
Submitted to:
TTC 2014

Solving the TTC’14 FIXML Case Study with SIGMA

Filip Křikava
University Lille 1 - LIFL, France

INRIA Lille, Nord Europe
filip.krikava@inria.fr

Philippe Collet
Université Nice - Sophia Antipolis, France

CNRS, I3S, UMR 7271
philippe.collet@unice.fr

In this paper we describe a solution for the Transformation Tool Contest 2014 (TTC’14)
FIXML case study using SIGMA, a family of Scala internal Domain-Specific Languages (DSLs)
that provides an expressive and efficient API for model consistency checking and model trans-
formations. We solve both the core transformation task and its three extensions.

1 Introduction

In this paper we describe our solution for the TTC’14 FIXML case study [3] using the SIGMA
internal DSLs [2]. In addition to solving the core tasks that consists of generating Java, C# and
C++ code from FIXML messages structure, we also solve all the proposed extensions for deter-
mining appropriate types of element attributes, generating C code and generic FIXML schema
transformation. Our solution supports array generation for multiple sibling XML nodes that share
the same name, and most notably it generates proper constructor calls, keeping the initial values
as they occur in the XML document. Purposely, we choose a non-trivial object-oriented model in
order to demonstrate that SIGMA can be easily applied in complex transformations. Finally, for all
target languages, the generated code is complete, including all necessary statements so it compiles
without any problems or warning1.

The solution was developed in SIGMA, a family of Scala2 internal DSLs for model manipula-
tion tasks such as model validation, model to model (M2M), and model to text (M2T) transforma-
tions. Scala is a statically typed production-ready General-Purpose Language (GPL) that supports
both object-oriented and functional styles of programming. It uses type inference to combine static
type safety with a “look and feel” close to dynamically typed languages. SIGMA DSLs are embed-
ded in Scala as a library allowing one to manipulate models using high-level constructs similar to
the ones found in the external model manipulation DSLs such as ETL or ATL 3. The intent is to pro-
vide an approach that developers can use to implement many of the practical model manipulations
within a familiar environment, with a reduced learning overhead as well as improved usability and
performance. The solution is based on the Eclipse Modeling Framework (EMF), which is a pop-
ular meta-modeling framework widely used in both academia and industry, and which is directly
supported by SIGMA.

The complete source code is available on Github as well as directly runnable from a SHARE
environment4.

1Tested using OpenJDK 1.7, Mono 3.2 and Clang 6.0 on OSX 10.9
2http://scala-lang.org
3Epsilon − https://www.eclipse.org/epsilon/, ATL − https://www.eclipse.org/atl/
4Github − http://bit.ly/1mHSCHY, SHARE − http://bit.ly/1sSWDeB

mailto:filip.krikava@inria.fr
mailto:philippe.collet@unice.fr
http://scala-lang.org
https://www.eclipse.org/epsilon/
https://www.eclipse.org/atl/
http://bit.ly/1mHSCHY
http://bit.ly/1sSWDeB

2 Solving the TTC’14 FIXML Case Study with SIGMA

2 Solution Description

The core problem of this case study is generating source code from a FIXML message structure.
The input is a file representing an FIXML 4.4 message [1] and the output is some Java, C# and
C++ sources that represent the structure of the given FIXML message. As suggested, our solution
is realized by a systematic model transformation from an XML file to an XML model, which is
transformed into an object-oriented language model, from which we serialize into source code.
Prerequisites In SIGMA, EMF models are aligned with Scala through automatically generated
extension traits (placed in an src-gen folder) that allows for a seamless model navigation and mod-
ification using standard Scala expressions. This includes omitting get and set prefixes, convenient
first-order logic collection operations (e.g., map, filter, reduce), and first-class constructs for cre-
ating new model elements.

2.1 FIXML XML Message to XML Model

The parsing of an XML document is handled by a Scala library. Therefore this tasks in essentially
a M2M transformation between the Scala XML model and the XML model specified in the case
study description. This is a trivial operational-style transformation that has been realized by the
FIXMLParser class.

2.2 XML Model to ObjLang Model

The ObjLang meta-model chosen for this solution originates from the Featherweight Java model 5.
It provides a reasonable abstraction for an object-oriented programming language, supporting basic
classes, fields and expressions.

In SIGMA, a M2M transformation is represented as a Scala class that inherits from the M2MT

base class. Concretely, the XMLMM2ObjLang our transformation class is defined as:

1 class XMLMM2ObjLang extends M2MT with XMLMM with ObjLang { // mix-in generated extensions
2 // rule definitions
3 }

Within the class body, an arbitrary number of transformation rules can be specified as methods
using parameters to define the transformation source-target relation. For example, the first rule of
the transformation from XMLNode into a Class is defined as:

1 def ruleXMLNode2Class(s: XMLNode, t: Class) {
2 s.allSameSiblings foreach (associate(_, t))
3 t.name = s.tag
4 t.members ++= s.sTargets[Constructor]
5 t.members ++= s.allAttributes.sTarget[Field]; t.members ++= s.allSubnodes.sTarget[Field]
6 }

This rule represents a matched rule which is automatically applied for all matching elements. When
such a rule is executed, the transformation engine first creates all the defined target elements and
then calls the method whose body populates their content using arbitrary Scala code. A matched
rule is applied once and only once for each matching source element, creating a 1:1 or 1:N mapping.
However, in the current scenario, all XML node siblings with the same tag name should be mapped
into the same class (N:1 mapping). This can be done by explicitly associating the siblings to the
same class (line 2)6. The sTarget(s) methods are used to relate the corresponding target element(s)

5http://bit.ly/1mHRkwM
6The allSameSiblings is a helper collecting all same named siblings.

https://github.com/fikovnik/ttc14-fixml-sigma/blob/master/ttc14-fixml-base/src-gen
https://github.com/fikovnik/ttc14-fixml-sigma/blob/master/ttc14-fixml-base/src/fr/inria/spirals/sigma/ttc14/fixml/FIXMLParser.scala
https://github.com/fikovnik/ttc14-fixml-sigma/blob/master/ttc14-fixml-base/src/fr/inria/spirals/sigma/ttc14/fixml/XMLMM2ObjLang.scala
http://bit.ly/1mHRkwM

F. Křikava and P. Collet 3

that has been already or can be transformed from source element(s). On lines 4 and 5 the use
of these methods will populate the content of the newly created class by in turn executing the
corresponding rules, i.e. ruleXMLNode2DefaultConstructor, ruleXMLNode2NoneDefaultConstructor,
ruleXMLAttribute2Field and ruleXMLNode2Field.

The last rule converting XML nodes into fields has to handle multiple same-tag siblings. While
the case description proposes to use either multiple fields or a collection, the former brings a scala-
bility problem since in Java, there is a limit of the maximum number of method parameters already
exceeded by the test case 5. Therefore we have opted for the latter and use arrays. Moreover, even
though it has not been specifically requested in the case study, our transformation keeps the default
values of the attributes of the different nodes and use them for constructing the instances. This is
done by the ruleXMLNode2ConstructorCall rule.

2.3 ObjLang Model to Source code

This task involves transforming the ObjLang model into source code. SIGMA provides a template-
based code-explicit7 M2T transformation DSL that relies on Scala support for multi-line string
literal and string interpolation. Since we target multiple programming languages, we organize
the code generation in a set of Scala classes and use inheritance and class mix-ins to modu-
larly compose configurations for the respective languages. In the base classes we define meth-
ods that synthesize expressions and data types (BaseObjLangMTT) and abstract a class generation
(BaseObjLang2Class). Then we use these bases to configure concrete transformations.

The class ObjLang2Java contains the Java language specifics and it is almost the same as the C#
ObjLang2CSharp generator. For C++, the situation is more complicated, since next to the class im-
plementation (ObjLang2CPPClassImpl) a header file has to be generated (ObjLang2CPPClassHeader).
Furthermore, the ObjLang model is less suitable for C++ classes and thus extra work has to be
performed in the M2T transformation. The following is an example of a C++ header generator:

1 class ObjLang2CPPClassHeader extends BaseObjLang2Class with ObjLang2CPP with ObjLang2CPPHeader {
2 override def header = {
3 super.header
4 source.fields map (_.type_) collect {
5 case x: Class => x
6 } map (_.cppHeaderFile) foreach { hdr =>
7 !s"#include ${hdr.quoted}"
8 }
9 !endl

10 }
11
12 override def genFields = {
13 !"public:" indent {
14 super.genFields
15 }
16 }
17
18 override def genConstructors = {
19 !"public:" indent {
20 super.genConstructors
21 }
22 }
23 }

It mixes in basic traits and then overrides the template that generates the different segments of
the source code. For example, in C++ we need to add the public keyword before the fields and
constructor declarations. The unary ! (bang) operator provides a convenient way to output text.
The s string prefix denotes an interpolated string, which can include Scala expressions.

7It is the output text instead of the transformation code that is escaped.

https://github.com/fikovnik/ttc14-fixml-sigma/blob/master/ttc14-fixml-base/src/fr/inria/spirals/sigma/ttc14/fixml/BaseObjLangMTT.scala
https://github.com/fikovnik/ttc14-fixml-sigma/blob/master/ttc14-fixml-base/src/fr/inria/spirals/sigma/ttc14/fixml/BaseObjLang2Class.scala
https://github.com/fikovnik/ttc14-fixml-sigma/blob/master/ttc14-fixml-base/src/fr/inria/spirals/sigma/ttc14/fixml/ObjLang2Java.scala
https://github.com/fikovnik/ttc14-fixml-sigma/blob/master/ttc14-fixml-base/src/fr/inria/spirals/sigma/ttc14/fixml/ObjLang2CSharp.scala
https://github.com/fikovnik/ttc14-fixml-sigma/blob/master/ttc14-fixml-base/src/fr/inria/spirals/sigma/ttc14/fixml/ObjLang2CPPClassImpl.scala
https://github.com/fikovnik/ttc14-fixml-sigma/blob/master/ttc14-fixml-base/src/fr/inria/spirals/sigma/ttc14/fixml/ObjLang2CPPClassHeader.scala

4 Solving the TTC’14 FIXML Case Study with SIGMA

3 Extensions

In this section we describe our solutions to the case study extensions. Each extension has been
implemented as a separate project on GitHub and therefore an interested reader can easily see what
exactly has been changed.

3.1 Extension 1 - Selection of Appropriate Data Types

In this extension we use a simple heuristics to find an appropriate type for a field based on observed
attribute values. We only cover numbers (int, long, double), but since the process is mechanical,
it can be easily extended to cover all XML Schema data types. The ObjLang meta-model was
extended with new expressions representing the new type literals. In the M2M transformation we
added a function, guessDataType, which uses regular expressions to guess a data type based on a
single attribute value. An attribute can occur multiple times with different values and therefore
we need to consider all values at the same time in order to infer a type that is wide enough. An
overridden function guessDataType takes a sequence of attribute values, guesses their individual
types and then simply reduces the type to the largest one.

3.2 Extension 2 - Extension to Additional Languages

This extension adds a support for the C language. Since C is not an object-oriented language, more
work has to be done in the code generator part, but the M2M transformations remain untouched.
Instead of classes, we generate C structs with appropriate functions simulating object constructors.
In order to simplify the code generator, we use a helper function that allows us to initialize arrays
using simple expressions, which is not directly supported by the C language or by its standard li-
brary. Despite the lack of object orientation, our organization of the M2T transformation templates
makes the implementation only 36 lines longer than the C++ version.

3.3 Extension 3 - Generic Transformation

Essentially, a generic FIXML Schema to ObjLang model transformation means creating a generic
XML schema to ObjLang transformation. Such a task is far from being trivial and it would require
a significant engineering effort. Therefore we have chosen an alternative solution in which we
transform Java classes generated from an XML schema by the JAXB tool8. The advantage of
this solution is that the JAXB already does all the hard work of parsing XML schema, resolving
the element inheritance, substitutability, data types and others. The resulting Java classes in fact
represents an object-oriented model and therefore the actual M2M transformation into ObjLang is
rather straight forward. Finally, the JAXB can be thought of as a another model transformation.
Therefore our solution is still within the model-driven engineering domain while demonstrating a
strong advantage of internal DSL in reusing very easily another API with the host language.

The new input is a location of the FIXML XSD files and the new transformation workflow con-
sists of (1) XSD to Java sources using JAXB, (2) Java source to Java classes using a Java compiler,
(3) Java classes to ObjLang, (4) ObjLang to source source. The ObjModel had to be extended
to cover enumerated types a notion of inheritance and abstract classes. The new transformation
(Java2ObjLang) is about 30% smaller than the original transformation and arguably less complex.
It also demonstrates SIGMA support for manipulating different models than EMF, i.e., Java model

8Java Architecture for XML Binding https://jaxb.java.net/

https://github.com/fikovnik/ttc14-fixml-sigma/blob/master/ttc14-fixml-extension-3/src/fr/inria/spirals/sigma/ttc14/fixml/Java2ObjLang.scala
https://jaxb.java.net/

F. Křikava and P. Collet 5

implemented using Java reflection (JavaClassModel). The M2T transformation remained mostly un-
touched apart from the model extensions. It is important to note that the C code generator supports
neither class inheritance nor abstract classes.

4 Evaluation and Conclusion

We evaluate our solution to the core problem using the evaluation criteria proposed in the case
study description [3].
− The complexity as the number of operator occurrences, features and entity type name references

in the specification expressions. To the best of our knowledge there is no tool providing this
metric for Scala code. We therefore only provide our own estimate for the M2M transformation,
which contains about 450 expressions and uses 18 meta-models classes with 23 references.

− The accuracy measures the syntactical correctness of the generated source code and how well
the code represents the FIXML messages. The generated code compiles for all languages with-
out any warning nor any special compiler settings. Using arrays to represent same-tag sibling
nodes improves the quality and scalability of the code which is further enhanced by data type
heuristics for field types. Finally, we have also implemented the generic FIXML Schema trans-
formation that should result in a complete representation of FIXML messages in the different
languages.

− The development effort is estimated to be about 15 person-hours for the core problem.
− The fault tolerance is high since the Scala XML library can detect invalid XML with accurate

parsing errors.
− For all test cases (1, 2, 5 and 6), the execution time is about 7500ms for all the transformations

on SHARE.
− Modularity for the M2M transformation is 1− d

r = 7
8 = 0.125, where d is the number of depen-

dencies between rules and r is the number of rules.
− The level of abstraction for both the M2M and M2T transformations is medium since the rules

are defined declaratively (high abstraction), but their content is an imperative code (medium).
Despite that we opted for a complex ObjLang model, the resulting transformations are rather

expressive and quite concise. The complete implementation of the core problem consists of 500
lines of Scala code9. This FIXML case study provides a good illustration for some of the capabili-
ties of an internal DSL approach to model manipulations in the model-driven engineering domain.

Acknowledgments This work is partially supported by the Datalyse project (www.datalyse.fr).

References
[1] FIXML (2004): FIXML 4.4 Schema Version Guide.

[2] Filip Krikava, Philippe Collet & Robert B France (2014): Manipulating Models Using Internal Domain-
Specific Languages. In: Symposium on Applied Computing (SAC), track on Programming Languages
(PL), SAC.

[3] K. Lano, S. Yassipour-Tehrani & K. Maroukian (2014): Case study: FIXML to Java, C# and C++. In:
Transformation Tool Contest 2014.

9The extension 1 consists of 550, extension 2 of 720 and extension 3 of 770 source lines of code.

https://github.com/fikovnik/ttc14-fixml-sigma/blob/master/ttc14-fixml-extension-3/src/fr/inria/spirals/sigma/ttc14/fixml/javamm/JavaClassModel.scala
http://www.datalyse.fr/

6 Solving the TTC’14 FIXML Case Study with SIGMA

A Meta-Models

A.1 XML Meta-Model

The XML model specified in the case study description [3].

Figure 1: XML meta-model

A.2 ObjLang Meta-Model

The meta-model representing an object oriented language originating from the Featherweight Java
model, concretely from the version available at the EMFtext website10.

B XML File to XML Model Transformation

1 protected def parseNodes(nodes: Iterable[Node]): Iterable[XMLNode] = {
2 val elems = nodes collect { case e: Elem => e }
3
4 for (elem <- elems) yield XMLNode(
5 tag = elem.label,
6 subnodes = parseNodes(elem.child),
7 attributes = parseAttributes(elem.attributes))
8 }
9

10 protected def parseAttributes(metaData: MetaData) =
11 metaData collect {
12 case e: xml.Attribute => XMLAttribute(name = e.key, value = e.value.toString)
13 }

C XML Model to ObjLang Model Transformation Rules

1 def ruleXMLNode2DefaultConstructor(s: XMLNode, t: Constructor) {
2 s.allSameSiblings foreach (associate(_, t))
3 }

1 def ruleXMLNode2NonDefaultConstructor(s: XMLNode, t: Constructor) = guardedBy {
2 !s.isEmptyLeaf
3 } transform {
4
5 s.allSameSiblings foreach (associate(_, t))

10http://bit.ly/1mHRkwM

http://bit.ly/1mHRkwM

F. Křikava and P. Collet 7

Figure 2: ObjLang meta-model

6
7 for (e <- (s.allAttributes ++ s.allSubnodes.distinctBy(_.tag))) {
8 val param = e.sTarget[Parameter]
9 val field = e.sTarget[Field]

10
11 t.parameters += param
12 t.initialisations += FieldInitialisiation(
13 field = field,
14 expression = ParameterAccess(parameter = param))
15 }
16 }

1 def ruleXMLAttribute2ConstructorParameter(s: XMLAttribute, t: Parameter) {
2 t.name = checkName(s.name)
3 t.type_ = s.sTarget[Field].type_
4 }

1 def ruleXMLNode2ConstructorParameter(s: XMLNode, t: Parameter) {
2 val field = s.sTarget[Field]
3
4 t.name = field.name
5 t.many = field.many
6 t.type_ = field.type_
7 }

8 Solving the TTC’14 FIXML Case Study with SIGMA

1 @LazyUnique
2 def ruleXMLAttribute2Field(s: XMLAttribute, t: Field) {
3 t.name = checkName(s.name)
4
5 t.type_ = DTString
6 t.initialValue = StringLiteral(s.value)
7 }

1 @LazyUnique
2 def ruleXMLNode2Field(s: XMLNode, t: Field) {
3 val allSiblings = s.allSameSiblings
4 allSiblings foreach (associate(_, t))
5
6 t.type_ = s.sTarget[Class]
7
8 val groups = (s +: allSiblings) groupBy (_.eContainer)
9 val max = groups.values map (_.size) max

10
11 if (max > 1) {
12 t.name = s.tag + "_objects"
13 t.many = true
14 val init = ArrayLiteral(type_ = s.sTarget[Class])
15 val siblings = groups(s.eContainer)
16
17 init.elements ++= siblings.sTarget[ConstructorCall]
18 init.elements ++= 0 until (max - siblings.size) map (_ => NullLiteral())
19 t.initialValue = init
20 } else {
21 t.name = s.tag + "_object"
22 t.initialValue = s.sTarget[ConstructorCall]
23 }
24 }

1 @Lazy
2 def ruleXMLNode2ConstructorCall(s: XMLNode, t: ConstructorCall) {
3 val constructor = s.sTargets[Constructor]
4 .find { c =>
5 (c.parameters.isEmpty && s.isEmptyLeaf) ||
6 (c.parameters.nonEmpty && !s.isEmptyLeaf)
7 }
8 .get
9

10 t.constructor = constructor
11
12 t.arguments ++= {
13 for {
14 param <- constructor.parameters
15 source = param.sSource.get
16 } yield {
17 source match {
18 case attr: XMLAttribute =>
19 // we can cast since attributes have always primitive types
20 val dataType = param.type_.asInstanceOf[DataType]
21
22 s.attributes
23 .find(_.name == attr.name)
24 .map { local => StringLiteral(local.value) }
25 .getOrElse(NullLiteral())
26
27 case node: XMLNode =>
28 s.subnodes.filter(_.tag == node.tag) match {
29
30 case Seq() if !param.many =>
31 NullLiteral()
32 case Seq(x) if !param.many =>
33 x.sTarget[ConstructorCall]
34 case Seq(xs @ _*) =>
35 val groups = (node +: node.allSameSiblings) groupBy (_.eContainer)

F. Křikava and P. Collet 9

36 val max = groups.values map (_.size) max
37
38 val init = ArrayLiteral(type_ = param.type_)
39 init.elements ++= xs.sTarget[ConstructorCall]
40 init.elements ++= 0 until (max - xs.size) map (_ => NullLiteral())
41 init
42 }
43 }
44 }
45 }
46 }

D Handling Constructor Arguments

The number of same-tag sibling nodes can vary within a parent node. For example:

1 <Pty ID="OCC" R="21"/>
2 <Pty ID="C" R="38">
3 <Sub ID="ZZZ" Typ="2"/>
4 </Pty>
5 <Pty ID="C" R="38" Z="Q">
6 <Sub ID="ZZZ" Typ="2"/>
7 <Sub ID="ZZZ" Typ="3" Oed="X"/>
8 </Pty>

The Sub should be represented by an array field and the default initialization of PosRpt should
equal to the following (in Java):

1 public Pty[] Pty_objects = new Pty[] {
2 new Pty("OCC", "21", null, new Sub[] { null, null }),
3 new Pty("C", "38", null, new Sub[] { new Sub("ZZZ", "2", null), null }),
4 new Pty("C", "38", "Q", new Sub[] { new Sub("ZZZ", "2", null), new Sub("ZZZ", "3", "X") })
5 };

Note that the first and second instances of Pty contain two and one null respectively in the place of
missing Sub subnode.

The ConstructorCall used for field initializations in the ruleXMLNode2Field is created from an
XML node using the last rule in the transformation:

1 @Lazy
2 def ruleXMLNode2ConstructorCall(s: XMLNode, t: ConstructorCall) {
3 val constructor = s.sTargets[Constructor]
4 .find { c =>
5 (c.parameters.isEmpty && s.isEmptyLeaf) ||
6 (c.parameters.nonEmpty && !s.isEmptyLeaf)
7 }
8 .get
9

10 t.constructor = constructor
11
12 t.arguments ++= {
13 for {
14 param <- constructor.parameters
15 source = param.sSource.get
16 } yield {
17 source match {
18 case attr: XMLAttribute =>
19 // we can cast since attributes have always primitive types

10 Solving the TTC’14 FIXML Case Study with SIGMA

20 val dataType = param.type_.asInstanceOf[DataType]
21
22 s.attributes
23 .find(_.name == attr.name)
24 .map { local => StringLiteral(local.value) }
25 .getOrElse(NullLiteral())
26
27 case node: XMLNode =>
28 s.subnodes.filter(_.tag == node.tag) match {
29
30 case Seq() if !param.many =>
31 NullLiteral()
32 case Seq(x) if !param.many =>
33 x.sTarget[ConstructorCall]
34 case Seq(xs @ _*) =>
35 val groups = (node +: node.allSameSiblings) groupBy (_.eContainer)
36 val max = groups.values map (_.size) max
37
38 val init = ArrayLiteral(type_ = param.type_)
39 init.elements ++= xs.sTarget[ConstructorCall]
40 init.elements ++= 0 until (max - xs.size) map (_ => NullLiteral())
41 init
42 }
43 }
44 }
45 }
46 }

First we need to find which constructor shall be used depending on whether the given XML
node (or any of its same-tag siblings) contains any attributes or subnodes. Next, we need to resolve
the arguments for the case of non-default constructor. We do this by using the sources, i.e., the
source elements (XML node or XML attribute) that were used to create the constructor parameters.
SIGMA provides sSource method that is the inverse of sTarget call with the difference that it will
not trigger any rule execution. In the pattern matching we need to cover all possible cases such
as an attribute defined locally or an attribute defined in a same-tag sibling, thus using null for its
initialization.

E Data Type Heuristics

1 // basic types
2 val DTString = DataType(name = "string")
3 val DTDouble = DataType(name = "double")
4 val DTLong = DataType(name = "long")
5 val DTInteger = DataType(name = "int")
6
7 // it also stores the promotion ordering from right to left
8 val Builtins = Seq(DTString, DTDouble, DTLong, DTInteger)
9

10 private val PDouble = """([+-]?\d+.\d+)""".r
11 private val PInteger = """([+-]?\d+)""".r
12
13 def guessDataType(value: String): DataType = value match {
14 case PDouble(_) => DTDouble
15 case PInteger(_) => Try(Integer.parseInt(value)) map (_ => DTInteger) getOrElse (DTLong)
16 case _ => DTString
17 }
18
19 def guessDataType(values: Seq[String]): DataType =
20 values map guessDataType reduce { (a, b) =>
21 if (Builtins.indexOf(a) < Builtins.indexOf(b)) a else b
22 }

F. Křikava and P. Collet 11

F Generating C Code

Input document:

1 <Pty ID="C" R="38">
2 <Sub ID="ZZZZZ" Typ="2"/>
3 <Sub ID="ZZZ" Typ="2"/>
4 </Pty>

Generated C code:

1 #ifndef _Pty_H_
2 #define _Pty_H_
3
4 #include <stdlib.h>
5
6 #include "Sub.h"
7
8 typedef struct {
9 char* _R;

10 char* _ID;
11 Sub** Sub_objects;
12 } Pty;
13
14 Pty* Pty_new();
15 Pty* Pty_init_custom(Pty* this, char* _R, char* _ID, Sub** Sub_objects);
16 Pty* Pty_init(Pty* this);
17
18 #endif // _Pty_H_

1 #include "arrays.h"
2
3 #include "Pty.h"
4
5 Pty* Pty_new() {
6 return (Pty*) malloc(sizeof(Pty));
7 }
8
9 Pty* Pty_init_custom(Pty* this, char* _R, char* _ID, Sub** Sub_objects) {

10 this->_R = _R;
11 this->_ID = _ID;
12 this->Sub_objects = Sub_objects;
13 return this;
14 }
15
16 Pty* Pty_init(Pty* this) {
17 this->_R = "21";
18 this->_ID = "OCC";
19 this->Sub_objects = (Sub**) new_array(2, Sub_init_custom(Sub_new(), "2", "ZZZ"), NULL);
20 return this;
21 }

	1 Introduction
	2 Solution Description
	2.1 FIXML XML Message to XML Model
	2.2 XML Model to ObjLang Model
	2.3 ObjLang Model to Source code

	3 Extensions
	3.1 Extension 1 - Selection of Appropriate Data Types
	3.2 Extension 2 - Extension to Additional Languages
	3.3 Extension 3 - Generic Transformation

	4 Evaluation and Conclusion
	A Meta-Models
	A.1 XML Meta-Model
	A.2 ObjLang Meta-Model

	B XML File to XML Model Transformation
	C XML Model to ObjLang Model Transformation Rules
	D Handling Constructor Arguments
	E Data Type Heuristics
	F Generating C Code

