AToMPM Solution for the IMDB Case Study

Huseyin Ergin Eugene Syriani
University of Alabama, Tuscaloosa AL, U.S.A. Université de Montreal, Montreal, QC, Canada
her gi n@ri mson. ua. edu syriani @ro.unontreal . ca

In this paper, we present an ATOMPM solution for the IMDB cagely of TTC 2014.

1 Introduction

AToMPM [3] (A Tool for Multi-Paradigm Modeling) allows one to model ankeeute model transfor-
mations. It provides a graphical user interface to define the metamodels ofpihit and output lan-
guages, define the transformation rules and their scheduling, andi@x@euinuously or step-by-step
transformations on given models.

The model transformation language of ATOMPM is MoTii [2]. In MoTif , releonsist of a pre- and
a post-condition. The pre-condition pattern determines the applicability ofithend is usually defined
with a left-hand side (LHS) and optional negative application conditionsQNAhe post-condition
determines the result of the rule and is defined by a right-hand side (Rki&) wiust be satisfied after
the rule is applied. Furthermore, any element in a rule in the LHS or RHS magsignad to a pivot. It
acts as a variable that can be referred to by other rules. To use agrvaement from the LHS or NAC
can be bound to that pivot. The rule in Hig. 1 is a MoTif rule with a NAC, LH&] &HS (from left to
right). For the remaining of the paper, we have used a more concise ndtatave space and annotate
the rules as needed.

The scheduling, or the control flow, describes the order in which the emkeexecuted. Each rule is
represented by a rule block having three ports. Conceptually, a ride&zesanodels via the input port
at the top. If the rule is successfully applied, the resulting model is outpot the success port at the
bottom left. Otherwise, the model does not satisfy the pre-condition andrigiead model is output
from the fail port at the bottom right. Figl 2 depicts an example of contral fitucture to schedule
MoTif rules.

Some rule blocks are annotated in the scheduling, denoting a specialdrefiae meaning of these
rules are: (1)ARule: is a regular “Atomic Rule” that is executed once on a single match. It has no
annotation. €., resetlterator in Fig.[d) (2)FRule: stands for “For all Rule”. All matches are found first
and then the rule is applied on all the matches. It is annotated with a lettee.t,.domputeAverage
in Fig.[4) (3)SRule: stands for “Star Rule”. It is a rule that is recursively applied on eacttimas
long as matches are found. Therefore, the result of this rule is the atationwf each application. It

Figure 1: MoTif rule as it appears in ATOMPM .

© H. Ergin & E. Syriani
This work is licensed under the
Creative Commoris Attribution License.

Submitted to:
TTC 2014

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 AToMPM Solution for the IMDB Case Study

createPositive

<@

[Movie] 2[Movie] 3[Movie] “[Movie]*[Movie
0

1[0>n] 0>n eﬂ 7t‘i sﬂ ORIV
current[0]<limit[0] rating[1]=10*n, rating[2]=10*n+1, rating[3]=10*n+2, rating[4]=10%*n+3, rating[5]=10*n+4 *
name([6]=10*n, name[7]=10*n-+1, name[8]=10*n+2, name[9]=10*n+3, name[10]=10*n+4 -createPositive
curvenl[o ++)

:resetlterator

()

(

Movie] 2[Movie] 3[Movie] *[Movie]*[Movie
resetlterator

1
I — 2 32
1(0>n] JWARI[0>n]] 6 7¢d sti 0 1004

current[0]<limit[0] rating[1]=10*n+5, rating[2]=10*n+6, rating[3]=10*n+7, rating[4]=10*n+3, rating[5]=10*n+9

name[6]=10*n+5, name[7]=10*n+6, name[8]=10*n+7, name[9]=10*n+8, name[10]=10*n+9
current[0]++

resetlterator
0 0
1[0>n] A1[0>n]

current[0]=0

(K

:createNegative

O\
&

Figure 2: Task 1 rules and scheduling.

is annotated with an asterisk *’e(., createPositive in Fig.[2) (4) QRule: stands for “Query Rule”. It
is anARule with no side effect since it does not have a RHS, but may still assign pikkassannotated
with a question mark ‘?’.€g., findCouple in Fig.[4) (5)CQRule: stands for “Complex Query Rule”. It
is a nestedRule where a second query filters the result of the first one. It is annotatedwo question
marks ‘??’. €9., getOneCouple andnotHighestRatingCouple in Fig.[5)

This paper provides a solution to the IMDB model transformation case stimbge full description
can be found at]1]. In Sectidn 2, we provide the details about the solutid®ectiorl 8, we summarize
the results and conclude.

2 Solution

We have solved every task and extension of the case study in AToOMPMis¥dethe same metamodel as
given in the briefing documeniti[1] with slight modifications. An intefiey variable is added tGroup
class to mark already processed groups while computing the top coupléspadifjues. Also for the
sake of simplicity, we have addedravieNumber attribute toGroup class to hold the number of movies
that group has. ATOMPM does not have an iterator as a schedulingus&ué-or this reason, we have
added an explicitteration class both to iterate on a rule and pass the value of the iterator to the rules to
be used within. In the rulegteration class has a concrete syntax of a black rectangle and a text starting
with “I” and having the current value and the limit of the iteration.

Each solution shows the rules on the left of the figure and the schedulthgs# rules on the right.

2.1 Task 1: Generating Test Data

The first task is to generate the test data for the case. The rules anchdtulitg of these rules are
depicted in FiglL2. The rules help to create a serigdmfies, Actors andActresses with the necessary
relationships among each other. The rules mostly look like the original rules khaitument, only with
the addition of théteration class. The iterator makes the transformationMuimes. This parameter can
be set within the input model. We have an extra rule to reset the iteratoetmfery use.

H. Ergin & E. Syriani 3

i reateCouple
2 A2 et ?
4 5 Ha ia| 2 3| i 1 ie| 2 3| i 1 H 1 1
pl p : m : m | :findStarsAndCreateCouple|
........... _: ‘E a : \ X\@
22 e e o R [DR |
4 5 i p1 P2 pLp PP p2 :referenceToCoupleMovies
p2_p ! 6 @upld G 4@ud 1 Goupld)
1 1 r
6Coupd H * é

Figure 3: Task 2 rules and scheduling.

findCouple computeAverage

2[Movie] [Movie . ?
: 1@ 1
s

Coup® e
F

avgRating[11==0

computeAverage

X

.. (avgRating[1]*movieNumber[1)-+rating[2])
avgRating[1]= T (ovieNamber)
movieNumber{1]++

Figure 4: Task 3 rules and scheduling.

2.2 Task 2: Finding Couples

This task aims to find two people who played in at least three movies togethate e@ouple for them
and reference to each movie they played in together. The rules and thduioly of these rules are
depicted in Fig[3. ThéindStarsAndCreateCouple rule checks for two people that played in the same
three movies. The rule will find the match if they have more than three movies then aCouple
class is created with a relation to each person. The NACs prevent to eopsiople already in couples.
Since they can be either thel or thep2 of a couple, there are two NACs for each case. Piyats
andp2 are assigned to these people, so we can refer to these two personsaiiaiven§ rule. The
referenceToCoupleMovies rule creates aommonMovies relation from the newly created couple to each
movie they played together, if not already referenced.

2.3 Task 3: Computing Aver age Rankings

This task is to compute the average rankings of each couple by usirgrtinéeonMovies relation of the
couples. The rules and the scheduling of these rules are depicted [0 HigefindCouple rule finds a
couple withavgRating zero, which means its average rating is not computed yet. It sets a pivbigo
couple to be used in the next rule. Then, thenputeAverage rule traverses all movies of this couple
and computes moving average with increasing the movie number of the coupteelsach time. The
computation of the average is done in an intuitive way. First, the currena@eeating is multiplied
by the current number of movies. Then, the rating of the current moviedisdatb this multiplication.
Finally, the last number is divided by one more than the current movie nuniliez oouple.

2.4 Extension Task 1. Compute Top-15 Couples

This task computes the top 15 couples and prints relevant information. Teseand the scheduling of
these rules are depicted in Fig. 5. We use the iterator to compute tié ¢opples. This gives us the
flexibility of setting the number of couples we want, directly within the model. Esetiterator rule
resets the iterator before use. Titeeator rule counts how many couples we want and it stops when we
reach that number. Also we use th@rent attribute of this iterator to print the sequence number while

4 AToMPM Solution for the IMDB Case Study

iterator getOneCouple
0
1 v
1[0>n]
¢ ‘resetlterator
current[0]<limit[0]

flagl1)==0
notHighestRatingCouple

—>
@
2
k. % —®
avgRating[2]>avgRating[1), flagl2}==0
printC i :getOneCouple
:notHighestRatingCouple
2 3 2 3
@ ‘@ ;
0 T 0 :printCouplelnformation
1[0>n] 1[0>n] r

current{0]++, flag[4]=1, print(4)

Figure 5: Extension task 1 rules and scheduling.

findClique0f3

. :
¢ [ovie] *[Woie] [ovie] \ *([Movie] “[Movie *[ovie] | ("[oie]
i

|
A 2 ai A A A I T T Pa *
oty s€ ofd i aﬂ; 5%1 e% a6 sed ofld 464 s6E oG [a6l s€g| 6 ¥ *
vl P P i |
b @ N\ @] @ |7y

Figure 6: Extension task 2 rules and scheduling.

printing information of a couple. In the scheduling, thetOneCouple and notHighestRatingCouple
rules are put together inside a single CQRule (described in Sé¢tion 1)uldislock finds a couple and
eliminates it if it does not have the highest rating. It ends up with the hightsty reouple at the end
and sets a pivot to it. Thigag attribute is used to mark the processed highest rating couple after printing
the information. Then, thgrintCoupleIinformation prints the necessary information to developer console,
increases the current attribute of the iterator by one and sets the flagpybtiesssed couple to 1.

The rules in the figure shows the solution for the top couples according twénage rating of their
common movies. Solving the problem for the top couples according to the nuwhbemmon movies
is pretty easy. We add another rutetHighestMovieNumber, which looks exactly like th@otHighes-
tRatingCouple rule, but it has a condition adommonMovies|2] > commonMovies[1]. The rest of the
transformation is the same.

2.5 Extension Task 2: Finding Cliques

This task aims at finding the cliques between people. A clique is a generalipftiorouple with more
than two people. The rules and the scheduling of these rules are depi€ligd They are exactly the
same as in task 2, but we changed @lwaiple to aClique and added one more person.

The figure has the rules to find the cliques of three people. We did not #tevest of the rules
for cliques of four and five, since they are exactly same copies with otidvem more people added
respectively.

2.6 Extension Task 3: Compute Average Rankingsfor Cliques

This task is to compute average ratings of each clique created in the prextensien task. The rules
and the scheduling of these rules are depicted in[Fig. 7. They are mostlgrtteeas in task 3, which
computes the average ratings for each couple. We just replaced the wétipa clique.

H. Ergin & E. Syriani 5

avgRating[1]==0

findClique computeAverage
- 2 m zm < ?
> z :findClique
¢
;: 1@ 1@ =
-
; F
aghating1}— 29O moveNumber]ating2) :computeAverage

(movieNumber{T]+1)
movieNumber{1]++ _—r é

Figure 7: Extension task 3 rules and scheduling.

getOneClique notHighestRatingClique

"4

!
(1 > (1 2 > I:resetlteratoxlﬂ |:iterator

?

flagl1}==0 avgRating[2]>avgRating[1), lagl2l==0 = x O
printdli i
iterator :getOneCiique
ZQE 33]’4 ZrE B’E 0 :notHighestRatingClique
1[0>n]

current{0]++, flag[4]=1, print(4)

! Py ‘ -m vvvvvv tl0)<limit(0] _
e 110> orintCliqueinformation
1[0>n] 1[0>n] :
’ (. = |

Figure 8: Extension task 4 rules and scheduling.

2.7 Extension Task 4. Compute Top-15 Cliques

This tasks computes the top 15 cliques and prints information about them. [Ekeana the scheduling
of these rules are depicted in Fid. 8. They are mostly like extension taskidh wbmputes the top
couples. We have changed couple to clique to solve this task.

The rules solve this task by using the average rating of each clique. Adapé&rmproblem to use the
number of common movies is easy and just needs another rule as in extenkibn tas

3 Conclusion

In this paper, we described the our solution of the IMDB case study usioylRM . ATOMPM heavily
depends on graphical user interface and the handling of really largelsrisdot possible in the current
status. However, we are working on a headless environment and senganvof ATOMPM to overcome
these issues. Hence this solution focuses on the expressivenessadildyupower of modeling and
transforming in ATOMPM , rather than its performance. In the SHARE magchugeput an appendix
version of this paper to describe the steps to reproduce the test cases.

References

[1] Tassilo Horn, Christian Krause & Matthias Tichythe TTC 2014 Movie Database Case. Available at
https://github. com ckrause/ttc2014-i ndb/ raw mast er/ case_descri pti on. pdf.

[2] Eugene Syriani & Hans Vangheluwe (2018 Modular Timed Model Transformation Language. Journal on
Software and Systems Modelidg, pp. 1-28.

[3] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiarn€oHansen, Simon Van Mierlo & Huseyin Ergin
(2013): Atompm: A web-based modeling environment. In: MODELS’13: Invited Talks, Demos, Posters, and
ACM SRC. CEUR-WS.org

https://github.com/ckrause/ttc2014-imdb/raw/master/case_description.pdf

	Introduction
	Solution
	Task 1: Generating Test Data
	Task 2: Finding Couples
	Task 3: Computing Average Rankings
	Extension Task 1: Compute Top-15 Couples
	Extension Task 2: Finding Cliques
	Extension Task 3: Compute Average Rankings for Cliques
	Extension Task 4: Compute Top-15 Cliques

	Conclusion

