
Submitted to:
TTC 2014

c© H. Ergin & E. Syriani
This work is licensed under the
Creative Commons Attribution License.

AToMPM Solution for the IMDB Case Study

Hüseyin Ergin
University of Alabama, Tuscaloosa AL, U.S.A.

hergin@crimson.ua.edu

Eugene Syriani
Université de Montreal, Montreal, QC, Canada

syriani@iro.umontreal.ca

In this paper, we present an AToMPM solution for the IMDB casestudy of TTC 2014.

1 Introduction

AToMPM [3] (A Tool for Multi-Paradigm Modeling) allows one to model and execute model transfor-
mations. It provides a graphical user interface to define the metamodels of the input and output lan-
guages, define the transformation rules and their scheduling, and execute continuously or step-by-step
transformations on given models.

The model transformation language of AToMPM is MoTif [2]. In MoTif , rules consist of a pre- and
a post-condition. The pre-condition pattern determines the applicability of the rule and is usually defined
with a left-hand side (LHS) and optional negative application conditions (NAC). The post-condition
determines the result of the rule and is defined by a right-hand side (RHS) which must be satisfied after
the rule is applied. Furthermore, any element in a rule in the LHS or RHS may be assigned to a pivot. It
acts as a variable that can be referred to by other rules. To use a pivot,an element from the LHS or NAC
can be bound to that pivot. The rule in Fig. 1 is a MoTif rule with a NAC, LHS, and RHS (from left to
right). For the remaining of the paper, we have used a more concise notationto save space and annotate
the rules as needed.

The scheduling, or the control flow, describes the order in which the rules are executed. Each rule is
represented by a rule block having three ports. Conceptually, a rule receives models via the input port
at the top. If the rule is successfully applied, the resulting model is output from the success port at the
bottom left. Otherwise, the model does not satisfy the pre-condition and the original model is output
from the fail port at the bottom right. Fig. 2 depicts an example of control flow structure to schedule
MoTif rules.

Some rule blocks are annotated in the scheduling, denoting a special behavior. The meaning of these
rules are: (1)ARule: is a regular “Atomic Rule” that is executed once on a single match. It has no
annotation. (e.g., resetIterator in Fig. 2) (2)FRule: stands for “For all Rule”. All matches are found first
and then the rule is applied on all the matches. It is annotated with a letter ‘F’. (e.g., computeAverage
in Fig. 4) (3) SRule: stands for “Star Rule”. It is a rule that is recursively applied on each match as
long as matches are found. Therefore, the result of this rule is the accumulation of each application. It

Figure 1: MoTif rule as it appears in AToMPM .

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 AToMPM Solution for the IMDB Case Study

Movie1

createNegative

Movie Movie Movie Movie2 3 4

6 7 8 9 10

5

I[0>n] I[0>n]
0 0

rating[1]=10*n+5, rating[2]=10*n+6, rating[3]=10*n+7, rating[4]=10*n+8, rating[5]=10*n+9

name[6]=10*n+5, name[7]=10*n+6, name[8]=10*n+7, name[9]=10*n+8, name[10]=10*n+9

current[0]++

Movie1

createPositive

Movie Movie Movie Movie2 3 4 5

I[0>n] I[0>n]
0 0

rating[1]=10*n, rating[2]=10*n+1, rating[3]=10*n+2, rating[4]=10*n+3, rating[5]=10*n+4

name[6]=10*n, name[7]=10*n+1, name[8]=10*n+2, name[9]=10*n+3, name[10]=10*n+4

current[0]++

6 7 8 9 10

resetIterator

I[0>n] I[0>n]
0 0

current[0]=0

:resetIterator

*
:createPositive

:resetIterator

*
:createNegative

current[0]<limit[0]

current[0]<limit[0]

Figure 2: Task 1 rules and scheduling.

is annotated with an asterisk ‘*’. (e.g., createPositive in Fig. 2) (4)QRule: stands for “Query Rule”. It
is anARule with no side effect since it does not have a RHS, but may still assign pivots. It is annotated
with a question mark ‘?’. (e.g., findCouple in Fig. 4) (5)CQRule: stands for “Complex Query Rule”. It
is a nestedQRule where a second query filters the result of the first one. It is annotated with two question
marks ‘??’. (e.g., getOneCouple andnotHighestRatingCouple in Fig. 5)

This paper provides a solution to the IMDB model transformation case study,whose full description
can be found at [1]. In Section 2, we provide the details about the solution. In Section 3, we summarize
the results and conclude.

2 Solution

We have solved every task and extension of the case study in AToMPM . Weused the same metamodel as
given in the briefing document [1] with slight modifications. An integerflag variable is added toGroup
class to mark already processed groups while computing the top couples andtop cliques. Also for the
sake of simplicity, we have added amovieNumber attribute toGroup class to hold the number of movies
that group has. AToMPM does not have an iterator as a scheduling structure. For this reason, we have
added an explicitIteration class both to iterate on a rule and pass the value of the iterator to the rules to
be used within. In the rules,Iteration class has a concrete syntax of a black rectangle and a text starting
with “I” and having the current value and the limit of the iteration.

Each solution shows the rules on the left of the figure and the scheduling ofthese rules on the right.

2.1 Task 1: Generating Test Data

The first task is to generate the test data for the case. The rules and the scheduling of these rules are
depicted in Fig. 2. The rules help to create a series ofMovies, Actors andActresses with the necessary
relationships among each other. The rules mostly look like the original rules in the document, only with
the addition of theIteration class. The iterator makes the transformation runN times. This parameter can
be set within the input model. We have an extra rule to reset the iterator before every use.

H. Ergin & E. Syriani 3

Movie1

findStarsAndCreateCouple

Movie Movie2 3

4

:findStarsAndCreateCouple

*
:referenceToCoupleMovies

5

Movie1 Movie Movie2 3

4 5

couple6

4 5

couple6

4 5

couple6

p1 p2

p1p2

p1 p2p1 p2

referenceToCoupleMovies

Movie1

2 3

couple4

Movie1

2 3

couple4

p1 p2

Movie1

couple4

Figure 3: Task 2 rules and scheduling.

computeAverage

Movie2

:findCouple

F
:computeAverage

c

findCouple

couple1

c

couple1

Movie2

couple1

(avgRating[1]*movieNumber[1]+rating[2])

 (movieNumber[1]+1)
avgRating[1]=

movieNumber[1]++

?

avgRating[1]==0

Figure 4: Task 3 rules and scheduling.

2.2 Task 2: Finding Couples

This task aims to find two people who played in at least three movies together, create aCouple for them
and reference to each movie they played in together. The rules and the scheduling of these rules are
depicted in Fig. 3. ThefindStarsAndCreateCouple rule checks for two people that played in the same
three movies. The rule will find the match if they have more than three movies too. Then aCouple
class is created with a relation to each person. The NACs prevent to consider people already in couples.
Since they can be either thep1 or the p2 of a couple, there are two NACs for each case. Pivotsp1
andp2 are assigned to these people, so we can refer to these two persons in the following rule. The
referenceToCoupleMovies rule creates acommonMovies relation from the newly created couple to each
movie they played together, if not already referenced.

2.3 Task 3: Computing Average Rankings

This task is to compute the average rankings of each couple by using thecommonMovies relation of the
couples. The rules and the scheduling of these rules are depicted in Fig. 4. ThefindCouple rule finds a
couple withavgRating zero, which means its average rating is not computed yet. It sets a pivot for this
couple to be used in the next rule. Then, thecomputeAverage rule traverses all movies of this couple
and computes moving average with increasing the movie number of the couple byone each time. The
computation of the average is done in an intuitive way. First, the current average rating is multiplied
by the current number of movies. Then, the rating of the current movie is added to this multiplication.
Finally, the last number is divided by one more than the current movie number of the couple.

2.4 Extension Task 1: Compute Top-15 Couples

This task computes the top 15 couples and prints relevant information. The rules and the scheduling of
these rules are depicted in Fig. 5. We use the iterator to compute the topN couples. This gives us the
flexibility of setting the number of couples we want, directly within the model. TheresetIterator rule
resets the iterator before use. Theiterator rule counts how many couples we want and it stops when we
reach that number. Also we use thecurrent attribute of this iterator to print the sequence number while

4 AToMPM Solution for the IMDB Case Study

printCoupleInformation

2 3

couple4

2 3

couple4

c

getOneCouple

couple1

flag[1]==0

c

notHighestRatingCouple

couple1

avgRating[2]>avgRating[1], flag[2]==0

couple2

c

current[0]++, flag[4]=1, print(4)

:resetIterator

iterator

current[0]<limit[0]

??

?

Figure 5: Extension task 1 rules and scheduling.

Movie1

findCliqueOf3

Movie Movie2 3

4

:findCliqueOf3

*
:
referenceToCliqueMovies

5

7

p1 p2

referenceToCliqueMovies

6

p3

Movie1 Movie Movie2 3

4 5 6

clique7

4 5 6

clique 7

Movie1

4 5 6

clique 7

Movie1

4 5 6

clique

p1 p2 p3

7

Movie1

clique

Figure 6: Extension task 2 rules and scheduling.

printing information of a couple. In the scheduling, thegetOneCouple and notHighestRatingCouple
rules are put together inside a single CQRule (described in Section 1). Thisrule block finds a couple and
eliminates it if it does not have the highest rating. It ends up with the highest rating couple at the end
and sets a pivot to it. Theflag attribute is used to mark the processed highest rating couple after printing
the information. Then, theprintCoupleInformation prints the necessary information to developer console,
increases the current attribute of the iterator by one and sets the flag of theprocessed couple to 1.

The rules in the figure shows the solution for the top couples according to theaverage rating of their
common movies. Solving the problem for the top couples according to the numberof common movies
is pretty easy. We add another rule,notHighestMovieNumber, which looks exactly like thenotHighes-
tRatingCouple rule, but it has a condition ofcommonMovies[2] > commonMovies[1]. The rest of the
transformation is the same.

2.5 Extension Task 2: Finding Cliques

This task aims at finding the cliques between people. A clique is a generalizationof a couple with more
than two people. The rules and the scheduling of these rules are depicted inFig. 6. They are exactly the
same as in task 2, but we changed theCouple to aClique and added one more person.

The figure has the rules to find the cliques of three people. We did not showthe rest of the rules
for cliques of four and five, since they are exactly same copies with one and two more people added
respectively.

2.6 Extension Task 3: Compute Average Rankings for Cliques

This task is to compute average ratings of each clique created in the previous extension task. The rules
and the scheduling of these rules are depicted in Fig. 7. They are mostly the same as in task 3, which
computes the average ratings for each couple. We just replaced the couple with a clique.

H. Ergin & E. Syriani 5

computeAverage

Movie2

:findClique

F
:computeAverage

c

findClique

1

c

1

Movie2

1

(avgRating[1]*movieNumber[1]+rating[2])

 (movieNumber[1]+1)
avgRating[1]=

movieNumber[1]++

?clique

clique cliqueavgRating[1]==0

Figure 7: Extension task 3 rules and scheduling.

printCliqueInformation

2 3

4

2 3

4

c

getOneClique

1

flag[1]==0

c

notHighestRatingClique

1
2

c

current[0]++, flag[4]=1, print(4)

:resetIterator

iterator

current[0]<limit[0]

??

?clique clique
clique

clique clique

avgRating[2]>avgRating[1], flag[2]==0

Figure 8: Extension task 4 rules and scheduling.

2.7 Extension Task 4: Compute Top-15 Cliques

This tasks computes the top 15 cliques and prints information about them. The rules and the scheduling
of these rules are depicted in Fig. 8. They are mostly like extension task 1, which computes the top
couples. We have changed couple to clique to solve this task.

The rules solve this task by using the average rating of each clique. Adapting the problem to use the
number of common movies is easy and just needs another rule as in extension task 1.

3 Conclusion

In this paper, we described the our solution of the IMDB case study using AToMPM . AToMPM heavily
depends on graphical user interface and the handling of really large models is not possible in the current
status. However, we are working on a headless environment and a new version of AToMPM to overcome
these issues. Hence this solution focuses on the expressiveness and usability power of modeling and
transforming in AToMPM , rather than its performance. In the SHARE machine, we put an appendix
version of this paper to describe the steps to reproduce the test cases.

References

[1] Tassilo Horn, Christian Krause & Matthias Tichy:The TTC 2014 Movie Database Case. Available at
https://github.com/ckrause/ttc2014-imdb/raw/master/case_description.pdf.

[2] Eugene Syriani & Hans Vangheluwe (2011):A Modular Timed Model Transformation Language. Journal on
Software and Systems Modeling11, pp. 1–28.

[3] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon Van Mierlo & Huseyin Ergin
(2013):Atompm: A web-based modeling environment. In: MODELS’13: Invited Talks, Demos, Posters, and
ACM SRC. CEUR-WS.org.

https://github.com/ckrause/ttc2014-imdb/raw/master/case_description.pdf

	Introduction
	Solution
	Task 1: Generating Test Data
	Task 2: Finding Couples
	Task 3: Computing Average Rankings
	Extension Task 1: Compute Top-15 Couples
	Extension Task 2: Finding Cliques
	Extension Task 3: Compute Average Rankings for Cliques
	Extension Task 4: Compute Top-15 Cliques

	Conclusion

