OntoViBe: An Ontology Visualization
Benchmark

Florian Haag!, Steffen Lohmann', Stefan Negru?, and Thomas Ertl!

'nstitute for Visualization and Interactive Systems, University of Stuttgart,
Universitatsstrale 38, 70569 Stuttgart, Germany
{Florian.Haag,Steffen.Lohmann, Thomas.Ert1}@vis.uni-stuttgart.de
2Faculty of Computer Science, Alexandru Ioan Cuza University,
Strada General Henri Mathias Berthelot 16, 700483 Iasi, Romania
stefan.negru@info.uaic.ro

Abstract. A variety of ontology visualizations have been presented in
the last couple of years. The features of these visualizations often need
to be tested during their development or for evaluation purposes. How-
ever, in particular for the testing of special concepts and combinations
thereof, it can be difficult to find suitable ontologies. We have developed
OntoViBe, an ontology covering a wide variety of OWL 2 language con-
structs for the purpose of testing ontology visualizations. We describe
the design principles underlying OntoViBe and present the supported
features in coverage matrices. Finally, we load OntoViBe with ontology
visualization tools and point to some noteworthy aspects of the respec-
tive visualizations that become apparent and demonstrate how OntoViBe
can be used for testing ontology visualizations.

Keywords: Ontology, visualization, benchmark, evaluation, OWL.

1 Introduction

Developing and working with ontologies can be supported by ontology visu-
alizations. Over the past years, a number of visualization approaches geared
towards the peculiarities of ontologies have been proposed. Most of the available
approaches use node-link diagrams to depict the graph structure of ontologies,
while some apply other diagram types like treemaps or nested circles [7,9,11].

During the development of such ontology visualizations, testing with a variety
of existing ontologies is required to ensure that the concepts from the underlying
ontology language are adequately represented. The same needs to be done to
determine the features of an ontology visualization and get an impression of how
different ontology language constructs are visually represented. Still, repeatedly
loading a set of ontologies that cover a wide variety of language constructs can
be a tedious task, even more so as the most common constructs tend to appear
over and over in each of the tested ontologies. In order to help that process
with respect to ontologies based on the OWL 2 Web Ontology Language, we
developed OntoViBe, an Ontology Visualization Benchmark.

14

OntoViBe: An Ontology Visualization Benchmark

Basically, OntoViBe is an ontology that has been designed to incorporate
a comprehensive set of OWL 2 language constructs and systematic combina-
tions thereof. While it is oriented towards OWL 2, it also includes the concepts
of OWL 1 due to the complete backwards compatibility of the two ontology
languages, i.e., all OWL 1 ontologies are valid OWL 2 ontologies [17].

As opposed to most other benchmarks found in the computing world, On-
toViBe is not meant for testing the scalability of visualizations with respect to
the number of elements contained in ontologies, but rather aims for the scope of
visualizations in terms of supported features. Related to this, it focuses on the
representation of what is usually called the TBox of ontologies (i.e., the classes,
properties, and datatypes), while it does not support the testing of ABox in-
formation (i.e., individuals and data values), which is the focus of most related
work.

2 Related Work

Several benchmarks for ontology tools have been developed in the past. One well-
known benchmark in this area is the Lehigh University Benchmark (LUBM),
published by the SWAT research group of Lehigh University [8]. It consist of
three components: 1) an ontology of moderate size and complexity describing
concepts and relationships from the university domain, 2) a generator for random
and repeatable instance data that can be scaled to an arbitrary size, and 3) a
set of test queries for the instance data as well as performance metrics.

Since the LUBM benchmark is bound to the university domain, the SWAT
research group developed another benchmark that can be tailored to different
domains [18]. It uses a probabilistic model to generate an arbitrary number of
instances based on representative data from the domain in focus. As an example,
the Lehigh BibTeX Benchmark (LBBM) has been created with the probabilistic
model and a BibTex ontology. Another extension of LUBM has been proposed
with the University Ontology Benchmark (UOBM) [12]. UOBM aims to include
the complete set of OWL 1 language constructs and defines two ontologies, one
being compliant with OWL Lite and the other with OWL DL. Furthermore, it
adds several links to the generated instance data and provides related test cases
for reasoners.

All these benchmarks focus primarily on performance, efficiency, and scala-
bility, but do not address the visual representation of ontologies. Furthermore,
they are mainly oriented towards instance data (the ABox), while systematic
combinations of classes, properties, and datatypes (the TBox) are not further
considered. Even though UOBM provides comparatively complete TBox infor-
mation, it has been designed to test OWL reasoners and not ontology visual-
izations. This is also the case for JustBench [4], which uses small and clearly
defined ontology subsets to evaluate the behavior of OWL reasoners.

There are also some benchmarks addressing specific aspects of ontology en-
gineering. A number of datasets and test cases emerged, for instance, as part
of the Ontology Alignment Evaluation Initiative (OAEI) [1]. A related dataset

15

OntoViBe: An Ontology Visualization Benchmark

has been created in the OntoFarm project, which provides a collection of on-
tologies for the task of of testing and comparing different ontology alignment
methods [16]. An extension of the OntoFarm idea is the MultiFarm project,
which offers ontologies translated into different languages with corresponding
alignments between them [13]. Overall, the test cases are intended to evaluate
and compare the quality and performance of matching algorithms, in the latter
case with a special focus on multilingualism.

The W3C Web Ontology Working Group has also developed test cases for
OWL 1 [6] and OWL 2 [15]. They are meant to provide examples for the norma-
tive definition of OWL and can, for instance, be used to perform conformance
checks. However, there is not yet any benchmark particularly addressing the
visualization of ontologies to the best of our knowledge. To close this gap, we
developed OntoViBe, which will be described in the following.

3 Ontology Visualization Benchmark (OntoViBe)

The structure and content of OntoViBe is based on the OWL 2 specifications [17],
with the following requirements:

— A wide variety of OWL 2 language constructs must appear. This includes
constructs such as class definitions or different kinds of properties, as well
as modifiers for these, such as deprecated markers.

— Subgraphs that represent compound concepts must appear. This includes
small groups of classes that are coupled by a particular property.

Moreover, we tried to keep the overall ontology as small as possible in number of
elements. Like this, rather than a mere enumeration of the elements and concepts
supported by OWL 2, chances are that the ontology can be completely displayed
and grasped “at a single glance” and thereby convey a complete impression of
the features supported by the visualization being examined.

OntoViBe was assembled by creating an instance of each of the subgraph
structures. Where possible, classes were reused to keep the ontology small. For
instance, to include the OWL element object property, a subgraph structure
consisting of two classes connected by an object property was added. Hence,
two classes were inserted into the ontology, and an object property that uses
either of the two classes as its domain and range, respectively, was defined.
Furthermore, the element datatype property needed to appear in the ontology. A
compact subgraph structure to express that element consists of a class linked to a
datatype property. As the class does not need to have any specific characteristics
of its own, one of the two previously inserted classes could be reused.

After that, some of the existing elements were modified to cover all elements
and features that we wanted to consider at least once in the ontology. For exam-
ple, some properties were declared as functional or deprecated. For any element
type that still did not appear in the ontology, a minimal number of extra classes
were added (the addition of extra properties and datatypes was not necessary).

16

OntoViBe: An Ontology Visualization Benchmark

Listing 1.1. Concepts based upon set operators are featured in two variants, a small
set with two elements, and a larger one with more elements.

30 this:UnionClass a owl:Class ;

31 owl:unionOf (this:Classl this:DeprecatedClass).

32

33 this:LargeUnionClass a owl:Class ;

34 owl:unionOf (this:UnionClass other:ImportedClass this:PropertyOwner).

Listing 1.2. OntoViBe defines custom OWL data ranges.

94 this:DivisibleByFiveEnumeration a rdfs:Datatype ;

95 owl:equivalentClass [

96 a rdfs:Datatype ;

97 owl:oneOf (5 10 15 20)
@]

99

100 this:UnionDatatype a rdfs:Datatype ;

101 owl:unionOf (this:DivisibleByTwoEnumeration this:
DivisibleByFiveEnumeration).

Lastly, all elements in the ontology were named in a self-descriptive manner
to allow for an easier interpretation and analysis. For instance, a deprecated
class is called DeprecatedClass, while the larger of the union classes is called
LargeUnionClass.

3.1 Exemplary Parts of OntoViBe

Many of the structures could be added in a straightforward way. In some cases,
further considerations were required to adequately address the more flexible
features of OWL.

Concepts defined based upon set operators (unionOf, intersectionOf, comple-
mentOf) come in two variants. One of them uses a set comprising two elements
as an example for a small set, while the other features more set elements, usually
three (Listing 1.1).

OntoViBe also includes OWL data ranges (Listing 1.2). Visualizations may
or may not represent the exact definitions of these data ranges, but even if they
do not, support for datatype properties with custom data ranges needs to be
tested. Therefore, custom data ranges are used by some datatype properties in
OntoViBe, while common datatypes are used for most other properties (List-
ing 1.3).

In order to check how imported ontology elements are treated, OntoViBe
consists of two components. The core ontology' contains most of the definitions,
but a few classes, properties, and datatypes are defined in an additional module?,
whose content is imported into the core ontology (Listing 1.4).

! http://ontovibe.visualdataweb.org/1.0#
2 http://ontovibe.visualdataweb.org/1.0/imported#

17

OntoViBe: An Ontology Visualization Benchmark

Listing 1.3. Both custom and common datatypes are used by properties.

114 this:standardTypeDatatypeProperty a owl:DatatypeProperty ;
115 rdfs:domain this:PropertyOwner ;

116 rdfs:range xsd:integer

117

118 this:customTypeDatatypeProperty a owl:DatatypeProperty ;
119 rdfs:domain this:PropertyOwner ;

120 rdfs:range this:DivisibleByFiveEnumeration

Listing 1.4. Some of the definitions are imported from a separate ontology module.

9 <http://ontovibe.visualdataweb.org/1.0#> a owl:Ontology ;

10 owl:versionIRI <http://ontovibe.visualdataweb.org/1.0#> ;

11 owl:imports <http://ontovibe.visualdataweb.org/1.0/imported#> ;

12 <http://purl.org/dc/elements/1.1/title> "Ontology Visualization Benchmark
(OntoViBe)"

Listing 1.5. Sets of properties connected to the same classes allow for testing whether
a visualization positions such properties in a non-overlapping way. This example shows
two cyclic properties connected to the same class.

173 this:cyclicProperty2 a owl:ReflexiveProperty ;
174 rdfs:domain this:MultiPropertyOwner ;

175 rdfs:range this:MultiPropertyOwner

176

177 this:cyclicProperty3 a owl:0bjectProperty ;
178 rdfs:domain this:MultiPropertyOwner ;

179 rdfs:range this:MultiPropertyOwner

In ontology visualizations, sets of properties between the same pair of classes
(or the same class and literal) pose a particular challenge, as they may lead to
overlapping and thus illegible representations. Several of these cases have been
considered in OntoViBe. For instance, Listing 1.5 shows two cyclic properties
(i.e., properties whose domain and range are identical) connected to the same
class.

Finally, a few of the ontology elements are provided with labels, to check
how visualizations cope with multilingual labels that may also contain non-
ASCII characters (Listing 1.6). For all non-ASCII characters, the escaped ASCII
representation is used in the ontology file, as that maximizes the chances for a
good compatibility with the parser reading the file.

3.2 Verification of Coverage and Omissions

To verify that OntoViBe covers most of the features defined by the OWL 2 spec-
ifications, we provide two coverage matrices. Table 1 juxtaposes the elements of
OntoViBe with systematically listed OWL 2 features as described in the spec-
ifications. Table 2 shows which OntoViBe elements use which concrete OWL 2
identifiers, as per the IRIs declared in the OWL 2 Namespace Document [3].

18

OntoViBe: An Ontology Visualization Benchmark

Listing 1.6. Multilingual labels, some of which contain characters from different
scripts, exist for a few of the ontology elements.

135 this:importedTypeDatatypeProperty a owl:DatatypeProperty ;

136 rdfs:domain this:PropertyOwner ;

137 rdfs:range other:DivisibleByThreeEnumeration ;

138 rdfs:label "imported type datatype property"Qen ;

139 rdfs:label "propri\uOOE9t\uOOE9 d’un type de donn\uOOE9es import\uOOE9"
Qefr ;

140 rdfs:label "\u4E00\u79CD\u5BFC\u5165\u7C7B\ub78B\u7684\u6570\u636E\u7C7B\
u578B\u6027\u8D28"@zh-Hans .

The tables also reveal some parts of OWL that are intentionally not included
in OntoViBe:

Cardinalities: OntoViBe defines only a few cases of cardinality constraints for

properties: Structurally, these can be distinguished as no cardinality, car-
dinality on one end of a property relation and cardinality on both ends of
a property relation. Regarding the concrete cardinality constraints applied,
exact cardinality, a minimum cardinality, and a combination of a minimum
and a maximum cardinality are included in OntoViBe. Moreover, one of the
cardinality constraints is qualified and thus applies only to instances of a
specific class. These cases can thus only be used for checking whether cardi-
nalities are displayed at all.
We have opted against integrating all supported cardinalities in OntoViBe,
as the number of possible combinations would be considerable—in particu-
lar, when considering that “special values” such as zero and one might be
displayed in special ways. The total number of properties in OntoViBe would
have to be increased while providing only minor additional insight into the
tested visualization.

Annotations: Informative metadata has no effect on the conceptual structure
of an ontology, which is focused in OntoViBe. For that reason, only the most
prevalent metadata attributes, such as labels or the ontology title, have been
integrated into OntoViBe.

Equivalent constructs: In cases of conceptually equivalent ways to express
statements in OWL, only one way was integrated into OntoViBe. For in-
stance, deprecation of ontology elements can either be expressed by adding
the owl:deprecated attribute or by declaring the element as belonging to
one of the classes owl:DeprecatedClass or owl:DeprecatedProperty.

Deprecated elements: Deprecated language constructs of OWL itself are not
used in OntoViBe. An example is owl:DataRange that has been deprecated
as of OWL 2 in favor of rdfs:Datatype [3].

Moreover, statements referring to particular individuals have not been included,
as OntoViBe focuses on visualizations of the TBox of ontologies.

19

OntoViBe: An Ontology Visualization Benchmark

4 Examples of Application

In the following, we demonstrate the usefulness of OntoViBe by applying four
ontology visualizations to it: SOVA, VOWL, OWLViz, and OntoGraf. The latter
two come with the default installation of the popular ontology editor Protégé [2]
(desktop version 5.0), while the first two are comparatively well-specified with
regard to the visual elements they are based on. Moreover, we analyze the ontol-
ogy documentation generated for OntoViBe by the Live OWL Documentation
Environment (LODE).

We present screenshots of all these ontology visualizations that give an im-
pression of the supported features. We point out peculiarities of the visualiza-
tion approaches and their implementations that become apparent based on On-
toViBe. By this, we would like to provide some examples of how to use OntoViBe
for the qualitative analysis of ontology representations, and to confirm that such
an analysis is feasible by using OntoViBe.

It should be noted that a comprehensive analysis of ontology visualizations
requires additional methods, such as a checklist comprising further evaluation
criteria. These methods are typically not generic but tailored to the type of
visualization. For instance, measures for graph visualizations of ontologies could
include the total number of edges and edge crossings. However, such additional
measures are outside the scope of this work.

4.1 SOVA

TnfersectionCiass.

omp\umamcllu

o m
m w
Trersecton ype
\ S n — mw ‘\' UmnnC\u
DwuhlnEwaoEnumevanun ‘ \ / G O)
o . "\ \ 0 wmw-um c)
e . '

'
r’
-'~...‘ ‘A« '

lass 1" ¢ le (CimportedtypeDatatyperropery) op

v

AN
ComplementDatatype % \ NN Fumonm“m <hitpiontovibe visuaidataweb.org/ O#intersectionDatatype>
/A W ANNNS " “ TersectonTypeDatalypeP operly

PropertyOwnerType <1 Pmn MM
A\ NS Wm
DisiontUnionClass “ T oumonclau
EquivalentToSubclass A\mEquwlllanosubclau \
l EWWIIQMYGPNWHWWMY 7

v v L.w.n;::ﬁ::p]n) \oi\\v“\)
' %
v,..‘lg,__ s

AN A—

N A
m __ o ()

o3

d

(oo o b ©)

Fig. 1. OntoViBe visualized with SOVA.

20

OntoViBe: An Ontology Visualization Benchmark

SOVA is a plugin for Protégé that provides graph visualizations of ontolo-
gies [5]. When displaying OntoViBe in SOVA 0.8.4 (Figure 1), the distinction
of classes, object and datatype properties is instantly visible—though relying
purely on colors. Based on OntoViBe, support for functional, inverse functional,
and symmetric properties can be seen, as they are marked by little brown circles
with short abbreviations for the property characteristics.

Furthermore, some of the limitations of the SOVA implementation can be
identified. PropertyOwner and MultiPropertyOwner are classes, but at the same
time, they are instances of the class PropertyOwnerType. SOVA displays them
twice, once as classes and once as individuals, rather than as a single concept.
Cardinality constraints are displayed as small colored circles, which are easy to
spot—ifor a combined minimum and maximum cardinality constraint, however,
only the lower bound (the number 5 in the green circle) is shown. Overall, the
visualization contains many edges and edge crossings, which significantly reduce
its readability. A large number of these edges result from the fact that all implicit
subclass relations to owl:Thing are depicted in the SOVA visualization, and that
every piece of information is shown in a separate node.

4.2 VOWL

27N

1 \
Thing
\ .-
77 equivalent... -~ complemen...
dmmyPropery] ___ 4

~oo

N
~ —
L N
N
PropertyOwne... ‘subproperty.

Subclass of

K
Deprecatedimp...
(doprocaod, oxomai)
\
\ i
B
5
'

(unciona)”

G

7T
‘ \
‘)
\ I'
=,
=%

v

v

\
\

ot
N F
functional... DivisibleByTw...
~ \ intrsect.. / (functional) 0. i
~ functionalP...
N oo
\
g

unionType... 4

standardT...]

. k
deprecate... -t N~

RN . , . .
untypedCl... - F v [\
i CERE P Gstotn.. R g L N 3 J
1 \ . \ N - < .
rationalPro... ~ ’ -1 "~
! .A. ustom] \ !
H o) e customTy..) g
1 classToCl... ntypedDat..
i oplcProp.. mw [etonar | VoS
L

cyclicProp...

Fig. 2. OntoViBe visualized with VOWL.

VOWL, the Visual Notation for OWL Ontologies, was developed as a means
to both obtain a structural overview of OWL ontologies and recognize vari-
ous attributes of ontology elements at a glance [11]. It has been implemented

21

OntoViBe: An Ontology Visualization Benchmark

in two different tools, a plugin for Protégé and a responsive web application.
Figure 2 has been created with version 0.2.15 of the web application (called
WebVOWTL [10]) that is available at http://vowl.visualdataweb.org.

Applying VOWL to OntoViBe shows some typical characteristics of VOWL
visualizations, such as equivalent classes being represented as one class with a
double border, other special elements being multiplied in the visualization (e.g.,
owl:Thing), or text in brackets below the labels indicating attributes such as
functional or symmetric. Like in SOVA, custom data ranges are not (yet) com-
pletely shown, as is seen by the respective nodes that simply display the names
of the data ranges (e.g., “Divisib...” for “DivisibleByFiveEnumeration”) but no
more information on how they are defined. Moreover, it becomes apparent that
the WebVOWL implementation tends to route edges between the same pairs of
nodes in a way so as to avoid overlapping labels. As the implicit subclass rela-
tions to owl:Thing are not shown in VOWL, the nodes of the graph visualization
are less connected than in SOVA.

4.3 OWLViz

Fig. 3. OntoViBe visualized with OWLViz.

The OWLViz visualization is aimed at visualizing exclusively the hierarchical
class structure of ontologies. When used to visualize OntoViBe (Figure 3), the
fact that only inheritance (“is-a”) relationships are shown by OWLViz 4.1.2, gets
apparent. Also, it gets clear that equivalence relationships between classes are
expressed as bidirectional inheritance. Other property relations are not visualized
in OWLViz, and also further class or property characteristics are not included,
making OWLViz an ontology visualization with very limited expressiveness.

4.4 OntoGraf

OntoGraf (Figure 4) depicts property relations between classes with colored lines.
Given that OntoViBe includes properties of different types and with different
characteristics, it is notable that these are not displayed by OntoGraf 1.0.1 in
an inherently distinct way. Again, the graph is highly connected, as the implicit
subclass relations to owl:Thing are explicitly shown.

Like in OWLViz (Section 4.3), equivalence between classes is displayed by two
opposite inheritance arrows. Additionally, classes that are equivalent to others

22

OntoViBe: An Ontology Visualization Benchmark

DeprecatedClass

PmpertyOwnerTy i
‘
Comp\ementuam ,f/

UnionDatatype | / Impcnedc\ass |
Largeumanc\ass \ |
| | 4

L"'QED‘EN‘”'“" VoV / g Funmonamncho
Y
PlainClass \ \ L 4
R NV / -
ComplementClass - 7 N\

D\sluwmumcnc\
AlsoEquivalentT
oSubclass

pertyOwner S N

—~ =3
) NN i - S — - ~ \
class | \ . SNl T — .
/ /

/A
MultiSubclass < Deprecatedimpor D WOE
tedClass

% 5
IntersectionDat
atype

Fig. 4. OntoViBe visualized with OntoGraf.

are highlighted by an equivalence symbol. Other than that, the test shows that
OntoGraf copes well with several cyclic properties applied to the same class.

4.5 LODE

LODE is a documentation generator for ontologies [14]. While LODE is not
a visualization approach, the output of version 1.2 after processing OntoViBe
can be examined in a similar fashion. Features that get apparent in the excerpt
shown in Figure 5 include the transformation of the camel-cased element names
into separate words (e.g., DeprecatedClass becomes deprecated class), and the
lists of superclasses, subclasses, and connected properties per class.

5 Conclusion and Future Work

Based on the OWL 2 specifications, we have defined OntoViBe, a benchmark
ontology for testing ontology visualizations. We did not focus on scalability or
other common benchmark goals, such as execution speed, but rather on feature
completeness and flexibility in terms of combination of elements with regard to
the OWL 2 specifications. Since OWL may further evolve in the future, On-
toViBe needs to keep being updated accordingly.

Features not included in OntoViBe may be considered for future adjuncts
of the ontology. For instance, these could be separate modules that focus on

23

OntoViBe: An Ontology Visualization Benchmark

$ deprecated class
IRI: hitp://ontovibe visualdataweb.org/1.0#DeprecatedClass

disjoint class back o ToC o Class ToC.

Powered by

IRI: hitp://ontovibe visualdataweb.org/1.0#DisjointClass

has super-classes

dummy property°P min 5
has sub-classes

multi subclass ', subclass
is in domain of

opposite dummy property®P
is in range of

dummy property®P
is disjoint with

large union class

Fig. 5. Excerpt of the HTML documentation for OntoViBe generated by LODE.

testing specific aspects, such as combinations of cardinality constraints or the
population of OntoViBe with individuals and other ABox information.

Generally, we hope that our experiences from the development of OntoViBe
can benefit other projects, including benchmark data models beyond the task of
ontology visualization.

References

1. Ontology alignment evaluation initiative. http://oaei.ontologymatching.org

2. Protégé ontology editor. http://protege.stanford.edu

3. The OWL 2 schema vocabulary (OWL 2). http://wuw.w3.0rg/2002/07/owl.rdf
(2009)

4. Bail, S., Parsia, B., Sattler, U.: JustBench: A framework for OWL benchmarking.
In: Proceedings of the 9th International Semantic Web Conference (ISWC ’10),
pp. 32-47. Springer (2010)

5. Boinski, T., Jaworska, A., Kleczkowski, R., Kunowski, P.: Ontology visualization.
In: Proceedings of the 2nd International Conference on Information Technology
(ICIT ’10). pp. 17-20. IEEE (2010)

6. Carroll, J.J., Roo, J.D.: OWL web ontology language test cases. http://www.w3.
org/TR/owl-test/ (2004)

7. Dudés, M., Zamazal, O., Svétek, V.: Roadmapping and navigating in the ontology
visualization landscape. In: Proceedings of the 19th International Conference on
Knowledge Engineering and Knowledge Management (EKAW ’14), pp. 137-152.
Springer (2014)

8. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Web Semantics 3(2-3), 158-182 (2005)

9. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontol-
ogy visualization methods — a survey. ACM Computing Surveys 39(4), 10:1-10:43
(2007)

24

OntoViBe: An Ontology Visualization Benchmark

10.

11.

12.

13.

14.

15.

16.

17.

18.

Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: Web-based visualiza-
tion of ontologies. In: Proceedings of EKAW 2014 Satellite Events. Springer (to
appear)

Lohmann, S.; Negru, S., Haag, F., Ertl, T.: VOWL 2: User-oriented visualization of
ontologies. In: Proceedings of the 19th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW ’14), pp. 266-281. Springer (2014)
Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL on-
tology benchmark. In: Proceedings of the 3rd European Semantic Web Conference
(ESWC ’06), pp. 125-139. Springer (2006)

Meilicke, C., Garcia-Castro, R., Freitas, F., Van Hage, W.R., Montiel-Ponsoda,
E., Ribeiro De Azevedo, R., Stuckenschmidt, H., Svéb Zamazal, O., Svétek, V.,
Tamilin, A., Trojahn, C., Wang, S.: MultiFarm: A benchmark for multilingual
ontology matching. Web Semantics 15, 62-68 (2012)

Peroni, S., Shotton, D., Vitali, F.: The live OWL documentation environment:
A tool for the automatic generation of ontology documentation. In: Proceedings
of the 18th International Conference on Knowledge Engineering and Knowledge
Management (EKAW ’12). pp. 398-412. Springer (2012)

Smith, M., Horrocks, I., Krtzsch, M., Glimm, B.: OWL 2 web ontology language
conformance (second edition). http://www.w3.org/TR/owl2-conformance/ (2012)
Svéb, O., Svétek, V., Berka, P., Rak, D., Tomések, P.: OntoFarm: Towards an
experimental collection of parallel ontologies. In: Poster Track of ISWC 2005 (2005)
W3C OWL Working Group: OWL 2 web ontology language document overview
(second edition). http://www.w3.org/TR/owl2-overview/ (2012)

Wang, S.Y., Guo, Y., Qasem, A., Heflin, J.: Rapid benchmarking for semantic web
knowledge base systems. In: Proceedings of the 4th International Semantic Web
Conference (ISWC ’06), pp. 758-772. Springer (2005)

25

OntoViBe: An Ontology Visualization Benchmark

Table 1. Coverage table of OntoViBe elements with respect to OWL 2 features.

indicates that the re-
spective OntoViBe element
represents the feature in
question, while “o” signifies
that the OntoViBe element
is linked to something that
represents the feature.

SodA3esep

Namespace prefix a: de-
notes elements of the core
ontology, while elements
from the additional module
are marked with b:.

o o a:LargeUnionCla

o[a:lntersectionClass
o a:LargelntersectionC
<! aDisjoint Union
o o a:LargeDisjointU
o o] |[:PropertyOwnerType

ionC

DECEEEE DEE [ole] [ele[el ol [1ol [o[| [o[e[e) o[o] o| |[2:PropertyOwner
o [o[q) 3| |[4] o[o) o[o] [[o o| |[a2MultiPropertyOwner

<! —DisjointClassGroup

bel

bleBy TwoBnumeration

< RED aDivisibleByFiveEnume
o o a:UnionDatatype

cctionDatatype

asstandard TypeDataty peProperty
aruntypedDataty peProperty
acustomTypeDatatypeProperty
asunionTypeDatatypeProperty

arintersectionTy
a:complementTypeDataty peProperty
asimported TypeDatatypeProperty
aclassToClassProperty
aclassToUntypedC
aruntypedClassToC
a:Equivalent ToProperty Own
@ Bqu AtToSubclass
aAlsoEquivalent ToSubclass

DeDatatypeProperty

assProporty

sProp

acyclicProperty
aicyclicPropertyl
5| —HasSclfRestriction
a:cyclicProperty?2
v3

sProperty2
tedDa
tedObj

a:dummyProporty

AtypeProperty
tProperty

wroppositeDummyProperty
aequivalentObjectProperty

assubproperty

arealProperty

arcquivalentDataProperty

aranotherBquivalentDataProperty

arationalProperty

aFunctionalAnchor
a:functionalProperty
ainverseFunctionalProporty

a:function

IProperty AsInverse
afunctionalDatatypeProperty

a:disjointProperty

< o| _DisjointPropertyGroup

b
o [7] |[pTmporteac

o[s[e) biDoprocatedimportedClass

< < biDivisibleBy ThreeBnume
brimportedObjectProperty WithR
brimportedObjectPropertyWithDomain
biimportedDatatypeProperty
ObjectProperty
brdeprecatedlmportedDatatypeProperty]

ation

bideprecatedimporte:

26

OntoViBe: An Ontology Visualization Benchmark

Table 2. Coverage table of OntoViBe elements with respect to OWL 2 identifier

#H|Namespace prefix a: de-
notes elements of the core
ontology, while elements
from the additional module
are marked with b:.

1
Ssein[e

Joouole
oy

sioquow]e
o
Tyiodol Juorosse

AL

eupiApuRoRIe)

Frog porviouuy

O ETERERY

IE
100015

Trredordgise
Todory
T
Tmedoraon

Ted

Toredorar

a:PlainClass
a:DeprecatedClass
a:Class1
a:ComplementClass
a:UnionCl

a:LargeUnionC|

1
LargelntorsectionClass
aDisjointUnionClass

a:LargeDisjointUnionClass

a:PropertyOwnerType

aProportyOwner
aiMultiPropertyOwner
aiDisjointClass

0 | [=DisjointClassGroup
0 a:Subcla
0 a:MultiSubclass

. . a:DivisibleBy TwoEnumeration
. . a:DivisibleBy FiveBnumeration
o a:UnionDatatype

0 ailntersectionDataty po

o a:ComplementDatatype
aistandard Ty peDataty peProperty
aruntypedDataty peProporty

ypeDatatypeProperty

unionTypeDatatypeProperty

aiintersectionTypeDataty peProperty
arcomplement TypeDatatypeProperty

aimported TypeDatatypeProporty

o arclassToClassProperty

classToUntypedClassProperty
o aruntypedClass ToClassProperty
0 . arEquivalent ToProperty Owner
. . arEquivalent ToSubela;
EquivalentTe
o arcyclicProperty
<! arcyclicPropertyl
<! . - —HasSellRestriction
o azcyclicProperty?2

bolass

D arcyclicProporty3
ToClassPropertyl

o arclassToClassProperty2

0 <! ardoprecatedDatatypeProporty
ardeprecatedObjectProperty

ardummyProporty

oppositeDummyProporty

ArequivalentObjectProperty

arsubproperty

arrealProporty
cauivalentDataProporty
aranotherBquivalentDataProperty

airationalProperty

0 aiFunc TAnch
< <! arfunctionalProperty

- arinverseFunctionalProperty

o o a:functionalProperty Aslnverse

DEND arfunctionalDatatypeProperty
<! <! ardisjointProperty
. o[|[=DisiomtPropertyGroup

. bilmportedClass

0 D b:DeprocatedmportedClass
. - biDivisibleBy ThreeEnumeration
o brimportodObjectProperty WithRange

<! brimportedObject Property WithDomain
<! biimportedDatatypeProperty
o brdeprecatedlmportedObjectProperty

o < < brdeprecatedlmportedDatatypeProperty]

27

