScope

51

ordering onto the types. For example, Amsterdam was assigned City at level 1, Popu-
latedPlace at level 2, and Place at level 3, discarding types such as Settlement to form
a proper partition. When type information is missing, a placeholder type is assigned.

Test Subjects The students involved as test subjects in the experiment are 63 middle
school and high school students (9 female, 54 male) from three schools in the Ams-
terdam area between the ages of 12 and 18, divided into 34 groups of size 1–3. The
experiments were performed in two labs of the VU University Amsterdam Network In-
stitute.5 One running SynerScope in the Amazon cloud accessed through a Web-based
client (OTOY), the other running SynerScope natively on gaming PCs with modern
NVIDIA GeForce GPUs. The students were paired up and given a hand-out describing
the three data sets, listing all the questions, and containing a form to record the answers
and the time taken [15]. During the experiment students were assisted by answering
specific technical questions, but were given no other guidance that would help them
find answers.

4 Results

There was a large variation in the productivity of the various students, as can be seen in
Figure 2. This can be expected of students that have no intrinsic motivation to cooperate
in the experiment. The motivated students answered all questions, while two groups did
nothing and are excluded from the results. In general the total number of 10 questions
was too high to answer for most students in two 45 minute sessions. Most students man-
aged to answer the questions of two topics (6 or 7 questions). Of the questions that were
answered, about 60% was answered correctly. There was a large variation, depending
on the difficulty of the question. This is illustrated in Figure 3. Some questions were
answered partially. For example, when asked for a number and explanation only the
number or the explanation was answered correctly. We performed significance tests for
the differences in duration between all the categories shown in Figure 2 with a Welch’s
t-test, and similarly for the categories in Figure 4. There was a slight increase in the
number of questions that were answered correctly over time. This trend is significant
according to a Mann-Kendall test (p = 0.0318), even when counting partial answers
as false answers. Students performed faster and more consistently for subsequent ques-
tions. This is illustrated in Figure 4 (right), specifically with questions 1–7 which were
consistently answered before time ran out. This increase in speed is significant between
the first and last of the questions in the sequence at a confidence level of 95%. Older
students seemed to be faster than younger students, but their answers were of a com-
parable correctness. Although the difference in mean time taken between the fastest
and slowest age groups is a factor 2, a Mann-Kendall test does not show a significant
downward trend (p = 0.178). This is due to the relatively small number of observations
(34 student teams) and a class of particularly talented middle school freshmen that per-
formed on par with 18-year-olds, but with a significantly higher accuracy. The data used
to derive these conclusions can be found on Figshare [15].

5 Network Institute Tech Labs, http://www.networkinstitute.org/tech-labs/

Sensemaking on Wikipedia by Secondary School Students with SynerScope

52

1

Answered Correctly

Q
ue

st
io

n

Answered Incorrectly

Student

Answered Partially

2
3
4
5
6
7
8
9

10

Not Answered

Fig. 2. An overview of the completeness and correctness of the answer to each question by each
student. Each column represents the answers given by a student. Each row represents one of the
10 questions. Roughly 55% of the questions were answered, about 60% of the answers were
correct.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10

Answered Correctly Answered Partially
Answered Incorrectly

soccer players scientists musical artists

difficult 
question

Fig. 3. An aggregation of the correctness of the answers per question. For the questions that were
consistently answered (1–7) in the 90m experiment is a rising trend in the quality of the answers.
Most students ran out of time before attempting question 8–10.

Sensemaking on Wikipedia by Secondary School Students with SynerScope

53

0m

5m

10m

15m

20m

25m

30m

12 13 15 16 17 18

gifted
students

M
ea

n
tim

e
to

 a
ns

w
er

age
1 2 3 4 5 6 7 8 9 10

0m

10m

20m

30m

40m

soccer players scientists musical artists

difficult
question

M
ea

n
tim

e
to

 a
ns

w
er

Fig. 4. (left) Time taken to answer a question, aggregated over all questions per age. Older stu-
dents are faster than younger students with the exception of a group of gifted 12-year-olds;
(right) Aggregated time taken to answer each of the 10 questions. There is a non-significant
decreasing trend in the time taken per question.

5 Discussion

Given the preliminary nature of these results, we can not draw very strong conclusions
yet. If we had more test subjects, we could have repeated the experiment with the topics
offered in a randomized order, which would strengthen the conclusions by removing
the learning effect and topic preference between the various topics.

We are impressed by what our young test subjects were able to achieve. When given
the right tools, visual analytics of linked data really can be done by secondary school
students with minimal preparation. We found that after a short tutorial students are able
to answer most complex questions in a few minutes, learning by trial and error. Within
two hours of experience, answering speed doubles within while correctness increases.

The older test subjects more frequently asked for help when they get stuck than
the younger test subjects, who just found their own way through trial and error, and
therefore also take longer to get to an anser than the older students (as can be seen in
Section 4. Overall, motivation appears to be a stronger success factor than age. This
belief is hard to make concrete, but it is reinforced by our observation that students
are quick to accept their first findings as a definitive answer to the question they were
working on. When students found information they thought was the right answer, they
were fairly quick to accept that answer and wanted to move on to the next question as
soon as possible. In contrast to professionals, the students did not verify their answers.
For instance, when the students had to find out how many AFX Ajax soccer players died
in Paramaribo, they typically accepted all the soccer players that died in Paramaribo as
an answer, without checking if they played in AFC Ajax. We think this can be explained
by the lack of feedback during the experiment. Students were not penalised for wrong
answers or rewarded for right answers, and the experiment was a one time encounter
with the software. We expect that many of the incorrect or partial answers could have
been improved if the students were to have verified their answers.

Sensemaking on Wikipedia by Secondary School Students with SynerScope

54

The experiment reinforced our belief that visual analytics software must be highly
interactive and present immediate feedback to the user. During the interviews at the end
of the session students were generally positive about the software and tasks and thought
the experiment gave them a new perspective on Wikipedia. Their main negative remark
was that SynerScope running on Amazon was distractingly slow. In actuality, the soft-
ware was equally fast on Amazon instances as on local machines, but the lag introduced
by network congestion, network latency, and video compression, removed the sensation
of true interactivity. In isolated cases, for example, when zooming out to the entire data
set of 400k links, students had to wait a few seconds. Delays in interaction like these
appeared to interrupt the student’s train of thought.

We found that students of all ages are able to effectively use the SynerScope tool
to answer the questions. Older students are usually faster, but not significantly more
accurate. We would like to further test these findings with older and younger subjects.

Acknowledgements

Thanks go to the Damstede, Pieter Nieuwland College, and Cygnus Gymnasium schools
for their participation in this experiment. We thank the VU Network Institute for the
use of their facilities, and Samir Naaimi for his assistance during the experiments. This
work was done within the context of the SAGAN project supported by ONR Global
NICOP grant N62909-14-1-N030, the EU FP7 NewsReader project (316404), and the
Dutch COMMIT Data2Semantics project.

References

1. D3.js: D3.js - data-driven documents (2014), http://d3js.org/
2. Gapminder: Gapminder: Unveiling the beauty of statistics for a fact based world view (2014),

http://www.gapminder.org/
3. van Hage, W.R.: SynerScope on Wikipedia (movie) (06 2014), http://dx.doi.org/

10.6084/m9.figshare.1061499
4. Holten, D., Cornelissen, B., van Wijk, J.: Trace Visualization Using Hierarchical Edge Bun-

dles and Massive Sequence Views. In: Visualizing Software for Understanding and Analysis,
2007. VISSOFT 2007. 4th IEEE International Workshop on. pp. 47–54 (June 2007)

5. Holten, D.: Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchi-
cal Data. IEEE Transactions on Visualization and Computer Graphics 12(5), 741–748 (Sep
2006), http://dx.doi.org/10.1109/TVCG.2006.147

6. Licklider, J.C.R.: Man-computer symbiosis. Human Factors in Electronics, IRE Transactions
on (1), 4–11 (1960)

7. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Hung By-
ers, A.: Big data: The next frontier for innovation, competition, and productivi-
ty (2011), http://www.mckinsey.com/insights/business_technology/
big_data_the_next_frontier_for_innovation

8. Paulheim, H.: Explain-a-lod: Using linked open data for interpreting statistics. In: Pro-
ceedings of the 2012 ACM international conference on Intelligent User Interfaces.
pp. 313–314. ACM (2012), http://www.ke.tu-darmstadt.de/resources/
explain-a-lod

Sensemaking on Wikipedia by Secondary School Students with SynerScope

55

9. Qlikview: Business Intelligence and Data Visualization Software — Qlik (2014), http:
//www.qlik.com/

10. R: The R Project for Statistical Computing (2014), http://www.r-project.org/
11. Skjæveland, M.G.: Sgvizler: A javascript wrapper for easy visualization of sparql result

sets. In: Extended Semantic Web Conference (2012), http://dev.data2000.no/
sgvizler/

12. Spotfire, T.: TIBCO Spotfire - Business Intelligence Analytics Software & Data Visualization
(2014), http://spotfire.tibco.com/

13. SynerScope: SynerScope — Connecting the dots (2014), http://www.synerscope.
com/

14. Tableau: Business Intelligence and Analytics — Tableau Software (2014), http://www.
tableausoftware.com/

15. van Hage, W.R., Ploeger, T., Hoeksema, J., Núñez Serrano, F.: Wikipedia SynerScope exper-
iment (06 2014), http://dx.doi.org/10.6084/m9.figshare.1060254

Sensemaking on Wikipedia by Secondary School Students with SynerScope

56

Towards a Visual Annotation Tool for End-User
Semantic Content Authoring

Torgeir Lebesbye and Ahmet Soylu

Department of Informatics, University of Oslo, Norway
{torgeirl, ahmets}@ifi.uio.no

Abstract. There is a great amount of data on the Web, but to a large
extent it is not published as linked data that computers can consume.
Visual annotation tools have a considerable potential to empower end
users to contribute their data to the Semantic Web, and could prove to
be a solution to get more data on the Web linked. To this end, numerous
tools have been developed; however, there still remains challenges to
be addressed. In this paper, we present and discuss a set of prominent
requirements toward the realisation of a visual annotation tool for end-user
semantic content authoring.

Keywords: Semantic Content Authoring, Direct Manipulation Interface,
End-User Development

1 Introduction

When Berners-Lee invented the Web in 1989, his motivation was to allow people
to share and link documents without the barriers of hardware, file systems or
data formats [4]. It later evolved into the Social Web, referred to as Web 2.0,
where anyone could be the producers of contents through blogs, wikis and social
media, and it became easy for people to collaborate on the Web.

In later years, the introduction of semantic technologies has made it possible to
describe the meaning of data in a language more consumable for computers: words
written with markup languages like XML1, grammar structure using RDF2, and
logic described in knowledge languages like OWL3 [7]. This means a contextual
Web where data in documents are linked and can be mashed with data from other
sources in a completely new way. It is called the Semantic Web, often referred to
as Web 3.0.

So-called lowercase semantic technologies enabled linked data to be added
to documents with in-content annotations [1]. Microformats4 is a widely used
family of data formats that includes hCard, hCalendar and hAtom. eRDF was
W3C’s original attempt at simplifying annotation, but they abandoned it for
1 http://www.w3.org/TR/xml/
2 http://www.w3.org/TR/rdf-schema/
3 http://www.w3.org/TR/owl-primer/
4 microformats.org

57

RDFa5. Microdata6 is an alternative to RDFa originating from the WHATWG
initiative7.

While linking documents and creating social content is easy and accessible
through numerous tools and services, adding semantics to a web document
requires knowledge of the involved technologies and a large technical skill-set that
most end users often do not possess. Most of the data published on the Web isn’t
linked, and much of this data is managed by end users within organisations and
on the open Web. Therefore, if we are to convert the current Web dominated by
unstructured documents into a Web of Data, end-user involvement has a crucial
role to play. In this respect, visual annotation tools have a considerable potential
to empower end users to contribute their data to the Semantic Web, and could
prove to be a solution to get more data on the Web linked.

To this end, numerous tools have been developed [11]; however, there still
remain challenges to be addressed. In this paper, we present and discuss a set of
prominent requirements towards the realisation of a visual annotation tool for
end-user semantic content authoring. For each requirement, we shortly discuss
how it improves a visual annotation tool from an end-user perspective. We believe
that the discussion presented in this paper may be useful for researchers and
practitioners working on annotation tools for semantic content authoring.

The rest of the paper is organised as follows: Section 2 discusses design
requirements for a visual annotation tool for end users. Section 3 looks at related
work, and finally Section 4 concludes the paper.

2 Design Requirements

End-User Development (EUD) allows users to act as non-professional software
developers, creating, modifying, or extending software artefacts [14]. It includes
spreadsheets and filters for emails, and is something more and more users do
without thinking of it as software development. Not surprisingly, studies has shown
the number of end-user programmers vastly outnumber professional programmers
[19] and estimate it will continue to do so in the future. Annotation tools for end
users are meant to enable end users to modify and extend software artefacts, and
could be considered within EUD.

A visual annotation tool employs a direct manipulation approach [20], where
end users can directly manipulate visual objects representing domain elements
and application functionality to incorporate semantic knowledge, rather than
dealing with a command language. We can assume that users managing web
pages have at least some domain knowledge. An annotation tool should empower
them to access and use this domain knowledge without requiring expertise in
web technologies and ontologies, and should take the following into account:

5 http://www.w3.org/TR/rdfa-syntax/
6 http://www.w3.org/TR/microdata/
7 https://whatwg.org/

Towards a Visual Annotation Tool for End-User Semantic Content Authoring

58

2.1 Bottom-up

Semantic content authoring tools are often divided into two main categories:
top-down and bottom-up [11]. A top-down approach focuses on making and
extending ontologies during the annotation process, while a bottom-up approach
focuses on the document and uses existing ontologies to annotate the document.

End users are expected to have little or no experience with ontologies, therefore
a bottom-up approach is preferable. Moreover, lifting unstructured content to a
semantic level is an important issue, given that today the Web is dominated by
unstructured documents.

2.2 Human-driven

Another issue is the level of automation – machine-driven vs. human-driven
approaches. Some tools detect and annotate text automatically largely based
on natural language processing (NLP) techniques [13]. Others provide sugges-
tions, and keep the document valid during the editing process. Machine-driven
approaches have a huge advantage in annotation speed, while human-driven ap-
proaches hold a higher annotation quality. End users might have little experience
with semantic technologies, but as managers of the content they more often
have some domain-knowledge. A full automation does not take advantage of this
knowledge.

Automation support is particularly important when a large number of doc-
uments are involved, yet this should be adequately intertwined with a manual
approach. Considering typical users and documents on the Web, a human-driven
approach remains more accessible as a generic solution, since automated ap-
proaches usually require domain-specific configurations.

2.3 Exploration support

An annotation tool for end users should feature an exploration support, where
the underlying ontologies and data can be explored visually. In this respect,
visualisations are a powerful way to make the content of a service or tool accessible.
For end users, visualisations can make it easier to understand the underlying
domain in terms of concepts, properties, and instances.

The big challenge of ontology visualisation is scalability. Ontologies vary in
size, from a few hundred nodes to hundreds of thousands of nodes. The vast size
of a large ontology can be intimidating, and very hard to get an overview of. A
survey on ontology visualisation methods [10] suggests that visualisations should
be coupled with effective search functionality and take advantage of semantic
data and user data to make the ontology exploration more efficient.

2.4 Complete editing suite

Some annotation tools available today remain primitive, lack important func-
tionality and expressivity. Many of the fully automated tools do not preserve

Towards a Visual Annotation Tool for End-User Semantic Content Authoring

59

change in a document. Some tools do not support different in-content annotation
technologies and most do not support linking entities through objects’ properties.
Having said that, a visual annotation tool is not expected to be fully expressive,
as certain functionalities and ontology constructs are difficult to grasp even in a
visual form.

An annotation tool should preserve change, support the most important
formats, and allow for full editing of the document data, while adequately
managing the trade-off between usability and expressivity. To this end, often and
commonly used functionality and ontology constructs have to be identified and
classified with respect to their complexity, as perceived by the end users.

2.5 Usability evaluation

Most of the tools developed in academia undergo little end-usability evaluation,
and user studies is often limited to students affiliated with the research groups.
Qualitative end-user studies measure whether a tool is competent of meeting
its identified aim with respect to a set of criteria, such as effectiveness (i.e.,
completeness and accuracy) and efficiency (i.e., the cost associated such as time),
user satisfaction, learnability etc. [5].

A successful validation of usability and functionality requires user studies to
be conducted with users that match the profile of target end users. However,
one also needs to be aware that a single summative study only at the end is not
sufficient; several formative end-user studies should be held with intermediary
prototypes during the design and development process for timely identification
of any usability problems.

3 Related Work

Existing tools vary in approach, level of automation, and domain-dependency,
in what follows we address only the most prominent ones. Most tools extend
the software that the targeted users already uses, to piggyback on concepts and
workflow that the users already are familiar with, such as widely used WYSIWYG
editor TinyMCE8 and wiki tool MediaWiki9.

HayStack semantic blogging [9] and semiBlog [16] were early works on enabling
end users to add metadata about the structure and content of their blog posts,
their relations (in reply), and subscription to blogs using RSS. DataPress [3] and
LinkedBlog [18] are both extensions of the WordPress blogging tool, and the
annotation tools are integrated as WYSIWYG editors.

SweetWiki [6] and Semantic MediaWiki [8] are semantic content authoring
tools built as wikis that follow the bottom-up approach. They are both based on
MediaWiki, a wiki tool originating from the Wikipedia project. They are made
specifically for the wiki domain, both with the goal of enhancing the content in the
wiki with semantics, while improving search results and other core functionalities.
8 www.tinymce.com/
9 https://www.mediawiki.org/

Towards a Visual Annotation Tool for End-User Semantic Content Authoring

60

Loomp [15] is an annotation tool for journalists, where the user annotates
information fragments, makes mash-ups of those fragments, and keeps track of
and reuses them for semantic linking and search.

Annotation tools for Content Management System (CMS) tend to be fully
automated. Epiphany [2] uses a web service that finds instances in a web page,
and automatically returns a version of the web page with RDFa annotations.
It uses the light-box effect often used for image galleries to visualise embedded
RDFa. FLERSA [17] is an automated annotation tool built upon Joomla, a
popular CMS for building web portals.

OntosFeeder [13] is a web service made to be integrated with a CMS. It
supports TinyMCE and FCKeditor on both WordPress and Drupal, is independent
of both the editor and the CMS, and is fully automated.

RDFaCE[12] is another extension of the TinyMCE. It has four synchronised
views (WYSIWYG editing view, annotations view, fact view, and HTML/RDFa
source view), and allows users to switch freely between them during the editing
process. It does, however, not include an exploration support of the underlying
ontology and does not support linking entities through object properties.

4 Conclusion

In this paper, we have looked at design requirements for a visual annotation tool
for end-user semantic content authoring. We believe that such a tool should follow
a bottom-up approach, be human-driven, use visualisations to facilitate document
annotation and the exploration of the underlying ontologies, and undergo user
studies with a representative set of end users. The related work suggests that
existing approaches mostly fail to meet these requirements.

Our future work involves design and development of a visual annotation tool
for end-user semantic content authoring with these principles in mind.

References

1. B. Adida. hGRDDL: Bridging microformats and RDFa. Web Semantics: Science,
Services and Agents on the World Wide Web, 6(1):54–60, 2008.

2. B. Adrian, J. Hees, I. Herman, M. Sintek, and A. Dengel. Epiphany: Adaptable rdfa
generation linking the web of documents to the web of data. In Proceedings of the
17th International Conference on Knowledge Engineering: Practice and Patterns
(EKAW 2010), volume 6317 of LNAI, pages 178–192. Springer, 2010.

3. E. Benson, A. Marcus, F. Howahl, and D. Karger. Talking about data: Sharing
richly structured information through blogs and wikis. In Proceedings of the 9th
International Semantic Web Conference (ISWC 2010), volume 6496 of LNCS, pages
48–63. Springer, 2010.

4. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web - a new form of
web content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American, 284(5):34–43, 2001.

5. N. Bevan and M. Macleod. Usability measurement in context. Behaviour and
Information Technology, 13(1-2):132–145, 1994.

Towards a Visual Annotation Tool for End-User Semantic Content Authoring

61

6. M. Buffa, F. Gandon, G. Ereteo, P. Sander, and C. Faron. SweetWiki: A semantic
wiki. Web Semantics: Science, Services and Agents on the World Wide Web,
6(1):84–97, 2008.

7. B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler.
OWL 2: The Next Step for OWL. Web Semantics: Science, Services and Agents on
the World Wide Web, 6(4):309–322, 2008.

8. D. M. Herzig and B. Ell. Semantic mediawiki in operation: Experiences with
building a semantic portal. In Proceedings of the 9th International Semantic Web
Conference (ISWC 2010), volume 6497 of LNCS, pages 114–128. Springer, 2010.

9. D. R. Karger and D. Quan. What would it mean to blog on the semantic web?
In Proceedings of the 3rd International Semantic Web Conference (ISWC 2004),
volume 3298 of LNCS, pages 214–228. Springer, 2004.

10. A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E. Giannopoulou. Ontology
visualization methods–a survey. ACM Computing Surveys, 39(4):10, 2007.

11. A. Khalili and S. Auer. User interfaces for semantic authoring of textual content:
A systematic literature review. Web Semantics: Science, Services and Agents on
the World Wide Web, 22:1–18, 2013.

12. A. Khalili, S. Auer, and D. Hladky. The RDFa Content Editor - From WYSIWYG
to WYSIWYM. In Proceedings of the IEEE 36th Annual Computer Software and
Applications Conference (COMPSAC 2012), pages 531–540. IEEE, 2012.

13. A. Klebeck, S. Hellmann, C. Ehrlich, and S. Auer. Ontosfeeder–a versatile semantic
context provider for web content authoring. In Proceedings of the 8th Extended
Semantic Web Conference (ESWC 2011), volume 6644 of LNCS, pages 456–460.
Springer, 2011.

14. H. Lieberman, F. Paternó, M. Klann, and V. Wulf. End-User Development: An
Emerging Paradigm. In H. Lieberman, F. Paternó, and V. Wulf, editors, End-User
Development, volume 9 of Human-Computer Interaction Series, pages 1–8. Springer,
Netherlands, 2006.

15. M. Luczak-Rösch and R. Heese. Linked Data Authoring for Non-Experts. In
Proceedings of the WWW2009 Workshop on Linked Data on the Web (LDOW
2009), volume 538 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

16. K. Möller, U. Bojārs, and J. G. Breslin. Using semantics to enhance the blogging
experience. In Proceedings of the 3rd European Semantic Web Conference on the
Semantic Web: Research and Applications (ESWC 2006), volume 4011 of LNCS,
pages 679–696. Springer, 2006.

17. J. L. Navarro-Galindo and J. Samos. The FLERSA tool: adding semantics to a web
content management system. International Journal of Web Information Systems,
8(1):73–126, 2012.

18. I. Ruiz-Rube, C. M. Cornejo, J. M. Dodero, and V. M. García. Development
issues on linked data weblog enrichment. In Proceedings of the 4th International
Conference on Metadata and Semantic Research (MTSR 2010), volume 108 of CCIS,
pages 235–246. Springer, 2010.

19. C. Scaffidi, M. Shaw, and B. Myers. Estimating the numbers of end users and
end user programmers. In Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VLHCC 2005), pages 207–214. IEEE,
2005.

20. B. Shneiderman. Direct Manipulation: A Step Beyond Programming Languages.
Computer, 16(8):57–69, 1983.

Towards a Visual Annotation Tool for End-User Semantic Content Authoring

62

