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Abstract—Assessing entity (e.g., person) risk from entity-related 
events requires appropriate techniques to address the relevance of 
events (individually and/or in aggregate) relative to a prevailing 
temporal frame of reference—for continuous risk monitoring, a 
running time point representing “the present.”  We describe two 
classes of temporal relevance techniques we have used towards 
insider threat detection in probabilistic risk models based on 
Bayesian networks.  One class of techniques is appropriate when a 
generic person Bayesian network is extended with a new random 
variable for each relevant event—practical when events of concern 
are infrequent and we expect their number per person to be small 
(as in public records monitoring).  Another class is needed when 
(as in computer network event monitoring) we expect too many 
relevant events to create a new random variable for each event.  
We present a use case employing both classes of techniques and 
discuss their relative strengths and weaknesses.  Finally, we 
describe the semantic technology framework supporting this 
work. 

Index Terms—temporal relevance; event relevance; anomaly 
detection; qualitative Bayesian network specification; probabilistic 
model; insider threat 

I.  INTRODUCTION 

Different parties have legitimate interests in understanding 
the risks that may be incurred when given persons are allowed 
to act in given roles.  Employers are concerned about prospective 
employees, lenders about borrowers, landlords about tenants, 
and judges and parole boards about convicted criminals.  To 
each role is accorded some privilege or stake—access to 
information/influence/reputation, finance, property, or 
liberty/public safety—that a bad actor could abuse or damage.  
While it's usually impossible to predict how a specific person P 
may behave in a given role R, an interested party Q may apply a 
probabilistic risk model M to available information about P to 
understand where P’s assessed risk may fall relative to other 
current or prospective players of R.  M may: 

• Have been derived from similar available data about 
other persons considered or selected for R 

• Be based on legal or other policy doctrine 

• Embody knowledge elicited from subject matter experts 
or published in a theory of human psychology.   

Depending on the outcome of M applied to P, Q may choose 
to: 

• Engage P in R (or not) 
• Modify or disengage from its R relationship with P 
• Invest more resources in assessing P’s risk (perhaps 

monitoring P’s actions) 

• Counsel P in the positive management of factors 
related to P’s risk 

• Modify M to accommodate an acceptable pattern of 
behavior not earlier addressed. 

We have developed a series of related person risk models 
addressing the risk that P poses to Q.  Each interprets the set of 
known events E involving P in assessing P’s risk.  Each also 
must address the relevance of a given event e in E to computing 
P’s risk at a given time point t in T—the entire interval of 
relevant events (beginning, e.g., at P’s birth, majority, or 
engagement with Q and ending at the present or a most recently 
available event report date).  Each model is probabilistic, 
calculating its core risk assessment using a Bayesian network 
(BN) [3].  Each model includes a generic person BN B, which it 
may extend (based on P’s events) to create a person-specific BN 
B . 

A. Model MC: Processing P’s Life Events with Ingestion Rules 

MC addresses the risk that P may disclose Q’s private 
information without proper authorization, considering relevant 
event types (say, technical certification or conduct reprimand) 
that may collectively have a few instances per year.  To address 
the effect of P’s events E on P’s risk, MC  runs a set of 
“ingestion” rules, each of which may extend B  to reflect a given 
event e in E, ultimately resulting in B .  Because each triggered 
ingestion rule adds one or more random variables to B, this 
approach tends to be practical when E is small relative to B  (so 
that B  does not grossly exceed expected computational 
requirements).  MC addresses the temporal relevance of a given 
event e by arranging that e’s influence on risk will build (when 
e is ongoing at t) or decay (when e is completed at t).  This 
mechanism creates a conditional probability table associated 
with the temporal relevance of e to reflect the juxtaposition of t 
(the reference time for this risk calculation) with respect to the 
time point at which e occurs (if e is a point event) or the 
respective time points at which e begins and ends (if e is a 
durative event). 

B. Model MS: Processing P’s Network Events with Summary 
Random Variables 

MS addresses the risk that P may pose an insider threat to Q 
via its access to Q’s information technology (IT) system—Q’s 
computers, computer networks, and related assets.  The threat 
may be unauthorized information access, disclosure, theft, or 
destruction.   MS considers relevant event types (e.g., copying a 
file to a thumb drive or to an external website) that may occur 
many times per day.  Given Q’s interest in assessing P’s risk on 
a continuous basis—over an employment interval—the 
“ingestion” approach that MC uses to grow B  with every event 
(instance) e in E is not feasible.  Instead, for each such fine-
grained event type τ, we include in MS’s version of B  a random 
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variable (RV) summarizing the extent to which P’s actions are 
believed to warrant a suspicion of P’s exploiting Q’s IT assets 
towards insider threat.  We calculate a likelihood for this 
summary RV so as to reflect: 

• The relative novelty or familiarity of P’s events of type 
τ over: 

o P’s history 
o The synchronous history of other persons 

playing role R for Q 
• Temporal decay. 
MS also considers relevant event types (e.g., copying a file to 

Wikileaks) that obviously manifest (vs. just warrant suspicion 
regarding) insider threat.  For these latter event types, MS uses 
the same ingestion approach as MC. 

C. Model MG: Combining MC and MS 

MG combines MC and MS to address both the above aspects 
of insider threat—so that each model aspect can inform the 
other.  E.g., if P’s non-network life events lead (the MG version 
of) B  to believe that P is likely Untrustworthy, this will 

increase (relative to a baseline, skeptical model state) B ’s belief 
that any potentially suspicious computer network actions 
actually do warrant suspicion.  Also, staff members who warrant 
more insider threat suspicion on the computer network side 
receive higher overall risk scores, facilitating Q’s ability to react 
appropriately in general. 

D. Common Modeling Framework 

We have (following [5] and [6]) developed the generic 
person BNs B  for the above models in our generic framework 
for large-scale probabilistic modeling that lets us specify: 

• Boolean-valued RVs (generally, person attribute 
concepts—e.g., Trustworthy)  

• Directed influences between concepts with discrete, 
qualitative strengths (obviating the usual BN 
requirement to specify—manually—for each RV a 
conditional probability table with one numeric entry for 
each element in the Cartesian product of its parents’ 
domains—i.e., 2n for n Boolean-valued domains) 

• Generic modeling patterns for concept indication, 
mitigation, and relevance. 

Our framework compiles such qualitative specifications into 
a representation executable by an off-the-shelf BN tool.  (We use 
the Netica® API from Norsys.)  Our B  for MC includes hundreds 
of RVs.  Our specification of B  for MS is small enough to exhibit 
below (see Fig. 10, in the Appendix).  B  for MG is again large—
and the framework’s support for layering of qualitative source 
specifications affords a much easier path to MG than if we had 
built an MS  BN outside the framework.   

Our ingestion rules that extend the generic person B  into a 
person-specific B   are described further in section VI. 

E. Sequel 

The sequel describes techniques we use to implement 
temporal relevance under the ingestion and summary approaches 
(introduced above with MC and with MS, respectively).  We also 
exhibit results from the combined model, MG, and discuss design 
trade-offs.  Finally, we describe our supporting semantic 
technology framework. 

II. COMPUTING TEMPORAL RELEVANCE FOR EVENTS 

INDIVIDUALLY INGESTED 

Intuitively, the impact of a major life event on one’s 
reputation is time-limited. While positive life events tend to 
build our confidence in a person—and negative ones erode it—
the glow of accomplishment—like the stain of failure or 
breach—naturally fades over time.  In our “whole-person” 
model MC, we uniformly invoke exponential decay (or growth) 
with half life γ per an invoked ingestion rule Γ.  The generic 
person Bayesian network (BN) B  accounts for interactions 
among beliefs about random variables (RVs) representing 
different person attribute concepts like those in Fig. 1.   

 
Fig. 1.  Partial generic person attribute concept BN B  (top), with related event 
categories (bottom).   

In Fig. 1, BN influences point (causally) from indicated 
concept hypothesis to indicating concept.  Stronger indications 
have thicker arrows, a single negative indication has a red, 
double-lined arrow.  The full BN includes several hundred nodes 
(mostly elided). 

MC’s ingestion rules apply P’s event evidence to B  to 
develop a person-specific BN B   including temporal relevance 
RVs (as explained next) appropriate for a given reference time 
point t.  B   then calculates the risk at t.  By constructing B   and 
calculating risk at successive time points, we develop a historical 
risk profile (i.e., a risk timeline) for P.  See Fig. 2.   

 
Fig. 2.  Person risk timeline with life event overlay—per MC.   

In Fig. 2, P’s events are plotted in bars (top left to center).  
Belief over time is plotted for person attribute concept RVs per 
legend (top).  Trustworthy is our top-level proxy for (the 
complement of) risk.  Note how beliefs in 
CommittedToSchool and CommittedToCareer tend to build 
while the related (HighSchoolAttendance and 
Employment) events are ongoing.  Influence interactions in B 

Reliable

Trustworthy
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cause belief in CommittedToCareer to grow even while P is 
still in high school.  (We tend to believe that someone who does 
well in school will also do well in a career.)  Belief in 
CommittedToSchool increases when P graduates but then 
become less relevant per half lives specified in ingestion rules 
for school-related events.  The 2007 MisdemeanorAssault 

charge decreases belief in all the other, positive concept RVs.  
See also Lisp macro calls expressing associated event data in 
Fig. 9. 

When Γ ingests an event e (e.g., of type 
EmploymentReprimand), it instantiates a BN design pattern 
that: 

• Creates an RV δ standing for e itself (an evidence RV) 
• Creates an RV ρ standing for the temporal relevance of 

e 
• Installs both ρ and the indicated person attribute RV π 

(standing for, e.g., DisregardsEmploymentRules) 
as BN parents of  δ (see left panel in Fig. 3, below) 

• Creates appropriate conditional probability tables 
(CPTs) for δ and ρ—denoted CPT(δ) and CPT(ρ). 

CPT(ρ) encodes e’s nominal relevance at t, calculated per 
ingestion rule Γ’s specified half life γ and the time α elapsed 
from e’s time point (designated by Γ as “beginning” or “ending,” 
when e is durative) until the reference point t.  For the case of 
relevance decay, we have θ = ½ (α / γ).  We specify θ as the 
probability P(ρ = “true”) and 1 – θ as P(ρ = “false”). 

 
Fig. 3.  Current ingestion scheme (left) and potential variant (right). 

In Fig. 3 (left), BN influences are associated with an 
(ingested event) evidence random variable (RV) δ, an indicated 
person attribute concept π, and a temporal relevance RV ρ.  In 
Fig. 3 (right), an evidence summarization scheme (using 
summary RV ∆) can insulate similarly-typed, closely temporally 
spaced events δi against departures from their nominally 
specified temporal relevance beliefs (say, θi) that otherwise 
would be induced among individual RVs (say, ρi)—had rather 
these been used. 

CPT(δ) respects e’s strength (specified in Γ) as an indicator 
for π and arranges that the probabilities P(π = “true”) and P(π = 
“false”) observed in B  for π do not depart (via the normal 
course of Bayesian influence propagation) from the nominal 
value θ installed in CPT(ρ).  This is a local correction that is 
subject to further departures when other ingestion rule 
executions also modify B .  While we have observed this 
ingestion technique for temporal relevance to work well in 
practice, when two or more events in E are both semantically 
and temporally close to each other, we again see temporal 
relevance departures resulting from Bayesian influence 
propagation in B .  (The relevance RVs ρi tend to reinforce each 
other, amplifying their observed beliefs beyond their nominal θj.  
In some applications, this pattern may be appropriate; in others 
not.)  We can ingest two nearly simultaneous (like-type) 
misdemeanor events without blatant departure from nominal θ.  
Ingesting five such events, we see θ decay only some 6% γ days 

after the events’ occurrence (when we might naively have 
expected 50%).   

We can—for quasi-simultaneous events—decouple the 
influence of temporal relevance from multiple indicating 
evidence events by invoking the alternative BN design pattern in 
in Fig. 3 (right panel), where ∆ is a summary RV for individual 
event RVs δ1, δ2, … , δn.  Accommodating evidence events δi 
occurring at materially different time points requires a more 
general approach to avoid the departures of temporal relevance 
beliefs from nominally specified values.  The approach we 
describe in section III works well in this regard, but it does not 
afford the same expressive power as ingestion rules (which can 
consider arbitrary temporal relationships between events—as 
discussed in section V).   

III. TEMPORAL RELEVANCE WITH SUMMARIZED EVENTS 

Computer network events that may inform Q about an insider 
threat by its engaged staff member P can occur so frequently that 
the ingestion technique described in section II is impractical.  MS 
avoids this issue by appealing to event summary RVs, as 
outlined in section I.  See Fig. 10 in the Appendix, where the RV 
CopyDecoyToExternal_Summary (e.g.) summarizes the 
suspiciousness of actions in which P has committed the network 
action CopyDecoyToExternal (i.e., copy a seeded “decoy” 
file to an external location, such as a website).   

Fig. 4 (full page) exhibits key metrics we compute for such 
a summary RV.  Because we expect network event monitoring 
to be continuous—with practically unbounded beginning and no 
ending—we compute key metrics in temporal buckets of 
exponentially increasing size (top three charts)—so that we can 
always double temporal (if not event) capacity by adding one 
more bucket.  Event occurrence buckets summarize (top/first) 
event type count since monitoring started, (second) signal with 
respect to P’s own history, (third) signal with respect to (a 
statistic computed over) the full/relevant monitored population.  
Each of 64 day’s variation metrics (middle charts) are computed 
with respect to just the other buckets for that day, normalizing 
ratios of counts in related buckets to the range [0, 1] using a 
sigmoid function.  Visual “floors” in the bottom three charts are 
set at 0.5 (the sigmoid function’s point of symmetry)—
highlighting direction of signal change.  Variation with respect 
to own history compares events new in a bucket (those counted 
in the next-largest bucket) to those that are old—reverting to 
bucket-dependent defaults when no earlier events exist.  To 
develop a suspicion likelihood (bottom chart), we first take a 
weighted average of each of the two anomaly metrics (with 
weights increasing, e.g., by bucket recency), then average these 
results.  We then enter this suspicion likelihood (using the 
Netica® API) as a likelihood finding on a summary RV (such as 
CopyDecoyToExternal_Summary).   

Under even weighting (invoked in Fig. 4 and Fig. 5), e’s 
relevance approximates 1/α.  Compare this to our half life decay 
function (from section II) used under ingestion: ½ (α / γ).  Either 
class of techniques would in fact be compatible with either of 
these (or other) functions of relevance over time.  We reviewed 
the overall half life approach and half lives appropriate for 
specific event types in MC with experts in the subject matter of 
unauthorized information disclosure risk.  Decay rates for 
computer network events in MS have yet to be tuned in the 
context of real-world data. 

π ρ

δ

π ρ

∆

δ1 δnδ2 …

82



 
Fig. 4.  Key metrics for a summary RV in an overall event type-related suspicion warrant.   

Not yet exhibited in our processing in Fig. 4 and Fig. 5 is an 
approximating space optimization that would shift the “old” 
content (see Fig. 4) from bucket j into bucket j + 1 at each (2 j)th 
time step (for values j descending from the highest value for 
which (t mod 2 j) = 0—rather than computing the buckets’ counts 
afresh at each time step, as shown.  The latter approach would 

require retaining full event counts for all time steps—impractical 
for long-term, continuous operation. 

A. Related Work 

Senator et al. [4] describe a flexible insider threat detection 
framework providing statistical and machine learning 
components that may be applied to data across different time 
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scales.  In contrast to our bucketed approach, their time scales 
must be explicitly specified by an application architect.  They 
illustrate a component workflow motivated by a specific threat 
scenario.  We have taken such scenarios to be compiled into 
random variables (for indicators and threats) in a Bayesian 
network (focused on overall risk assessment, rather than 
specifically on threat incident detection).  Our framework can 
address a broad set of statistics in and over temporal buckets, 
supporting event processing over an arbitrary time scale.  They 
describe results with a real-world dataset covering two months.  
We have developed our approach using a similar synthetic 
dataset [1] covering 18 months. 

IV. COMBINED MODEL USE CASE 

We combine MC with MS—producing MG—by appending 
the input models’ influence graph specifications and defining 
MS’s Untrustworthy as the opposite of MC’s Trustworthy.  
As discussed in section II, this affords a path for P’s non-
network, life events to influence the risk measured for P’s 
network events—thus enhancing the signal to noise ratio for 
persons who seem risky generally.  See Fig. 5. 

  

 
Fig. 5.  Person risk timeline—per MG.   

In Fig. 5, life events (top, left to center) are per the MC 
component.  Belief in P’s attribute concept RV Trustworthy— 
our top-level proxy for (the complement of) risk—falls lower 
with each successive derogatory life event (Reprimand, 
LoanDefault, FalsificationByOmission).  This increases 
the relevance of WarrantsITExploitationSuspicion to 
ExploitsITSystemAsInsider in the MS component.  (This 
influence is not mitigated, because P is not engaged by Q in the 
role of IT administrator—see Fig. 10 in the Appendix.)  Belief 
in WarrantsITExploitationSuspicion (third belief line 
from bottom on plot’s right) takes a jump of about 10% when 
MS’s summarized events mount (level until day 33, then 
increasing by one counted event per day) and MC’s ingested 
events have occurred.  By comparison (not shown), belief in 
WarrantsITExploitationSuspicion jumps by only about 
3% when MS stands alone, uninformed by an MC component.  
Life events decay per half lives not conspicuous at the depicted 
time scale. 

MG is a proof of concept.  Additional cross-model linkage 
and tuning of relevant modeling parameters may further increase 

the signal to noise ratio for network user risk detection when 
non-network, life events are consider in the same unified model. 

V. DISCUSSION: EVENT PROCESSING DESIGN TRADE-OFFS 

The different domains we have addressed in MC  and MS  
have presented event processing requirements largely amenable 
to—in fact, engendering—the two classes of techniques 
described here: per-event ingestion (section II) and event 
summarization (section III), respectively.  As noted in sections 
II and III, per-event ingestion is liable to (possibly unintended) 
amplifications of temporal relevance, when event instances are 
both semantically and temporally close.  This is, however, just 
the situation for which we have designed event summarization.  
While Fig. 3 (right) suggests a hybrid approach for MC to 
aggregate events that are temporally close, this really begs the 
question: What should be the effect of similar indicating events 
on the belief calculated for an indicated hypothesis random 
variable (RV) in a Bayesian network (BN) B ?    

Event summarization, in MS, adopts the extreme position that 
all events of a given type τ should be summarized in a single 
random variable (RV).  The uniformity of this approach may be 
appealing, but it bears a simplicity driven by the necessity of 
addressing a practically unlimited stream of fine-grained 
events—many of which are relatively weak indicators of insider 
threat.  Event ingestion, in MC, hazards (so far, in our application 
domain, rare) potential amplifications in temporal relevance but 
affords the power (via Allegro Prolog®-based ingestion rules 
and auxiliary predicates—see section VI.A) to express nuanced 
temporal configurations of events of different types that are not 
obviously amenable to bucketed historic summaries.  We might 
note temporal overlaps to extract certain compound events (say, 
of type FailsDrugTestDuringEmployment), but we could 
not refer to earlier relevant events, as in Fig. 6.  

 
Fig. 6.  Ingestion rule processing of non-overlapping events in MC.   

In Fig. 6, P, with a history of alcoholism, has an ongoing 
commitment to alcohol abstinence but also several intervening 
alcohol problem events (relapses).  While MC considers an 
alcohol abstinence commitment to mitigate an earlier alcohol 
problem, this commitment is voided (and the building of P’s 
credibility begins again) when P relapses.  In MC, the temporal 
specificity of a mitigating event (or generality of a mitigating 
person attribute concept) is important in determining whether to 
capture this effect with an ingestion rule, with a :MitigatedBy 
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influence specification (see Fig. 10 in the Appendix), or with a 
combination of such mechanisms.  MC’s related ingestion rule 
invokes our Allegro Prolog® predicate 
mostRecentLaterStartingReportedEvent to rebase the 
temporal relevance computation for the person attribute concept 
CommitsToAlcoholAbstinence at a most recent relapse 
event’s ending point. 

Intimately related to realizing an appropriate overall 
semantics for a person risk rating model M  (but outside the 
scope of the present discussion about processing person events) 
is the design of person attribute concept RVs and concept-to-
concept influences in a generic person BN B.  Even before we 
decide how to associate encountered evidence E with B, we 
must be happy with B’s inferences under arbitrary (likelihood or 
domain value) findings for B’s RVs.  This requires thinking (and 
testing) at least as hard about the semantic relationships among 
person attribute concept definitions and connecting influences as 
we do about those among event types and processing styles.  
(See also section VI.C.) 

VI. SUPPORTING SEMANTIC TECHNOLOGY 

Our ingestion rules are written in Allegro Prolog®.  They 
read events expressed using an OWL ontology from an 
AllegroGraph® triple store and create a person-specific BN B  
using the Allegro Common Lisp® API to the Netica® API.  
Allegro Prolog®, AllegroGraph®, Allegro Common Lisp® are 
products of Franz, Inc.  Netica® is a product of Norsys, Inc. The 
Allegro Common Lisp® API to the Netica® API is open-source.  
We see unique benefits in this software stack.  

A. Ingestion Rule Design 

AllegroGraph® is an RDF triple store management system 
that happens to be written in Allegro Common Lisp®.  While 
Franz supports AllegroGraph® clients for a number of different 
languages, the direct (vs. remote) Lisp client benefits us in that 
it shares memory with AllegroGraph® itself.  Allegro Prolog®, 
written in and included in Allegro Common Lisp®, is a logic 
programming facility that the Lisp direct client extends with 
Lisp macros and Prolog predicates affording access 
(alternatively to SPARQL) to AllegroGraph® triple stores.  
Because Allegro Prolog® supports calls to Lisp functions from 
within logic programming rules, our ingestion rules can invoke 
the Allegro Common Lisp® API to the Netica® API to augment 
an existing generic person Bayesian network (BN) model B  to 
add random variables (RVs) corresponding to a person P’s 
events E, resulting in a person-specific BN B .  See Fig. 7. 

 
Fig. 7.  MC ingestion rule.  

In Fig. 7, RestrainingOrder names an ingestion rule 
pertaining to events of type 
https://haystax.com/agent#ProtectiveRestraining

Order (whose RDF namespace part is signaled in 
AllegroGraph® by the prefix !agent:).  defIngestionRule 
is a macro wrapping Allegro Prolog® <-, registering the 
ingestion rule and performing static analysis to ensure well-
formedness.  +process-reportedEvent is the predicate—of 
which all ingestion rules are members—used to launch ingestion 
rules for a given person and reference time.  Logic programming 
variables are prefixed by ?, Common Lisp keywords by :.  We 
use the prefix ?* as a convention noting that a binding should 
have a native Lisp value, rather than an RDF part (i.e., a resource 
or a literal).  ?person and ?asOfDate will be bound when the 
rule is called.  The call to reportedEvent succeeds when 
?event can be bound to an instance of 
!agent:ProtectiveRestrainingOrder, such that 
?person is the !agent:riskRatingSubject of ?event, 
and ?event’s temporal characteristics and provenance are 
appropriate (binding values for other logic variables).  When 
reportedEvent succeeds, the call to the Lisp function 
create-EventConceptIndication is executed, augmenting 

B    as explained in section II and illustrated in Fig. 3 (left): 
CommitsDomesticViolence takes the role of ρ, ?event 
induces the new random variables δ and π, the value of the 
:DeltaDays keyword argument takes the role of α, that of the 
:HalfLife argument the role of γ.  The ingestion rule itself 
serves as Γ.  Upon completed ingestion processing, the realized 
B  can be compiled and queried for beliefs in person attribute 
concepts of interest. 

Allegro Prolog® includes predicate-level functors supporting 
logical operations (e.g., and, or), backtracking control (varieties 
of if, cut), and Lisp calls evaluated at predicate level for their 
truth values (i.e., not just execution for side effect as in Fig. 7).  
Under AllegroGraph®’s direct Lisp client, user-defined Allegro 
Prolog® rules (so ingestion rules and their supporting predicates) 
may include any RDF resources (i.e., URIs) or literals.   

B. Event Ontology Design 

With its signature treatment of programs as data (both 
expressed as lists), Lisp has long been a favorite language for 

(defIngestionRule RestrainingOrder
(+process-reportedEvent ?person ?*asOfDate)

(reportedEvent ?person
?*asOfDate
?event
!agent:ProtectiveRestrainingOrder
?*startDate
?*endDate
?*ongoing?
?*reportDate)

(lisp (create-EventConceptIndication
?person
:IndicatedConcept CommitsDomesticViolence
:+IndicatingEvent ?event
:Terminus :end
:DeltaDays (- ?*asOfDate ?*endDate)
:HalfLife (* 6 365)
:Strength :strong
:Polarity :positive)))
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creating embedded knowledge representation languages and 
supporting utilities.  We exploit this facility in designing our 
models’ ontologies for person-related events—using Lisp 
macros to express class, property, and individual (instance) 
definitions.  See Fig. 8. 

 
Fig. 8.  Lisp macro calls defining elements of our event ontology for MC.   

Macro calls in Fig. 8 add triples to a specified graph in an 
active store.  Store-resident triples may be serialized to a 
standard OWL file in (e.g.) RDF/XML format, then viewed in 
an available ontology browser (e.g., Protégé).  RDF namespace 
designations (e.g., !xsd:) are required only where these deviate 
from a specified default.  For a specified class (e.g., Person), an 
object or datatype property (e.g., hasGender or startDate) is 
created per the type (e.g., Gender or Date) specified.  OWL 
closed enumeration classes (e.g., Gender) are supported, as are 
OWL property types (e.g., Functional) and restrictions (e.g., 
cardinality).  Validation machinery ensures a specified 
ontology’s global consistency with respect to effective 
cardinalities allowed.   

Per Fig. 8, we now have a single-actor event ontology.  While 
MS defines persons’ roles (e.g., system administrator) with 
respect to organizations, we have not yet broached persons’ roles 
in events beyond the person-indexing property 
riskRatingSubject. 

Our framework also has a Lisp macro useful for defining 
hand-crafted datasets.  See Fig. 9. 

 
Fig. 9.  Lisp macro calls used to create the (minimal) dataset for the person 
profiled in Fig. 2.   

The framework validates any loaded dataset with respect to 
declared subject and object classes, literal data types, and 
property types (e.g., Functional) and restrictions (e.g., 
cardinality).   

C. Probabilistic Ontology Design 

We do not now break down person attribute concepts (e.g., 
Trustworthy) beyond their status as such.  Conceptually, they 
are properties of Person that—via their corresponding random 
variable (RVs) in B—constitute a (flat) probabilistic ontology 
[1].  Relationships among these RVs are of the kind specified in 
Fig. 10.  Most person attribute concept definitions in MC include 
citations to and/or excerpts from guiding policy documents 
regarding information disclosure risk that also specify related 
indicating, mitigating, and relevance-inducing concepts. 

VII. CONCLUSION 

We have described two classes of techniques for processing 
events in probabilistic person risk models, examining the 
advantages and disadvantages of techniques in each class.  Our 
proof-of-concept (section IV) combination of techniques from 
both classes demonstrates how inferences informed by either 
class of event processing can inform the other effectively.  The 
selection of event processing techniques is one key element of 
overall risk model design, along with event ontology design and 
influence network design.  In support of this work, we have 
developed and exploited appropriate semantic technology, with 
an eye towards flexible reuse. 

DISCLAIMER 

The views expressed are those of the authors and do not 
reflect the official policy or position of any legally recognized 
body or its representative parts or members.   
  

(defOntologyClass Person (Thing)
(hasGender Gender :Functional))

(defOntologyClass Gender (Thing)
(:enumeration Male Female OtherGender))

(defOntologyType Date !xsd:date)

(defOntologyClass Event (Thing)
(riskRatingSubject Person :Functional)
(startDate Date (:cardinality 1))
(endDate Date :Functional)
(sourceReport Report :Functional))

(defOntologyClass PointEvent (Event)
(hasConsequentEvent Event))

(defOntologyClass DurativeEvent (Event)
(hasSubEvent Event))

(defOntologyClass ProtectiveRestrainingOrder
(PointEvent))

(defOntologyInstance !data:P (Person))

(defOntologyInstance !data:PHighSchoolAttendance
(SchoolAttendance)

(riskRatingSubject !data:P)
(schoolCredentialAward !data:PDiplomaAward)
(startDate "2000-09-04")
(endDate "2004-06-15"))

(defOntologyInstance !data:PDiplomaAward
(SchoolCredentialAward)

(riskRatingSubject !data:P)
(startDate "2004-06-15")
(schoolCredentialAwarded HighSchoolDiploma))

(defOntologyInstance !data:PEmployment
(Employment)

(riskRatingSubject !data:P)
(startDate "2004-07-05")
(endDate "2009-09-05"))

(defOntologyInstance !data:PMisdemeanorAssault
(PoliceOffense)

(riskRatingSubject !data:P)
(offenseChargeSchedule Misdemeanor)
(startDate "2007-06-30"))
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APPENDIX: QUALITATIVE SPECIFICATION FOR THE GENERIC 

PERSON BAYESIAN NETWORK IN MS 

The generic person Bayesian network (BN) B  for MS is as 
specified in Fig. 10.  “_Summary” random variables (RVs) 
correspond to an event schema derived from US CERT synthetic 
dataset “r6.2” available at http://cert.org/insider-
threat/tools/index.cfm [1].   

In Fig. 10, the top-level RV 
ExploitsITSystemAsInsider is a disjunctive summary of 
two next-level RVs: CommitsITExploitation (P has 
committed an unambiguously exploitative event—presumed 
rare) and WarrantsITExploitationSuspicion (covering 
network events that may or may not be exploitative).  
CommitsITExploitation is absolutely indicated (“implied”) 
by three intermediate RVs that are in turn indicated (with 
varying strengths) by computer network event summary RVs.  
MS  enters likelihood findings for the latter into B  as described 
in section III.  WarrantsITExploitationSuspicion is 
considered relevant (absolutely) to CommitsITExploitation 

if  P is Untrustworthy, mitigated (strongly) if P HasRole-
ITAdmin (in Q). 

 
Fig. 10.  Qualitative specification for probabilistic influences in MS (with semi-colons prefixing comments in red.)   

(defparameter *Influences*
'((ExploitsITSystemAsInsider

(:ImpliedByDisjunction
(CommitsITExploitation
(:ImpliedBy (DestroysInformationUnauthorized)

(AccessesInformationUnauthorized) ; Ingested: HandlesKeylogger_Event
(DisclosesInformationUnauthorized) ; Ingested: CopyFileToWikileaks_Event

(StealsInformation))) ; Ingested: CopyFileToCompetitor_Event
(WarrantsITExploitationSuspicion

(:ImpliedBy (WarrantsInformationDestructionSuspicion
(:IndicatedBy (:Strongly (DeleteFileOnOthersPC_Summary))

(:Moderately (DeleteFileOnLabsPC_Summary))))
(WarrantsUnauthorizedInformationAccessSuspicion

(:IndicatedBy (:Moderately (AfterHoursLogin_Summary))
(:Weakly (OpenFileOnOthersPC_Summary))))

(WarrantsUnauthorizedInformationDisclosureSuspicion
(:IndicatedBy (:Strongly (CopyOthersFileToThumb_Summary)

(CopyDecoyToExternal_Summary))
(:Moderately (OpenDecoyFile_Summary)

(AcquireDecoyFile_Summary)
(CopyFileToExternal_Summary))

(:Weakly (CopyFromThumbToOwnPC_Summary)

(CopyOwnFileToThumb_Summary)
(CopyOthersFileToExternal_Summary)))))

(:RelevantIf (:Locally (:Absolutely (Untrustworthy))))
(:MitigatedBy (:Locally (:Strongly (HasRole-ITAdmin)))))))))
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