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Abstract. Ontologies are a key component for several applications. Ontologies 

are often built by hand, but automatizing the process of ontology building has 

been and is even more recognized as very important for scaling and speeding up 

this process. However, several difficulties have been identified, some of them 

are quite fundamental. In this paper, we present our work for overcoming some 

of the fundamental difficulties. Our work resulted in improvements of an exist-

ing ontology building tool (Text2Onto). The contribution of our work consists 

in the creation of a flexible language (DTPL—Dependency Tree Patterns Lan-

guage) for expressing patterns as syntactic dependency trees to extract semantic 

relations, and making an existing ontology building tool (Text2Onto) able to use 

them. DTPL allows to exploit deep linguistic information (related to co-

reference resolutions, conjunctions, appositions, passive verbal phrases, etc.) 

provided by deep syntactic analysis of the text, and also (in order to improve the 

accuracy of patterns) to express the exclusion of some dependency bindings in 

patterns. 

Keywords: ontology building, semantic relation extraction, dependency tree 

patterns, deep linguistic information, Text2Onto, DTPL. 

1 Introduction 

Ontologies are a key component for several applications. Ontologies are often built by 
hand, but automatizing the process of building ontologies has been and is even more 
recognized as very important for scaling and speeding up this process. Indeed, hu-
mans employ texts for providing information directly or indirectly, through the Web 
for instance. However, unstructured or semi-structured texts do not provide a well-
defined semantic structure to be used by machines for reasoning tasks. Ontologies 
play therefore the key role for representing more explicitly the knowledge hidden in 
texts. As a consequence, ontologies can be made available for further applications. 

Unfortunately, several difficulties concerning automatic ontology building have 
been identified, some of them are quite fundamental. 

Additional arguments suggesting the need for developing complete “Ontology 
Building Support Systems” (OBSS) can be mentioned. Despite the fact that humans 
can recognize ontology artifacts from terms and sentences (which is enabled by their 
knowledge of the domain and the contexts on which terms are put together in sen-
tences, suggesting semantic relations between terms), OBSS can supply the frequent 
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terms and the contexts in which they appear, and systematically apply rules for sug-
gesting how they are related to ontology artifacts. The magnitude of these terms and 
contexts makes their identification a task more suitable for machines than humans. In 
addition, ontologies evolve and these evolutions should be supported by automated 
systems. 

For ontology building, there are two main challenges to be taken into account, 
which correspond to the basic building blocks of any ontology: 

─ The extraction of concepts and their possible instances: it is a task in which we 
further distinguish between the extraction of the concept/instance itself, and nam-
ing it; 

─ The extraction of semantic relations (hierarchical and non-hierarchical): it is a task 
in which we distinguish between identifying the relation occurrence (for example, 
identifying the relation occurrence “lion,animal”), and then identifying the seman-
tic relation to which it belongs (“lion,animal” is an occurrence of a hyponymy rela-
tion, the whole relation occurrence can be rewritten as is-hyponym-
of(lion,animal)). 

Even if these two challenges are partially connected (i.e. the extraction of relations 
may impact on already extracted concepts and instances or may lead to additional 
concepts and instances), in this paper, we concentrate on the second one, i.e. semantic 
relation extraction. However, as better explained in Section 2, concept/instance ex-
traction and relation extraction can be treated separately. This is also confirmed by the 
fact that tools used or usable for concept/instance extraction are developed inde-
pendently for performing well identified tasks such as terminology extraction (possi-
bly comprising disambiguation) and entity identification.  

Semantic relation extraction methods can be categorized into two approaches: Pat-
tern based (mainly employing linguistic patterns), and Clustering based (mainly em-
ploying clustering and statistical methods). We consider that linguistic patterns are 
natural and concrete (because close to what humans (can) apply when they manually 
build ontologies – by following methodologies and design patterns) for improving the 
overall ontology building process, thus, we have focused on pattern based approaches 
for relation extraction for the following detailed reasons: 

─ Patterns represent frequent contexts  in which term-pairs related by a given seman-
tic relation tend to appear—the reason for this observation is the way patterns are 
constructed; very often, this construction begins by specifying seed examples 
(term-pairs related by a given semantic relation), then looking for the contexts –in 
sentences– in which they tend to appear together (these contexts can be sequences 
or sets of words [1,10], or dependency paths in syntactic dependency trees [12], 
[11]), and then generalizing/merging the most similar contexts or keeping only the 
most accurate ones (i.e. contexts relating at least a given number of instance exam-
ples)—; for instance, the Hearst pattern " X(NP1) such as Y(NP) " [5] induces the 
relation "Y is-hyponym-of X", where the context in this case is the sequence of 
words "such as". 

─ Patterns fall into two categories: 1. Reliable patterns (they possess high precision 
and low recall), 2. Generic patterns (they possess low precision and high recall). 
One can use the advantages of one category to overcome the drawbacks of the oth-
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er. For instance, in [8], the authors have used reliable patterns as a reference to 
evaluate the relevance of relation occurrences extracted by generic patterns. 

─ Any extraction method and technique that does not use predefined patterns takes 
more processing time, because it needs to identify the (frequent) contexts in which 
terms related by a given relation do appear (for instance, these contexts can be syn-
tactic dependency links that bind individual words in the text—as used in [2] and 
[9]—, etc.). These methods are based on the distributional hypothesis [4] and its 
derivations [15], [6], [7]. 

However, effective usage of patterns within an OBSS remains an open research 
question. In Section 2, we present the existing methods for pattern-based relation 
extraction, and also their inherent difficulties (or limitations) preventing to get ac-
ceptable ontologies. Section 3 presents the contributions of the paper, i.e. (I) A meth-
od for enhancing OBSS with the ability to use deep linguistic information for relation 
extraction, (II) Making the generation of relations (including how relations can be 
named) through patterns very flexible, and (III) Implementing this method within an 
existing ontology building tool (Text2Onto). We finally conclude by summarizing the 
contributions and presenting perspectives in Section 4. 

2 Difficulties 

Willing to semi-automatically build ontologies (or to support ontology building as 
best as possible) starting form texts, improvements can be concentrated on: 

─ Improving the input text by modifying (substituting) the employed terms (e.g. for 
adopting a more standard terminology) and sentence structures, resolving ambigui-
ties and co-references and so on; 

─ Improving the quality of the final ontology by performing a quality assessment 
(e.g. using reasoning, if applicable, similarity (and other) measures) followed by 
relevant modifications;  

─ Improving the process of building the ontology by improving the efficiency and 
effectiveness of the required tasks (i.e. relation extraction, concept/instance extrac-
tion, etc.). 

In this paper, we focus on the third line of improvements, and more specifically, 
(as said in the Introduction) on relation extraction, because, as explained in section 
2.1 below, concept/instance extraction can be performed independently from relation 
extraction. Section 2.2 presents the inherent difficulties in using pattern-based ap-
proaches for extracting semantic relations and related work. 

2.1 Reasons for processing relation extraction and concept/instance extraction 
separately 

Although concept/instance extraction and relation extraction are two partially de-
pendent tasks, they can be treated separately. A formal justification can be presented 
as follows, on the top of a hypothetical ontology Description Logics formalization; 
whenever a relation (role) R is newly introduced, additional axioms involving existing 
concepts can be added. Generally speaking, introducing R can result in 3 situations: 



─ Additional specification for an existing concept C e.g. C⊑ ∃R.⊤⊓∀R.⊤ or 
C⊓∃R.⊤⊓∀R.⊤≠⊥; 

─ Splitting an existing concept in subconcepts C’, C’’ such as, for instance, 
C⊑C’⊓C’’, C’⊑∃R.⊤⊓∀R.⊤; 

─ Creating a new concept C’ such that C’⊑∃R.⊤⊓∀R.⊤. 

These few arguments should convince the reader that the extraction of relationships 
can be modularly managed as well. As a consequence, addressing only the difficulties 
concerning relation extraction is not a limitation; it even contributes in a well-defined 
modular way to improve concept/instance extraction.  

2.2 Relation extraction methods using flat patterns and the inherent 
difficulties 

Pattern-based relation extraction methods often concern hyponymy and part-of rela-
tions [8]. These methods often use patterns expressed as flat regular expressions (Flat 
patterns), which contain basic syntactic information (like part of speech tags, lemmas, 
affixes, etc.). The most known and successful example of using flat patterns is Hearst 
patterns [5], which are used for extracting the hyponymy relation (or IS-
A/subsumption relation when using the standard ontology terminology). Because of 
their high precision, Hearst patterns have been used even in clustering-based relation 
extraction methods: for instance, in [2], Hearst patterns have been used to name the 
clusters of a hierarchy of terms based on the hyponymy relation (a hyponymy hierar-
chy is close to an IS-A taxonomy). In [10], a similar approach has been used for nam-
ing the clusters of a hyponymy hierarchy. 

Another successful use of flat patterns is using reliable patterns to correct the ex-
traction results of less accurate patterns [8]. 

Java Annotation Patterns Engine (JAPE), a language of the open-source platform 
General Architecture for Text Engineering (GATE2), has been the key language for 
expressing flat patterns. With JAPE, flat patterns are expressed as transducers (using 
macros, input and output annotations) to annotate sentences in the text that match the 
pattern. Transducers are organized in queues corresponding to sentences in which, the 
results (output annotations or macros) of one phase can be used as inputs by the next 
one. A relevant usage of JAPE can be found in Text2Onto [3] (an ontology building 
tool), where GATE is used as the key library for preprocessing. Text2Onto prepro-
cessing tasks involve some of GATE’s components such as the Part Of Speech (POS) 
tagger, the named entity extractor, and also patterns made by the user. 

Using flat patterns has been successful for extracting semantic relations, but such 
patterns suffer from two major limitations that we point out hereafter.  

The absence of deep syntactic information in flat patterns leads to misinterpreta-
tions when these patterns are matched to the text. Consider the following sentences: 
(s1) “The semantic formalization of knowledge has been achieved by the use of sever-
al tools such as ontologies, semantic networks and expert systems.”; (s2) “Euclid, a 
great mathematician in his own right, showed to a king that there is no royal road to 
geometry.”. In these sentences, the comma can play two roles, i.e. a conjunction in 
(s1), or an introducer of apposition in (s2) (in (s2) the apposition is "great mathemati-
cian"). Another example of cases leading to misinterpretations is when the syntactic 
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structure of the text (having impact on its semantic interpretation) cannot be efficient-
ly and effectively captured by flat patterns. This includes cases like verb phrases ex-
pressed in active or passive form, or discontinuity cases (topicalization, etc.). 

Flat patterns contain often unnecessary symbols for relation extraction, which of-
ten reduce the patterns coverage.  It is the syntactic information conveyed by symbols 
that should be identified: in the example above (sentences (s1) and (s2)), what is in-
teresting is to know whether the comma symbol represents a conjunction or an appo-
sition. Another example is in the Hearst pattern P: " <Hypernym>(NP) including 
<Hyponym>(NP) ". The flat pattern P can be applied successfully to extract the hyp-
onymy relation instance "specie is-hyponym-of organism" (r1) from the sentence (s3) 
“Organisms including species like flies, yeast, monkeys and worms have previously 
been put on diets and shown to have their life spans extended by 30 to 200%.”. How-
ever, if we insert the adjective diverse between including and species in the sentence 
(s3) (which results in the sentence (s4) “Organisms including diverse species like 
flies, yeast, monkeys and …”), then P does not match anymore. However, the seman-
tic relation (r1) should have been extracted from both sentences. Adding an adjective 
between the word including and the hyponym in P is not necessary (from the seman-
tic view) to identify the hyponymy relation. 

2.3 Dependency tree patterns 

Fig. 1. (t3) A sub-tree of the syntactic dependency tree of the sentence (s3) 

Fig. 2. (t4) A sub-tree of the syntactic dependency tree of the sentence (s4) 

The limitations of flat patterns mentioned in Section 2.2, can be overcome by using 
patterns that take into account deep linguistic information, i.e. syntactic dependency 
links3. We call these patterns Dependency Tree patterns (DT patterns). For example, 
the limitation involving the Hearst pattern P and sentences (s3) and (s4) mentioned in 
Section 2.2 can be overcome by the following DT pattern P2 " <Hypernym>(NP) --
prep--> including(VBG4) --pobj--> <Hyponym>(NP) ". A matching between P2 and 
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[13]. 
4 VBG is a part of speech tag corresponding to a gerund or the present participle of a verb. 



the dependency tree t3/t4 (of the sentence s3/s4) in Figures 1,2 above allows the ex-
traction of the same relation (r1). 

Using dependency tree patterns for relation extraction has been proposed in [12] 
in which the authors presented an algorithm for discovering patterns expressed as 
dependency paths. Those patterns allowed the authors of [12] to construct (what they 
called) a “hypernym-only classifier” showing a dramatic improvement compared to 
previous classifiers: their best logistic regression classifier showed a 132% improve-
ment of average maximum F-score over the Hearst patterns based classifier. In [11] 
the authors followed a similar approach which they used to compare dependency tree 
patterns to flat patterns in terms of precision and recall (the patterns they used are for 
extracting hyponymy relations from Dutch texts) but their result is in contradiction 
with the work of [12]; the authors of [11] concluded that using deep syntactic infor-
mation does not produce substantial improvement in the precision and recall of the 
extracted results. An explanation for this gap can be identified in the section 4.3 (the 
error analysis section) of [11] where one can see that most of the errors are due to the 
syntactic analyzer. 

However, in the works mentioned above, the usage of dependency tree patterns 
has not been made neither systematic nor user-oriented. Indeed, in those works, there 
has been no specification of a formal language (in the same way that JAPE allows to 
express flat patterns to be used modularly by extraction tools) for expressing DT pat-
terns that can be used by users for programming and experimenting DT patterns. 

The most similar work to ours is [16] which presents a new ontology learning 
system (OntoCmaps) intended to overcome the drawbacks of tools using flat patterns 
which contain only shallow linguistic information (such as Text2Onto). The patterns 
used in OntoCmaps [17] contain deep linguistic information and are expressed in a 
language syntactically different than ours. Both languages are meant to make patterns 
use deep linguistic information for extracting knowledge from the text through the 
usage of regular expressions. Some of the differences between the language used to 
express patterns in OntoCmaps and DTPL (defined in Section 3) is that the later al-
lows to use many POS tags for a node, it also allows to express properties for patterns 
(as the JAPE language does) that extraction tools could use modularly. Another dif-
ference between the two languages is that each pattern expressed in DTPL is meant to 
extract only one kind of relations, the reason is that each time that a pattern identifies 
more than one kind of relations it indicates nested patterns to differentiate by specify-
ing dependency bindings (each dependency binding consists of a dependency link, the 
governor and the dependent) that should not exist when a match occurs (by adding the 
symbol ‘!’ to the dependency binding to exclude from the matching, in [18] we pre-
sent an example for such use); this distinction is needed because the extracted results 
of one pattern could be erroneous for another one. Another difference is that On-
toCmaps uses collapsed dependencies [13] while we use uncollapsed ones. 

3 Improvements in ontology building by using DT patterns 

The key contribution of this paper consists in giving OBSS the ability to modularly 
use patterns expressed as dependency trees (Dependency Tree patterns—DT pat-
terns) to take into account deep syntactic information found in texts. This will be 
achieved by (I) Specifying a formal language for expressing DT patterns to be 
matched with syntactic dependency trees of sentences, and (II) Creating and integrat-



ing a new algorithm in an ontology building tool (Text2Onto) to extract semantic 
relations by using DT patterns. 

3.1 DTPL, a language for expressing DT patterns 

In this section we are going to define DTPL (Dependency Tree Patterns Language), a 
language for expressing patterns represented as dependency trees, each DT pattern 
helps to extract a semantic relation. In order to extract a given relation from a sen-
tence S, a DT pattern must be matched with the syntactic dependency tree of S. 

Dependency trees (both patterns and sentences) comprise nodes and arrows. Table 
1 provides the reader with the relevant definitions (the 3rd column concerns patterns—
DT patterns— only).  

 

Tree 

component 

Components of the tree component Optional 

or Mandatory 

Node NodeValue: it represents either a non-terminal 

symbol (output annotation) or a terminal symbol 

(word) 

mandatory 

PosTags: the part(s) of speech of the symbol 

represented by this node 

mandatory (the wildcard 

character * can be used, it 

matches with any POS tag) 

Index: the index of the symbol in the sentence 

in which the pattern is to be matched 

optional 

Arrow DependencyLink: the name of the dependency 

link that exists between the two connected nodes 

mandatory 

SourceNode: the node from which the arrow is 

departing 

mandatory 

ArrivalNode: the node to which the arrow is 

aiming at 

mandatory 

Table 1. Inner components of a dependency tree 

In DT patterns, each node must possess only one parent, with one exception for 
any node linked by the ref dependency link (i.e. in a sentence containing a co-
reference, the ref link binds a relative pronoun with the noun it refers to) with its gov-
ernor, the reason is that such nodes have more than one parent (for more detail on co-
reference links used in this paper we refer the reader to [13]). In other terms, without 
the occurrences of the ref link, a DT pattern must have a tree structure. In [18] the 
reader can find examples that illustrate how the use of co-reference links in DT pat-
terns allows to extract semantic relations. 

In DT patterns, each node has to be expressed in the form NodeValue-
Index(PosTags) (e.g. the nodes " as(IN) ", " as-5(IN) ", " as(*) "), see the example at 
the end of this subsection. Each arrow must be expressed in the form " Dependen-
cyLabel(SourceNode,ArrivalNode); ". The only imposed constraint is that there 
must be no spaces between the closed parenthesis " ) " and the " ; " character for ex-
pressing each arrow (for instance, in the arrow " mwe(as(IN),such(JJ)); " of the DT 
pattern (dtp1) at Figure 3, we have DependencyLink=mwe, SourceNode=as(IN) and 
ArrivalNode=such(JJ)). The output annotation labels (which correspond to non-



terminal symbols) are in the form <annotationLabel>. For instance, <firstHyponym>, 

<domain>, <range> and <relationName> are nonterminal symbols in the pattern (dtp1). 
DT patterns can possess properties. Each property corresponds to a non-terminal 

symbol. Each pattern property is defined between two ‘#’ characters in the form 
#propertyName=regularExpression#, where propertyName is the name of the proper-
ty, and regularExpression is a regular expression combining terminal and non-
terminal symbols except pattern properties (for instance, in the pattern (dtp1) it’s not 
allowed to define the <relationName> property as follows #<relation-

Name>=<domain>_to_<range># because the non-terminal symbols <domain> and 
<range> are also properties of the pattern). 

A DT pattern allows to extract a relation (unary, binary, or having any other non-
null arity). The idea is that each argument of a relation can be pointed out by a pattern 
property. For instance, to identify the hyponym and hypernym of a hyponymy rela-
tion, one can use the annotations <hyponym> and <hypernym>. For binary relations 
(which are quite important because –for instance– any Description Logics formaliza-
tion of an ontology comprises only binary relations), we can use the properties <do-

main> to represent the Domain of a relation and <range> to represent its Range. 
The expressions written in a DT pattern are either defining properties (e.g. the 1st 

three lines in the patterns of Figure 3) or defining dependency links between nodes. 
The order on which POS tags are mentioned for each node isn’t important (for in-
stance, in (dtp2), the nodes <verb>(VBN|VBZ|VBD) and <verb>(VBZ|VBD|VBN) are the 
same). 

For extracting binary relations for ontologies, DT patterns have to contain the 
three properties <relationName>, <domain>, and <range>. 

 

 

(dtp1) DT pattern similar to Hearst’s such as pattern 

#<relationName>=is-hyponym-of# 

#<domain>=<conjDep># 

#<range>=<prepositionGov># 

mwe(as(IN),such(JJ)); 

pobj(as(IN),<firstHyponym>(NN|NNS|NNP)); 

prep(<prepositionGov>(NN|NNS),as(IN)); 

conj(<firstHyponym>(NN|NNS|NNP),<conjDep>(NN|NNS| 

NNP)); 

(dtp2) DT pattern for extracting semantic relations based on 

intransitive verb phrases (verb phrases of which the verb is 

intransitive) containing prepositions 

#<relationName>=<verb>_<directObject>_<preposition># 

#<domain>=<depNoun>  <subject># 

#<range>=<prepositionalObject># 

nsubj(<verb>(VBN|VBZ|VBD),<subject>(NNP|NN|NNS)); 

pobj(<preposition>(IN|TO),<prepositionalObject>(NNP|NN|NNS))

; 

dobj(<verb>(VBZ|VBN|VBD),<directObject>(NNP|NN|NNS)); 

prep(<verb>(VBZ|VBD|VBN),<preposition>(IN|TO)); 

nn(<subject>(NNP|NN|NNS),<depNoun>(NNP|NN|NNS)); 

Fig. 3. The DT patterns (dtp1) and (dtp2)  

In Figure 3, in the DT pattern (dtp1), the output annotation <domain> represents 
the hyponym, while <range> represents the hypernym. In (dtp2), the output annotation 
<domain> represents the subject of the verb annotated by <verb>, while <range> repre-
sents the prepositional object. The tree (tdtp1) in Figure 4 is a way to visualize the DT 
pattern (dtp1). For visualizing (dtp2) we refer the reader to [18]. 

The Domain and Range also have to be written as regular expression. For details 
on the syntax of DTPL we refer the reader to [18]. 



Fig. 4. (tdtp1) A visual representation of the DT pattern (dtp1) 

Matching (dtp1) with the dependency tree (t5) in Figure 5 (the syntactic depend-
ency tree of the sentence (s5) ”Carmakers such as Maruti, Hyundai, Tata, Toyota, 
Ford, GM & Mercedes put brakes on price hikes despite margin pressures”) allows 
to extract the relations is-hyponym-of(mercedes,carmaker), is-hyponym-
of(ford,carmaker), is-hyponym-of(toyota,carmaker), is-hyponym-of(tata,carmaker), 
is-hyponym-of(hyundai,carmaker), is-hyponym-of(gm,carmaker). While the pattern 
(dtp2) allows to extract from the tree (t6) in Figure 6 (the syntactic dependency tree of 
the sentence (s6)”The Ebola virus causes internal bleeding to its victims”) the rela-
tion cause_bleeding_to(ebola virus,victim) (r2). 

Fig. 5. (t5) The syntactic dependency tree of the sentence (s5) 

Fig. 6. (t6) The syntactic dependency tree of the sentence (s6) 

Other examples (including the exploitation of co-reference resolutions, and also 
examples of expressing the exclusion of some dependency bindings in DT patterns —
to improve the accuracy of patterns—) can be found at [18]. 



3.2 Text2Onto enhancement and improvement by introducing DTPL 

For relation extraction purposes, Text2Onto has been used as target for testing DT 
patterns expressed by the language DTPL.  

Text2Onto comprises various algorithms for ontology extraction tasks (such as re-
lation extraction, concept/instance extraction). Given our interest on relation extrac-
tion, we will only present Text2Onto5 native algorithm for relation extraction, named 
SubcatRelationExtraction. 

 

Difference DTP_BinaryRelationExtraction SubcatRelationExtraction 

The usage of deep 

linguistic infor-

mation 

Uses deep linguistic information for 

extracting semantic relations. 

Uses shallow syntactic information for 

relation extraction. 

The language used 

for expressing 

patterns 

Uses patterns expressed in DTPL. Uses patterns expressed in JAPE. 

Extracting multiple 

instances of a 

relation 

Extracts several instances of a 

relation without restrictions and 

provides a frequency,   indicative of 

the relevance of a relation instance. 

Extracts only one instance of a relation 

formed by the most frequent element of the 

Domain and the most frequent element of 

the Range (which is a source of errors). 

Allowing more 

modularity for 

relation extraction 

Allows the explicit naming of the 

extracted relation (is-a relations, 

part-of relations, verb phrase based 

relations, etc.). 

• Constrained to extract only relations based 

on verb phrases (for instance, for transitive 

verb phrases, it generates relation instances 

in the form Verb(Subject,Object)). 

• It does not allow the explicit naming of 

the relation. 

Table 2. Differences between DTP_BinaryRelationExtraction and SubcatRelationExtraction 

SubcatRelationExtraction is a pattern-based relation extraction algorithm using 
flat patterns expressed in JAPE (here, patterns are called JAPE rules) located in 
Text2Onto’s /3rdparty/gate/english directory. SubcatRelationExtraction takes into 
account the information that JAPE rules possess (like the output annotations Transi-
tiveVerbPhrase, Subject and Object) to generate relations. However, another limita-
tion of SubcatRelationExtraction (other than using flat patterns) is the exclusive usage 
of verb phrases (transitive/intransitive, etc.) for extracting and naming relations.   For 
instance, from the sentence (s6), SubcatRelationExtraction extracts (given the right 
JAPE rule) cause_to(ebola virus,victim) (which is not as meaningful as (r2)). Indeed, 
despite the fact that numerous semantic relationships can be identified from verb 
phrases, this is not always the case (as for the hyponymy relation in sentence (s5)). 

We implemented the new relation extraction algorithm 
DTP_BinaryRelationExtraction, which uses DT patterns expressed in DTPL for bina-
ry relation extraction. DTP_BinaryRelationExtraction uses a JAVA library (Tree-
Matcher) which generates relations by using the regular expressions that define the 
pattern properties <domain>, <range> and <relationName>. 

To parse the input texts, TreeMatcher uses the Stanford Full Parser version 3.3.1 
(which can be found at [14]) and its parsing model englishPCFG.ser.gz. TreeMatcher 

                                                           
5 Text2Onto version 2007-11-09, it can be found at https://code.google.com/p/text2onto/. 

https://code.google.com/p/text2onto/


is tolerant to DT patterns containing empty lines and multiples space characters as 
well. Each pattern has to be specified in DTPL in a distinct file (textual file) within 
Text2Onto’s /3rdparty/gate/english directory. The name of each file containing a DT 
pattern has to start with “dtp-“. For example, the DT pattern (dtp1) can be named 
“dtp-SuchAsPattern“. 

DT patterns can be added, removed, modified and used modularly by Text2Onto 
like any flat pattern expressed in JAPE (e.g. the JAPE rules SubclassOfRelation1, 
SubclassOfRelation2, etc. of the JAPE file ontological_relations.jape in Text2Onto’s 
/3rdparty/gate/english directory). 

TreeMatcher allows DTP_BinaryRelationExtraction to process relation extraction 
in four steps: (I) Reading the DT patterns in Text2Onto’s /3rdparty/gate/english direc-
tory, (II) Producing syntactic dependency trees from the input corpus by using the 
Stanford Full Parser, (III) Performing matching between dependency trees extracted 
from the corpus and the DT patterns, each matching can produce many relations (the 
generation of relations uses the regular expressions attached to the properties <do-

main>, <range> and <relationName> (see Section 3.1)), and each relation contains the 
frequency of its occurrence on the corpus, (IV) Producing the result as a list of rela-
tions (each relation instance possess an index indicative of its relevance). 

Table 2 above summarizes the differences between the algorithm 
DTP_BinaryRelationExtraction and Text2Onto’s native algorithm SubcatRelationEx-
traction. 

4 Conclusion and perspectives 

We have presented in this paper a method giving ontology building tools the ability to 
use deep linguistic information in patterns called DT patterns. Specifically, we have 
first defined a new language (DTPL) to express these patterns, and, accordingly, en-
hanced and improved an existing ontology building tool (Text2Onto). 
 
The work that we described in this paper is a piece of a bigger scheme aiming at: 

─ The integration of a new parsing strategy (especially made for relation extraction 
algorithms) assuring the accuracy of the extracted relations (because of the deep 
syntactic analysis) while maintaining a reasonable computational cost; 

─ Introducing two weakly supervised algorithms for pattern discovery, one for DT 
patterns and the other for flat patterns. The patterns to be learned are for extracting 
sematic relations (including IS-A and part-of). 

Using deep linguistic information needs deep syntactic analysis of the text which 
takes longer runtime than shallow parsing. This may be overcome by using a strategy 
for relation extraction which consists in parsing only sentences that contain at least 
two Terms Representative of the knowledge Domain of the corpus (TRD), the meth-
ods for extracting such terms need only shallow parsing. This strategy is expected to 
enhance the precision of the extracted results, but the gain in computational time de-
pends on how many sentences contain at least two TRDs in the corpus (i.e. if such 
sentences are too frequent, then there would be no significant gain). 



REFERENCES  

1. Sergey Brin. 1998. “Extracting patterns and relations from the world wide web”. WebDB 

Workshop at 6th International Conference on Extending Database Technology, EDBT ’98.  

2. Sharon A. Caraballo. 1999. “Automatic acquisition of a hypernym-labeled noun hierarchy 

from text”. In Proceedings of ACL-99. pp 120-126, Baltimore, MD. 

3. Philipp Cimiano, Johanna Völker. 2005. “Text2Onto: a framework for ontology learning 

and data-driven change discovery”. In Proceedings of the 10th international conference on 

Natural Language Processing and Information Systems, June 15-17, 2005, Alicante, 

Spain  [doi>10.1007/11428817_21]. 

4. Zellig S. Harris. 1954. “Distributional structure”. Word 10 (23): 146–162. 

5. Marti A. Hearst. 1992. “Automatic Acquisition of Hyponyms from Large Text Corpora”. In 

Proceedings of ACL-92. Nantes, France. 

6. Maayan Geffet, Ido Dagan. 2005. “The distributional inclusion hypotheses and lexical en-

tailment”. In Proceedings of the 43rd Annual Meeting on Association for Computational 

Linguistics, p.107-114, June 25-30, 2005, Ann Arbor, Michi-

gan  [doi>10.3115/1219840.1219854]. 

7. Maayan Zhitomirsky-Geffet, Ido Dagan, Idan Szpektor, Lili Kotlerman. 2010. “Directional 

distributional similarity for lexical inference”. Natural Language Engineering, 16(04): 359–

389. 

8. Patrick Pantel, Marco Pennacchiotti. 2006. “Espresso: leveraging generic patterns for au-

tomatically harvesting semantic relations”. In Proceedings of the 21st International Confer-

ence on Computational Linguistics and the 44th annual meeting of the Association for 

Computational Linguistics, p.113-120, July 17-18, 2006, Sydney, Australia. 

9. Patrick Pantel, Deepak Ravichandran. 2004. “Automatically labeling semantic classes”. In 

Proceedings of HLT/NAACL-04. pp. 321-328. Boston, MA. 

10. Patrick Pantel, Deepak Ravichandran, Eduard H. Hovy. 2004. “Towards terascale 

knowledge acquisition”. In Proceedings of COLING-04. pp. 771-777. Geneva, Switzerland. 

11. Erik T. K. Sang, Katja Hofmann. 2009. “Lexical patterns or dependency patterns: which is 

better for hypernym extraction?”. In Proceedings of the Thirteenth Conference on Computa-

tional Natural Language Learning (CoNLL '09). Association for Computational Linguistics, 

Stroudsburg, PA, USA, 174-182. 

12. Rion Snow, Daniel Jurafsky, Andrew Y. Ng. 2004. “Learning syntactic patterns for auto-

matic hypernym discovery”. In NIPS 2004. 

13. Marie-Catherine de Marneffe, Christopher D. Manning. 2008. “Stanford typed dependencies 

manual”: http://nlp.stanford.edu/software/dependencies_manual.pdf 

14. “The Stanford Parser: A statistical parser”: http://nlp.stanford.edu/software/lex-

parser.shtml 

15. Julie Weeds, David Weir, Diana McCarthy. 2004. “Characterizing Measures of Lexical 

Distributional Similarity”. In Proceedings of Coling-04. Geneva, Switzerland. 

16. Amal Zouaq, Dragan Gasevic, Marek Hatala. 2011. “Towards open ontology learning and 

filtering”. Information Systems, v.36 n.7, p.1064-1081, November, 

2011  [doi>10.1016/j.is.2011.03.005]. 

17. Amal Zouaq, Dragan Gasevic, Marek Hatala. 2012. “Linguistic Patterns for Information 

Extraction in OntoCmaps”. In Proceedings Of the 3rd Workshop on Ontology Patterns - 

WOP2012, in conjunction with the 11th International Semantic Web Conference, Boston, 

USA. 

18. “Grammar of the DTPL language, and examples”: 

http://people.irisa.fr/Nicolas.Bechet/WOP2014/ 

http://dl.acm.org/citation.cfm?id=2129816&CFID=388792570&CFTOKEN=59271365
http://dl.acm.org/citation.cfm?id=2129816&CFID=388792570&CFTOKEN=59271365
http://dl.acm.org/citation.cfm?id=2129816&CFID=388792570&CFTOKEN=59271365
http://dl.acm.org/citation.cfm?id=2129816&CFID=388792570&CFTOKEN=59271365
http://dx.doi.org/10.1007/11428817_21
http://dl.acm.org/citation.cfm?id=1219854&CFID=541211081&CFTOKEN=39823386
http://dl.acm.org/citation.cfm?id=1219854&CFID=541211081&CFTOKEN=39823386
http://dl.acm.org/citation.cfm?id=1219854&CFID=541211081&CFTOKEN=39823386
http://dx.doi.org/10.3115/1219840.1219854
http://dl.acm.org/citation.cfm?id=1220190&CFID=460310665&CFTOKEN=60240067
http://dl.acm.org/citation.cfm?id=1220190&CFID=460310665&CFTOKEN=60240067
http://dl.acm.org/citation.cfm?id=1220190&CFID=460310665&CFTOKEN=60240067
http://dl.acm.org/citation.cfm?id=1220190&CFID=460310665&CFTOKEN=60240067
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://dl.acm.org/citation.cfm?id=1995286&CFID=407812091&CFTOKEN=21541430
http://dl.acm.org/citation.cfm?id=1995286&CFID=407812091&CFTOKEN=21541430
http://dl.acm.org/citation.cfm?id=1995286&CFID=407812091&CFTOKEN=21541430
http://dx.doi.org/10.1016/j.is.2011.03.005
http://people.irisa.fr/Nicolas.Bechet/WOP2014/

