Proceedings of the 7th Transformation Tool Contest

TTC 2014

Louis M. Rose
Christian Krause
Tassilo Horn

Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted
only for private and academic purposes. This volume is published and copyrighted by
its editors.

Preface

The aim of the Transformation Tool Contest (TTC) series is to compare the expres-
siveness, the usability, and the performance of graph and model transformation tools
along a number of selected case studies. A deeper understanding of the relative merits
of different tool features will help to further improve graph and model transformation
tools and to indicate open problems.

This contest was the seventh of its kind. For the second time, the contest was part
of the Software Technologies: Applications and Foundations federation of conferences.
Teams from the major international players in transformation tool development have
participated in an online setting as well as in a face-to-face workshop.

In order to facilitate the comparison of transformation tools, our programme com-
mittee selected the following two challenging cases via single blind reviews: the FIXML
case (for which eventually ten solutions were accepted) and the Movie Database case
(for which eventually nine solutions were accepted).

These proceedings comprise descriptions of the two cases, descriptions of all of the
solutions to these cases, and a summary of the results of the contest. In addition to the
solution descriptions contained in these proceedings, the implementation of each solution
(tool, project files, documentation) is made available for review and demonstration via
the SHARE platform (http://share20.eu).

TTC 2014 involved open (i.e., non anonymous) peer reviews in a first round. The
purpose of this round of reviewing was that the participants gained as much insight
into the competitors solutions as possible and also to raise potential problems. At the
workshop, the solutions were presented. The expert audience judged the solutions along
a number of case-specific categories, and prizes were awarded to the highest scoring
solutions in each category. A summary of these results for each case are included in
these proceedings. Finally, the solutions appearing in these proceedings were selected
by our programme committee via single blind reviews.

Besides the presentations of the submitted solutions, the workshop also comprised a
live contest. That contest involved a set of tasks for playing a turn-based soccer game
(inspired by the recent FIFA 2014 soccer world cup in Brazil). The challenge required
participants to write a transformation that analysed a soccer pitch model containing
positions of the ball and players on both teams, and responded with a model that
specified updates to the positions and actions of the players on the participant’s team.
A server component was used to play several games of soccer between each participant
in a round-robin style, and consequently a winner was determined.

The contest organisers thank all authors for submitting cases and solutions, the contest
participants, the STAF local organisation team, the STAF general chair Richard Paige,
and the program committee for their support.

25th July, 2014

York, United Kingdom Louis M. Rose

Christian Krause
Tassilo Horn

ii

http://share20.eu

Organisation

TTC 2014 was organised by the Department of Computer Science, at the University of

York, UK.

Program Committee

Harrie Jan Sander Bruggink

Rubby Casallas
Jeff Gray

Tassilo Horn

Akos Horvdth
Christian Krause
Barbara Konig
Sonja Maier
Richard Paige
Louis Rose
Massimo Tisi

Tijs Van Der Storm
Pieter Van Gorp
Gergely Varro
Bernhard Westfechtel
Albert Zuendorf

Additional Reviewers

Jonathan Corley

Universitdt Duisburg-Essen

University of los Andes

University of Alabama

University Koblenz-Landau

Budapest University of Technology and Economics,
SAP Innovation Centre

Universitaet Duisburg-Essen

Universitaet der Bundeswehr Muenchen
University of York

University of York

AtlanMod, INRIA & Ecole des Mines de Nantes
Centrum Wiskunde & Informatica

Eindhoven University of Technology

Technische Universitat Darmstadt

University of Bayreuth

Kassel University

University of Alabama

iii

Table of Contents

The FIXML Case

[Case study: FIXML to Java, C# and C++] 2
[Kevin Lano, Krikor Maroukian and Sobhan Yassipour Tehrani|

olving the ase with Funny 7

[The SDMLIb solution to the FIXML case for TTC2014

|Christoph Eickhofi, Tobias George, Stefan Lindel, and Albert Zundorf]

to Java, and C++ Transformations wit - 27
|[Li Dan, Danning Li, Xiaoshan Li and Volker Stolg|

olving the ode-case study with Henshin 32
|[Frank Hermann, Nico Nachtigall, Benjamin Braatz, Thomas Engel and Susann |
[Gottmannl e e

The TTC 2014 FIXML Case: Rascal Solution 47
[Pablo Inostroza and Tijs van der Storm|

[Aspectual Code Generators for Easy Generation of FIXML to OO Mappings| 52
[Steften Zschaler and Sobhan Yassipour Tehrani

[A " Model-Driven Solution for Financial Data Representation Expressed in FIXML] 65
|Vahdat Abdelzad, Hamoud Aljamaan, Opeyemi Adesina, Miguel Garzon and |
| Timothy Lethbridge]

[A Solution to the FIXML Case Study using Triple Graph Grammars and eMoflon| 71
|Géza Kulcsar, Erhan Leblebici and Anthony Anjorin|

[Solving the TTC'14 FIXML Case Study with SIGMA| 76

[Filip Kfikava and Philippe Collet|

[Solving the FIXML Case Study using Epsilon and Java| 87
[Horacio Hoyos, Jaime Chavarriaga and Paola Gémez|

The Movie Database Case

' The TTC 2014 Movie Database Case 93
[Tassilo Horn, Christian Krause and Matthias Tichy|.

iv

[Solving the Movie Database Case with QVTo| 98
|Christopher Gerking and Christian Hemnzemann|.

[Movie Database Case: An EMF-IncQuery Solution| 103
[Gabor Szarnyas, Oszkar Semerath, Benedek Izs6, Csaba Debreceni, Abel Hegediis, |
| Zoltan Ujhelyi and Gabor Bergmann|

[The Movie Database Case: A solution using the Maude-based e-Motions tool 116
[Antonio Moreno-Delgado and Francisco Duran|

olving the ovie Database Case with GrGen. 125
[Edgar Jakumeit|.

0 olution for the ase Study 134
[Huseyin Ergin and Eugene Syriani|

olving the ovie Database Case with Funny 139

[The SDMLib solution to the MovieDB case for TTC2014 145
|Christoph Eickhoff, Tobias George, Stetan Lindel, and Albert Zundorf]

olving the ovie Database Case wit - 150
[Kevin Lano and Sobhan Yassipour Tehrani|

The TTC 2014 Movie Database Case: Rascal Solutionl 155
|[Pablo Inostroza and Tijs van der Storm|

Part |I.
The FIXML Case

Case study: FIXML to Java, C# and C++

K. Lano, S. Yassipour-Tehrani, K. Maroukian
Dept. of Informatics, King’s College London, Strand, London, UK

This case study is a transformation from financial transaction data expressed in FIXML XML format,
into class definitions in Java, C# and C++. It is based on an industrial application of MDD in finance,
and aims to support rapid upgrading of user software when new or extended FIXML definitions
become available. The transformation involves text-to-model, model-to-model and model-to-text
subtransformations.

1 Introduction

Financial transactions can be electronically expressed using formats such as the FIX (Financial Infor-
mation eXchange) format. New custom variants/extensions of such message formats can be introduced,
which leads to problems in the maintainance of end-user software: the user software, written in various
programming languages, which generates and processes financial transaction messages will need to be
updated to the latest version of the format each time it changes. In [2] the authors proposed to address
this problem by automatically synthesising program code representing the transaction messages from a
single XML definition of the message format, so that users would always have the latest code definitions
available. For this case study we will restrict attention to generating Java, C# and C++ class declarations
from messages in FIXML 4.4 format, as defined at http:/fixwiki.org/fixwiki/FPL:FIXML_Syntax, and
http://www.fixtradingcommunity.org.

The solution transformation should take as input a text file of a message in XML FIXML 4.4 Schema
format, and produce as output corresponding Java, C# and C++ text files representing this data.

2 Core problem

The solution transformation should be broken down into the following subtransformations:
1. XML text to model of XML metamodel (Figure 1)

2. model of XML metamodel to a model of a suitable metamodel for the programming language/languages
under consideration

3. program model to program text.

By using a chain of transformations, greater flexibility and extensibility is supported: language mapping
issues at the abstract syntax level can be separated from concrete syntax mapping, and generation of
text in an additional programming language may involve only the definition of a new model to text
transformation, and possibly the definition of a new/enhanced programming language metamodel and
model-to-model transformation. The XML text to XML model transformation does not need to change.
We have found that a single programming language metamodel and model-to-model transformation is
sufficient for Java, C# and C++.

To appear in EPTCS.

2 Case study: FIXML translation

0.1
XMLNode
tag: String
attributes| *
0.1 % | subnodes XMLAttribute

name: String
value: String

Figure 1: XML metamodel

Solutions to the case study can devise their own metamodel(s) for the abstract syntax of the target
programming languages. Solutions may use external software for the XML parsing step and/or for the
code generation step, and may use different transformation languages for the 3 subtransformations.

The informal transformation rules mapping from XML to a programming language (eg., Java) are
the following, in terms of concrete syntax:

o (Rule 1): An XML tag is translated to a Java Class:

<tagl />
becomes
class tagl { }

e (Rule 2): XML attributes are mapped to Java attributes:
<tagl attl="vall" att2="val2" />
becomes

class tagl
{ String attl = "vall"; String att2 = "val2"; }

etc.

e (Rule 3): Nested XML tags become Java member objects:

<tagl >
<tag2 ... />
<tag3 ... />

</tagl>

becomes

class tagl
{....
tag2 tag2_object = new tag2();
tag3 tag3_object = new tag3();
+

K. Lano, S. Yassipour-Tehrani, K. Maroukian 3

This rule should also take that case into account where multiple subnodes of the same node with
the same tag name exist: these subnodes may be represented by distinct attributes with the same
tag object type, initialised by specific constructors, or by an array/list of such objects.

In order to improve the utility of the generated program code, constructors should be provided for the
generated classes, which permit initialising of all their features. A default no-argument constructor
should also be provided.

2.1 Test cases

The solutions should be tested on the test cases testl.xml to test8.xml provided. Test cases 1 to
4 represent typical FIXML messages. Tests 5 and 6 are tests of solution efficiency on large messages.

Tests 7 and 8 are examples of invalid XML files which should be rejected by the transformation.
The first test is a simple example of an Order message:

<?xml version="1.0" encoding="ASCII"?>
<FIXML>
<0Order Cl0rdID="123456" Side="2"
TransactTm="2001-09-11T09:30:47-05:00" OrdTyp="2"
Px="93.25" Acct="26522154">
<Hdr Snt="2001-09-11T09:30:47-05:00"
PosDup="N" PosRsnd="N" SeqNum="521">
<Sndr ID="AFUNDMGR"/>
<Tgt ID="ABROKER"/>
</Hdr>
<Instrmt Sym="IBM" ID="459200101" IDSrc="1"/>
<0rdQty Qty="1000"/>
</0rder>
</FIXML>

The second test is a more complex example of a Position Report message, which features multiple
subnodes with the same tagname:

<?7xml version="1.0" encoding="ASCII"?7>
<FIXML>
<PosRpt RptID="541386431" Rslt="0"
BizDt="2003-09-10T00:00:00" Acct="1" AcctTyp="1"
SetPx="0.00" SetPxTyp="1" PriSetPx="0.00" ReqTyp="0" Ccy="USD">
<Hdr Snt="2001-12-17T09:30:47-05:00" PosDup="N" PosRsnd="N" SegNum="1002">
<Sndr ID="String" Sub="String" Loc="String"/>
<Tgt ID="String" Sub="String" Loc="String"/>
<OnBh1f0f ID="String" Sub="String" Loc="String"/>
<DlvrTo ID="String" Sub="String" Loc="String"/>
</Hdr>
<Pty ID="0OCC" R="21"/>
<Pty ID="99999" R="4"/>
<Pty ID="C" R="38">
<Sub ID="ZZZ" Typ="2"/>
</Pty>
<Qty Typ="SOD" Long="35" Short="0"/>
<Qty Typ="FIN" Long="20" Short="10"/>
<Qty Typ="IAS" Long="10"/>
<Amt Typ="FMTM" Amt="0.00"/>

4 Case study: FIXML translation

<Instrmt Sym="AOL" ID="KW" IDSrc="J" CFI="OCASPS" MMY="20031122"
Mat="2003-11-22T00:00:00" Strk="47.50" StrkCcy="USD" Mult="100"/>

</PosRpt>

</FIXML>

If there are multiple nodes with the same tag, the class representing the tag will have the union of the
instance variables derived from the attributes and subnodes of all these occurrences. For example, Qty is
represented by

class Qty

{ String Type = "SOD";
String Long = "35";
String Short = "0";

Other sample FIXML messages can be found at http://fixwiki.org/fixwiki/FPL:FIXML_Syntax.

3 Extensions

The following enhancements of the transformation can be considered.

3.1 Selection of appropriate data types

In cases where attribute values are integers or doubles, the attributes should be mapped to programming
language instance variables of these types. For example, Strk="47.50" would be mapped to double
Strk = 47.50;.

3.2 Extension to additional languages

Identify how the transformation can be extended to generate C code instead of object-oriented language
code. Implement a version of the transformation which generates C code declarations.

3.3 Generic transformation

The transformation could also be extended to define a generic transformation which maps the FIXMLSchema
definition (http:/fixwiki.org/fixwiki/FPL:FIXML_Syntax) or DTD (http://www.fixtradingcommunity.org/pg/
structure/tech-specs/fix-version/44) into Java, C# and C++. This mapping would support the comprehen-
sive representation of arbitrary valid FIXML messages as program objects.

References

[1] Botella, P.,, Burgués, X., Carvallo, J. P., Franch, X., Grau, G., Marco, J., Quer, C., ISO/IEC 9126 in practice:
what do we need to know?, Software Measurement European Forum (SMEF 2004).

[2] M. B. Nakicenovic, An Agile Driven Architecture Modernization to a Model-Driven Development Solution,
International Journal on Advances in Software, vol 5, nos. 3, 4, 2012, pp. 308-322.

K. Lano, S. Yassipour-Tehrani, K. Maroukian 5

A Evaluation criteria

Relevant characteristics and subcharacteristics for evaluation of model transformations can be selected from the
ISO/IEC 9126-1 framework [1]. These characteristics and subcharacteristics can then be further decomposed into
measurable attributes. Table 1 summarizes the chosen characteristics, subcharacteristics and their corresponding
measurable attributes. One attribute may be related to more than one quality factor.

Characteristic Subcharacteristic | Attribute
Functionality Suitability Abstraction level
Complexity
Development effort
Execution time

Accuracy Syntactic correctness
Semantic preservation
Reliability Fault tolerance Detection/processing of invalid models
Maintainability | Changeability Complexity
Modularity

Table 1: Selected quality characteristics for the evaluation of model transformation approaches

The following are the specific measures which should be evaluated for each solution to this case study:

Complexity: sum of number of operator occurrences and feature and entity type name references in the
specification expressions

Accuracy: that the resulting programs are valid in their languages (syntactic correctness), and that they
correctly represent the source XML data structure and elements (semantic preservation). In particular, the
programming language constraint that distinct instance variables of the same class must have distinct names
must be ensured (syntactic correctness).

Development effort: developer time in person-hours spent in writing and debugging the specification

Fault tolerance: High if transformation is able to detect invalid input XML and produce accurate error
messages; Medium if erroneous files produce a failed execution with an indication that some error occurred;
Low if such files are processed and output produced without warnings being issued

Execution time: milliseconds for execution of each of the three stages

Modularity: 1 — % where d is the number of dependencies between rules (implicit or explicit calls, ordering
dependencies, inheritance or other forms of control or data dependence) and r is the number of rules.

Abstraction level is classified as High for primarily declarative solutions, Medium for declarative-imperative
solutions, and Low for primarily imperative solutions.

Execution time of the subtransformation implementations includes the loading of models and printing of output
code from the transformation tool(s).

Solving the TTC FIXML Case with FunnyQT

Tassilo Horn
Institute for Software Technology, University Koblenz-Landau, Germany

horn@uni-koblenz.de

FunnyQT is a model querying and model transformation library for the functional Lisp-dialect Clo-
jure providing a rich and efficient querying and transformation API. This paper describes the Fun-
nyQT solution to the TTC 2014 FIXML transformation case. It solves the core task of generating
Java, C#, C++, and C code for a given FIXML message. It also solves the extension tasks of deter-
mining reasonable types for the fields of classes.

1 Introduction

This paper describes the FunnyQT solution of the TTC 2014 FIXML Case [LYTM14] which solves
the core task of generating Java, C#, and C++ code for a given FIXML messages. It also solves the
extension task of heuristically determining appropriate types for the fields of the generated classes and
the extension task to generate non-object-oriented C code. The solution also sports several features that
were not requested. For example, if an XML element has multiple children with the same tag, then
the corresponding class or struct will have a field being an array of the type corresponding to the tag
instead of multiple numbered fields. For C++ and C, proper destructors/recursive freeing functions are
generated, and the classes/structs are declared in a header and defined in a separate implementation file.
For all languages, proper import/include/using-statements are generated, and the code compiles without
warnings using the standard compilers for the respective language (GCC, Mono, Java).

The solution allows to create a data model given a single FIXML message as requested by the case
description, but it can also be run on arbitrary many FIXML messages at once. The idea is that with a
reasonable large number of sample messages, the transformation is able to produce a more accurate data
model. By having more samples, optional attributes and child elements are more likely to be identified.
Similarly, child elements which usually occur only once but may in fact occur multiple times are more
likely to be identified. And finally, the heuristical detection of an appropriate field type benefits from
more sample data, too.

Section A in the appendix on page 6 shows the code which was generated for the FIXML position
report message test2.xml.

FunnyQT [Hor13] is a model querying and transformation library for the functional Lisp dialect
Clojure. Queries and transformations are plain Clojure programs using the features provided by the
FunnyQT API. This API is structured into several task-specific sub-APIs/namespaces, e.g., there is a
namespace containing constructs for writing polymorphic functions dispatching on metamodel type, a
namespace containing constructs for model-to-model transformations, etc.

The solution project is available on Github!, and it is set up for easy reproduction on SHARE?.

Thttps://github.com/tsdh/ttc14-fixml
’http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntul2LTS_TTC14_
64bit_FunnyQT4.vdi

Submitted to: 7
TTC 2014

2 Solving the TTC FIXML Case with FunnyQT

2 Solution Description

In this section, the transformation specification for all three main tasks is going to be explained.

2.1 Task 1: XML to Model

Since handling XML files is a common task, FunnyQT already ships with a namespace funnyqt.xmltg
which contains a transformation function xm12xml-graph from XML files to a DOM-like model con-
forming to a detailed XML metamodel which also supports XML namespaces. This function uses Java’s
Stream API for XML (StAX) under the hoods, so XML files that aren’t well-formed lead to parsing errors.

2.2 Task 2: XML Model to OO Model

Core task 2 deals with transforming the XML models into models conforming to a metamodel suited for
object-oriented languages. The metamodel used by the FunnyQT solution is shown in Figure 1.

1..1] type ‘ 1..1] elemType

Type

\)

Y

Field '0..*] fields [

Class] { 3uiltin { Array

name : EString name : EString type : Builtins = INTEGER size: EInt=0
initialValue : EString [1..1] class

Figure 1: The OO metamodel

N/

FunnyQT contains a feature for generating metamodel-specific APIs which is used here. The gen-
erated XML and OO APIs are referred to by the namespace aliases xml and oo in the listings below.
They contain getter and setter functions for attributes (e.g., (xm1/set-name! el val)), role name accessor
functions (e.g., (oo/->fields cls)), and several more.

In FunnyQT, a model-to-model transformation is specified using the deftransformation macro. It
receives the name of the transformation, and a vector defining input and output models plus additional
parameters. In this case, there is only one single input model xm1, one single output model oo.

(deftransformation xml-graph2oo-model [[xml] [oo]]

Inside such a transformation definition, arbitrary many rule and helper function definitions may occur.
The first rule of the transformation is element2class shown in the next listing.

(“:top element2class
:from [e ’[:and Element !RootElement]]
:to [c (element-name2class (xml/name e))])

The ~:top annotation defines this rule as a top-level rule being applied automatically. The :from
clause restricts the elements e this rule is applicable for to those of metamodel type Element but not of
type RootElement. The reason is that we don’t want to create a class for the FIXML element which is the
root element of any FIXML message.

The :to clause defines which elements should be created for matching elements. Usually, it would
be specified as :to [x ’SomeClass] in which case x would be a new element of type SomeClass. However,
in the current case, there is no one-to-one mapping between XML elements and OO classes, because the
XML model may contain multiple elements with the same tag name, and there should be exactly one

T. Horn 3

OO class per unique tag name. Therefore, the :to clause delegates the creation of class c to another rule
element-name2class providing e’s tag name as argument.

When a rule is applied to an input element for which its :from clause matches, target elements are
created according to its :to cause. The mapping from input to output elements is saved. When a rule
gets applied to an element it has already been applied to, the elements that have been created by the first
call are returned instead of creating new elements.

The element-name2class rule shown below receives as input a plain string, the tag-name of an element,
and it creates a Class c in the target model. The name of the class corresponds to the tag-name. According
to the rule semantics sketched above and the fact that this rule gets called with the tag name of any
element by element2class, there will be one target class for every unique tag name.

(element-name2class

:from [tag-name]

:to [c ’Class {:name tag-name}]

(doseq [[an at av] (all-attributes tag-name)]

(attribute2field an at av c))
(doseq [[tag max-child-no] (all-children tag-name)]
(children-of-same-tag2field tag max-child-no c))

(when-let [char-conts (seq (all-character-contents tag-name))]
(character-contents2field char-conts c)))

Following the :from and :to clauses comes the rule’s body where arbitrary code may be written.
Here, three other rules attribute2field, children-of-same-tag2field, and character-contents2field are
called for all XML attributes, child elements, and character contents® of element e. These rules and
the helpers all-attributes, all-children, and all-character-contents are skipped for brevity but they
follow the same style and mechanics.

The next listing shows the helper implementing the extension task of heuristically determining an
appropriate field type from XML attribute values.

(guess-type [vals]
(let [ts (set (map #(condp re-matches %
#"\d\d\d\d-\d\d-\d\d.*" DATE

#" [+-]17\d+\.\d+" DOUBLE
#" [+-17\d+" (int-type %)
STRING) vals))]
(get-or-create-builtin-type
(cond (= (count ts) 1) (first ts)
(= ts #{DOUBLE INTEGER}) DOUBLE
(= ts #{DOUBLE LONG}) DOUBLE
(= ts #{DOUBLE LONG INTEGER}) DOUBLE
(= ts #{INTEGER LONG}) LONG
:else STRING))))

The guess-type function receives a collection vals. vals could either be all character contents of
an XML element, or all attribute values of an attribute that occurs in many XML elements of the same
tag. Every given value is checked against a regular expression that determines its type being either a
timestamp in ISO 8601 notation, a double value, or an integer value. If none match, then STRING is used
as its type. In case of an integer value, the function int-type further determines if the value can be
represented as a 32 bit integer, or if a 64 bit long is needed.

The cond expression picks the type that can be used to represent all values. If all values are guessed
to be of the very same type, then this type is chosen. For multiple numeric types, the respective “largest”
type is chosen where INTEGER < LONG < DOUBLE. Else, we fall back to sTRING. The picked type is then
passed to the rule get-or-create-builtin-type which creates a Builtin whose type attribute is set to the
type determined by the cond expression.

3The case description doesn’t demand that XML character content should be handled. However, without handling them
transforming test3.xml and test4.xml would lead to several classes without any fields.

4 Solving the TTC FIXML Case with FunnyQT

The complete xml-graph200-model transformation consists of 6 rules and 7 helpers amounting to 70
LOC. The result is an OO model whose field elements already have the heuristically guessed types, and
where multiple-occuring XML child elements of the same type where compressed to array fields.

2.3 Task 3: OO Model to Code

The last step of the overall transformation is to generate code in different programming languages from
the OO model created in the previous step. In addition to the core task languages, the FunnyQT solution
also generates C code as an extension.

One crucial benefit of FunnyQT being a Clojure library is that we can simply use arbitrary other
Clojure and Java libraries for our needs. So for this task, we use the excellent Stencil® library. Stencil is
a Clojure templating library implementing the popular, lightweight Mustache specification®. The idea of
Mustache is that one defines a template file containing placeholders which can be rendered to a concrete
file by providing a map where the keys are the placeholder names and the values are the text that should
be substituted. There are also placeholders for collections in which case the corresponding value of the
map has to be a collection of maps. We’ll discuss the solution using the template for Java.

package {{{pkg-namel}}};
{{#imports}}import {{{imported-class}}};{{/imports}}

class {{{lclass-name}}} {

{{{#fields}}
private {{{field-type}}} {{{field-name}}};
{{/fields}}
public {{{class-name}}}() {
{{fffields}}
this.{{{field-name}}} = {{{field-value-exp}}};
{{/fields}}
} /* parametrized constructor, getters, and setters elided... */ }

So a map to feed to the Stencil templating engine needs to provide the keys :pkg-name, :imports,
:class-name, etc. The values for the :imports and :fields keys need to be collections of maps represent-
ing one import or field each, e.g., a field is represented as a map with keys :field-type, :field-name, and
:field-value-expression.

The templates for the other languages use the same keys (although there are some keys in the C and
C++ templates that are only needed by them), so the essential job of the code generation task is to derive
such a map for every class in our OO model that can then be passed to Stencil’s rendering function.

This is done using a FunnyQT polymorphic function to-mustache whose definition is given below.

1 (declare-polyfn to-mustache [el lang pkgl)
2 (defpolyfn to-mustache oo.Class [cls lang pkgl

3 {:pkg-name pkg

4 :imports (get-imports cls lang)

5 :class-name (oo/name cls)

6 :fields (mark-first-field (map #(to-mustache % lang pkg) (oo/->fields cls)))})
7 (defpolyfn to-mustache oo.Field [f lang pkgl

8 {:field-type (field-type (oo/->type f) lang)

9 :field-name (oo/name f)

10 :field-value-exp (field-value-exp f lang)

11 :plain-field-type (let [t (oo/->type £)]

12 (type-case t

13 ’Array (oo/name (oo/->elemType t))
14 ’Class (oo/name t)

15 nil))})

A polymorphic function in FunnyQT is a function that dispatches between several implementations
based on the metamodel type of its first argument. They can be seen as a kind of object-oriented method

‘https://github.com/davidsantiago/stencil
Shttp://mustache.github.io/

10

T. Horn 5

attached to metamodel classes. Line 1 declares the polymorphic function to-mustache and defines that it
gets three parameters: an OO model element e1, the target language 1ang, and the package/namespace
name pkg in which the class/struct should be generated. Lines 2 to 6 then define an implementation
for elements of the metamodel class Class, and lines 7-18 define an implementation for elements of
metamodel class Field. Both implementations call several helper functions that query the OO model to
compute the relevant values for the map’s keys which are skipped for brevity here.

3 Evaluation and Conclusion

The complexity should be measured as the sum of number of operator occurrences and feature and en-
tity type name references. The FunnyQT solution contains about 300 expressions, 24 metamodel type
references, and 18 property references resulting in a complexity of 342. So it is quite complex but it
does much more than what was required. A solution soving only the required tasks would have the same
amount of metamodel type and property references but would be approximately one third shorter.

Accuracy should measure the degree of syntactical correctness of the generated code and the degree
of how well it matches the source FIXML messages. The FunnyQT solution has a very high accuracy.
The code is correct and compiles without warnings. It also matches the source FIXML messages well.
The creation of one array field for multiple XML children with the same tag is better than creating
several separate fields. Guessing appropriate types for the fields instead of always using string improves
the usefulness of the generated code. Also, that the transformation can be run on an arbitrarily large
sample of FIXML messages in one go improves the accuracy even more.

The overall development time of the solution can be estimated with about 8 person-hours for the core
task and 4 more hours to generalize and extend it to the final version.

Since FunnyQT’s generic xm12xml-graph transformation uses Java’s StAX API internally, the fault
tolerance is high. Documents which are not well-formed lead to parsing errors.

The execution time is good. For all provided test models, the complete transformation including
parsing XML, transforming the XML model to an OO model followed by generating code in all four
languages took at most 700 milliseconds on SHARE. Running the transformation on all provided and
five additional FIXML messages at once took about 1.5 seconds.

The modularity of the xml-graph2oo0-model is Mod = 1 — % =1- % = 0.16 where r is the number of
rules and d is the number of dependencies between them. The code generation is implemented with 10
functions that call each other. Since some functions are recursive and called from different places 12 call
dependencies can be counted. Thus, the modularity is Mod = 1 — % =-0.2.

With respect to abstraction level, the xm1-graph2o0-model transformation is quite low-level. The code
generation is split into declarative templates, and functions that derive a map of template placeholder
keywords to the values that have to be filled in for each class. Those functions are all pure functional.
Thus, the abstraction level of the FunnyQT solution is about medium.

References

[Hor13] Tassilo Horn. Model Querying with FunnyQT - (Extended Abstract). In Keith Duddy and Gerti
Kappel, editors, ICMT, volume 7909 of Lecture Notes in Computer Science. Springer, 2013.

[LYTM14] K. Lano, S. Yassipour-Tehrani, and K. Maroukian. Case study: FIXML to Java, C# and C++. In
Transformation Tool Contest 2014, 2014.

11

6 Solving the TTC FIXML Case with FunnyQT

A Transformation of a Position Report Message

In this section, the stepwise outcomes of transforming a position report message (test2.xml) are illus-
trated.

The FIXML document itself is printed in Section A.1.

Section A.2 shows its representation as an FunnyQT XML model. This part of the overall transfor-
mation has been discussed in Section 2.1.

Section A.3 shows the OO model conforming to the metamodel shown in Figure 1 which is generated
by the xml-graph2o00-model transformation discussed in Section 2.2.

Finally, the sections A.4, A.5, A.6, and A.7 show the source code files for the Poskpt class and the
Util class which contains helpers for the data model classes. For Java and C#, there is only one source
code file for the PosRpt class whereas for C++ and C, the class/struct is declared in a header file and
its definition is held in a separate implementation file. It should be noted that all source code files are
printed here exactly as produced by the transformation. No additional formatting has been done, and they
all compile without warnings using standard compilers for the languages, i.e., javac from the Open]DK
project® for Java, mcs from the Mono project’ for C#, and g++/gcc from the GNU Compiler Collection® for
C++ and C. However, the C++ code uses extended initializer lists which are new in the C++11 standard,
SO a -std=c++0x (Or -std=c++11) has to be added to the g++ call in order not to get warnings.

A.1 The Position Report as XML document

1 <?zml version="1.0" encoding="ASCII"?>

2 <FIXML>

3 <PosRpt RptID="541386431" Rslt="0"

4 BizDt="2003-09-10T00:00:00" Acct="1" AcctTyp="1"

5 SetPx="0.00" SetPxTyp="1" PriSetPx="0.00" ReqTyp="0" Ccy="USD">

6 <Hdr Snt="2001-12-17T09:30:47-05:00" PosDup="N" PosRsnd="N" SeqNum="1002">
7 <Sndr ID="String" Sub="String" Loc="String"/>
8 <Tgt ID="String" Sub="String" Loc="String"/>

9 <0nBhlf0f ID="String" Sub="String" Loc="String"/>
10 <DlvrTo ID="String" Sub="String" Loc="String"/>
11 </Hdr>

12 <Pty ID="0CC" R="21"/>

13 <Pty ID="99999" R="4"/>

14 <Pty ID="C" R="38">

15 <Sub ID="ZZZ" Typ="2"/>

16 </Pty>

17 <Qty Typ="SOD" Long="35" Short="0"/>

18 <Qty Typ="FIN" Long="20" Short="10"/>
19 <Qty Typ="IAS" Long="10"/>

20 <Amt Typ="FMTM" Amt="0.00"/>
21 <Instrmt Sym="AQOL" ID="KW" IDSrc="J" CFI="OCASPS" MMY="20031122"
22 Mat="2003-11-22T00:00:00" Strk="47.50" StrkCcy="USD" Mult="100"/>

23 </PosRpt>
24 </FIXML>

http://openjdk.java.net/
"http://www.mono-project.com
8nttp://gec.gnu.org/

12

T. Horn

A.2 The Position Report as XML Graph

13

Solving the TTC FIXML Case with FunnyQT

A.3 The Position Report as OO Model

14

T. Horn

A.4 The Position Report as Java Class
PosRpt.java

1 package test2;
2
3 import java.util.Date;

4
5 class PosRpt {

6 private int ReqTyp;
7 private String Ccy;
8 private int Rslt;
9 private int AcctTyp;
10 private int SetPxTyp;
11 private double PriSetPx;
12 private int RptID;
13 private double SetPx;
14 private Date BizDt;
15 private int Acct;
16 private Amt Amt_obj;
17 private Instrmt Instrmt_obj;
18 private Qty[] Qty_objs;
19 private Pty[] Pty_objs;
20 private Hdr Hdr_obj;
21
22 public PosRpt() {
23 this.ReqTyp = 0;
24 this.Ccy = "USD";
25 this.Rslt = 0;
26 this.AcctTyp = 1;
27 this.SetPxTyp = 1;
28 this.PriSetPx = 0.00;
29 this.RptID = 541386431;
30 this.SetPx = 0.00;
31 this.BizDt = Util.parseDate("2003-09-10T00:00:00") ;
32 this.Acct = 1;
33 this.Amt_obj = new Amt();
34 this.Instrmt_obj = new Instrmt();
35 this.Qty_objs = new Qty[] {new Qty(), new Qty(), new Qty(};
36 this.Pty_objs = new Pty[] {new Pty(), new Pty(), new Pty(};
37 this.Hdr_obj = new Hdr();
38 ¥
39
40 public PosRpt(int ReqTyp, String Ccy, int Rslt, int AcctTyp, int SetPxTyp, double PriSetPx, int RptID,
41 double SetPx, Date BizDt, int Acct, Amt Amt_obj, Instrmt Instrmt_obj, Qty[] Qty_objs,
42 Pty[] Pty_objs, Hdr Hdr_obj) {
43 this.ReqTyp = ReqTyp;
44 this.Ccy = Ccy;
45 this.Rslt = Rslt;
46 this.AcctTyp = AcctTyp;
47 this.SetPxTyp = SetPxTyp;
48 this.PriSetPx = PriSetPx;
49 this.RptID = RptID;
50 this.SetPx = SetPx;
51 this.BizDt = BizDt;
52 this.Acct = Acct;
53 this.Amt_obj = Amt_obj;
54 this.Instrmt_obj = Instrmt_obj;
55 this.(Qty_objs = Qty_objs;
56 this.Pty_objs = Pty_objs;
57 this.Hdr_obj = Hdr_obj;
58 }
59
60 public int getReqTyp() {
61 return ReqTyp;
62 }
63
64 public void setReqTyp(int ReqTyp) {
65 this.ReqTyp = ReqTyp;
66 }
67
68 // Other getters/setters elided...
69 }
Util.java

15

10 Solving the TTC FIXML Case with FunnyQT

1 package test2;

2

3 import java.text.SimpleDateFormat;
4 import java.text.ParseException;

5 import java.util.Date;

6

7 class Util {

8 private static final SimpleDateFormat dateFormat
9 = new SimpleDateFormat ("yyyy-MM-dd’T’HH:mm:ssXXX") ;
10

11 public static Date parseDate(String date) {

12 try {

13 return dateFormat.parse(date);

14 } catch (ParseException e) {

15 throw new RuntimeException(e);

16 }

17 }

18 }

A.5 The Position Report as C# Class

PosRpt.cs

1 using System;

3 namespace test2{

4 class PosRpt {

5 public int _ReqTyp { get; set; }

6 public string _Ccy { get; set; }

7 public int _Rslt { get; set; }

8 public int _AcctTyp { get; set; }

9 public int _SetPxTyp { get; set; }

10 public double _PriSetPx { get; set; }
1 public int _RptID { get; set; }

12 public double _SetPx { get; set; }

13 public DateTime _BizDt { get; set; }
14 public int _Acct { get; set; }

15 public Amt _Amt_obj { get; set; }

16 public Instrmt _Instrmt_obj { get; set; }

17 public Qty[]l _Qty_objs { get; set; }
18 public Pty[] _Pty_objs { get; set; }

19 public Hdr _Hdr_obj { get; set; }

20

21 public PosRpt() {

22 this._ReqTyp = 0;

23 this._Ccy = "USD";

24 this._Rslt = 0;

25 this._AcctTyp = 1;

26 this._SetPxTyp = 1;

27 this._PriSetPx = 0.00;

28 this._RptID = 541386431;

29 this._SetPx = 0.00;

30 this._BizDt = Util.parseDate("2003-09-10T00:00:00");

31 this._Acct = 1;

32 this._Amt_obj = new Amt();

33 this._Instrmt_obj = new Instrmt();

34 this._Qty_objs = new Qty[] {new Qty(), new Qty(), new Qty(};
35 this._Pty_objs = new Pty[] {new Pty(), new Pty(), new Pty(1};
36 this._Hdr_obj = new Hdr();

37 }

38

39 public PosRpt(int ReqTyp, string Ccy, int Rslt, int AcctTyp, int SetPxTyp, double PriSetPx, int RptID,
40 double SetPx, DateTime BizDt, int Acct, Amt Amt_obj, Instrmt Instrmt_obj, Qty[] Qty_objs,
41 Pty[] Pty_objs, Hdr Hdr_obj) {

42 this._ReqTyp = ReqTyp;

43 this._Ccy = Ccy;

44 this._Rslt = Rslt;

45 this._AcctTyp = AcctTyp;

46 this._SetPxTyp = SetPxTyp;

47 this._PriSetPx = PriSetPx;

48 this._RptID = RptID;

49 this._SetPx = SetPx;

50 this._BizDt = BizDt;

51 this._Acct = Acct;

16

T. Horn 11

52 this._Amt_obj = Amt_obj;
53 this._Instrmt_obj = Instrmt_obj;
54 this._Qty_objs = Qty_objs;
55 this._Pty_objs = Pty_objs;
56 this._Hdr_obj = Hdr_obj;
57 }
58}
59 }
Util.cs

1 using System;
2 using System.Globalization;
3
4 namespace test2 {
5 class Util {
public static DateTime parseDate(string date) {
return DateTime.Parse(date, null, DateTimeStyles.RoundtripKind);

}

6
7
8
9
0}

A.6 The Position Report as C++ Class
PosRpt.hpp

1 #ifndef _test2_PosRpt_H_
2 #define _test2_PosRpt_H_
3

4 #include "Amt.hpp"

5 #include "Pty.hpp"

6 #include "Instrmt.hpp"
7 #include "Ut<il.hpp"

8 #include <string>

9 #include "{ty.hpp"

10 #include "Hdr.hpp"

11 #include <ctime>

12

13 namespace test2 {

14 class PosRpt {

15 private:

16 long _ReqTyp;

17 std::string _Ccy;
18 long _Rslt;

19 long _AcctTyp;

20 long _SetPxTyp;

21 double _PriSetPx;

22 long _RptID;

23 double _SetPx;

24 std::tm _BizDt;

25 long _Acct;

26 Amt* _Amt_obj;

27 Instrmt* _Instrmt_obj;

28 Qty** _Qty_objs;

29 Pty** _Pty_objs;

30 Hdr* _Hdr_obj;

31

32 public:

33 PosRpt () ;

34 PosRpt (long _ReqTyp, std::string _Ccy, long _Rslt, long _AcctTyp, long _SetPxTyp, double _PriSetPx, long _RptID,
35 double _SetPx, std::tm _BizDt, long _Acct, Amt* _Amt_obj, Instrmt* _Instrmt_obj, Qty** _Qty_objs,
36 Pty** _Pty_objs, Hdr* _Hdr_obj);

37 “PosRpt () ;

38 long getReqTyp();

39 void setReqTyp(long ReqTyp);

40 std: :string getCcy();

41 void setCcy(std::string Ccy);

42 long getRslt();

43 void setRslt(long Rslt);

44 long getAcctTyp();

45 void setAcctTyp(long AcctTyp);

17

12 Solving the TTC FIXML Case with FunnyQT

46 long getSetPxTyp();

47 void setSetPxTyp(long SetPxTyp);
48 double getPriSetPx();

49 void setPriSetPx(double PriSetPx);
50 long getRptIDQ);

51 void setRptID(long RptID);

52 double getSetPx();

53 void setSetPx(double SetPx);

54 std::tm getBizDt();

55 void setBizDt(std::tm BizDt);

56 long getAcct();

57 void setAcct(long Acct);

58 Amt* getAmt_obj();

59 void setAmt_obj(Amt* Amt_obj);

60 Instrmt* getInstrmt_obj();

61 void setInstrmt_obj(Instrmt* Instrmt_obj);
62 Qty** getQty_objs();

63 void setQty_objs(Qty** Qty_objs);
64 Pty** getPty_objs();

65 void setPty_objs(Pty** Pty_objs);
66 Hdr* getHdr_obj();

67 void setHdr_obj(Hdr* Hdr_obj);

68 13

69 }

70

71 #endif // _test2_PosRpt_H_

PosRpt.cpp

#include "PosRpt.hpp"

1
2
3 namespace test2 {

4 PosRpt::PosRpt() {

5 this->_ReqTyp = 0;
[3 this->_Ccy = "USD";
7 this->_Rslt = 0;

8 this->_AcctTyp = 1;

9 this->_SetPxTyp = 1;

10 this->_PriSetPx = 0.00;

11 this->_RptID = 541386431;

12 this->_SetPx = 0.00;

13 this->_BizDt = Util::parseDate("2003-09-10T00:00:00");

14 this->_Acct = 1;

15 this->_Amt_obj = new Amt();

16 this->_Instrmt_obj = new Instrmt();

17 this->_Qty_objs = new Qty*[3] {new Qty(), new Qty(), new Qty(};
18 this->_Pty_objs = new Pty*[3] {new Pty(), new Pty(), new Pty()};
19 this->_Hdr_obj = new Hdr();

20 3

21

22 PosRpt::PosRpt(long _ReqTyp, std::string _Ccy, long _Rslt, long _AcctTyp, long _SetPxTyp, double _PriSetPx,
23 long _RptID, double _SetPx, std::tm _BizDt, long _Acct, Amt* _Amt_obj, Instrmt* _Instrmt_obj,
24 Qty** _Qty_objs, Pty** _Pty_objs, Hdr* _Hdr_obj) {
25 this->_ReqTyp = _ReqTyp;

26 this->_Ccy = _Ccy;

27 this->_Rslt = _Rslt;

28 this->_AcctTyp = _AcctTyp;

29 this->_SetPxTyp = _SetPxTyp;

30 this->_PriSetPx = _PriSetPx;

31 this->_RptID = _RptID;

32 this->_SetPx = _SetPx;

33 this->_BizDt = _BizDt;

34 this->_Acct = _Acct;

35 this->_Amt_obj = _Amt_obj;

36 this->_Instrmt_obj = _Instrmt_obj;

37 this->_Qty_objs = _Qty_objs;

38 this->_Pty_objs = _Pty_objs;

39 this->_Hdr_obj = _Hdr_obj;

40

42 PosRpt:: PosRpt() {

43 delete _Amt_obj;
44 delete _Instrmt_obj;
45 delete[] _Qty_objs;

18

T. Horn
46 delete[] _Pty_objs;
47 delete _Hdr_obj;
48}
49
50 long PosRpt::getReqTyp () {
51 return _ReqTyp;
52
53

54 void PosRpt::setReqTyp (long ReqTyp) {
55 _ReqTyp = ReqTyp;
}

58 // Other getters/setters elided...
59 }

13

Util.hpp

#ifndef _test2_Util_H_
#define _test2_Util_H_

#include <string>
#include <ctime>

namespace test2 {
class Util {
9 public:
10 static std::tm parseDate(const char* date);
1}

12}

14 #endif // _test2_Util_H_

[R Y N T

Util.cpp
1 #include "Util.hpp"
2
3 namespace test2 {
4 std::tm Util::parseDate(const char* date) {
5 std::tm tmp;
6 strptime(date, "YFT/TZ", &tmp);
7 return tmp;
8}
9}

A.7 The Position Report as C Struct
PosRpt.h

#ifndef _PosRpt_H_

1

2 #define _PosRpt_H_

3

4 #include "Util.h"

5 #include "Pty.h"

6 #include <time.h>

7 #include "Amt.h"

8 #include "Instrmt.h"
9 #include "{ty.h"

10 #include "Hdr.h"

12 typedef struct {
13 long ReqTyp;

14 char* Ccy;

15 long Rslt;

16 long AcctTyp;

17 long SetPxTyp;
18 double PriSetPx;
19 long RptID;

20 double SetPx;

19

14 Solving the TTC FIXML Case with FunnyQT

21 struct tm BizDt;

22 long Acct;

23 Amt* Amt_obj;

24 Instrmt* Instrmt_obj;

25 Qty** Qty_objs;

26 Pty** Pty_objs;

27 Hdr* Hdr_obj;

28 } PosRpt;

29

30 PosRpt* make_default_PosRpt();
31

32 PosRpt* make_PosRpt(long _ReqTyp, char* _Ccy, long _Rslt, long _AcctTyp, long _SetPxTyp, double _PriSetPx,

33 long _RptID, double _SetPx, struct tm _BizDt, long _Acct, Amt* _Amt_obj,
34 Instrmt* _Instrmt_obj, Qty** _Qty_objs, Pty** _Pty_objs, Hdr* _Hdr_obj);
35

36 void free_PosRpt(PosRpt* x);
37
38 #endif // _PosRpt_H_

PosRpt.c

1 #include "PosRpt.h"
2 #include <stdlib.h>

3
4 PosRpt* make_default_PosRpt() {

5 PosRpt* tmp = malloc(sizeof (PosRpt));

6 tmp->ReqTyp = 0;

7 tmp->Ccy = "USD";

8 tmp->Rslt = 0;

9 tmp->AcctTyp = 1;

10 tmp->SetPxTyp = 1;

11 tmp->PriSetPx = 0.00;

12 tmp->RptID = 541386431;

13 tmp->SetPx 0.00;

14 tmp->BizDt = parseDate("2003-09-10T00:00:00");

15 tmp->Acct = 1;

16 tmp->Amt_obj = make_default_Amt();

17 tmp->Instrmt_obj = make_default_Instrmt();

18 tmp->Qty_objs = (Qty**) make_pointer_array(3, make_default_Qty(),

19 make_default_Qty(),
20 make_default_Qty());
21 tmp->Pty_objs = (Pty#**) make_pointer_array(3, make_default_Pty(),
2 make_default_Pty(),
23 make_default_Pty());

24 tmp->Hdr_obj = make_default_Hdr();
25 return tmp;

26 }

27

28 PosRpt* make_PosRpt(long _ReqTyp, char* _Ccy, long _Rslt, long _AcctTyp, long _SetPxTyp, double _PriSetPx,
29 long _RptID, double _SetPx, struct tm _BizDt, long _Acct, Amt* _Amt_obj,

30 Instrmt* _Instrmt_obj, Qty** _Qty_objs, Pty** _Pty_objs, Hdr* _Hdr_obj) {

31 PosRpt* tmp = malloc(sizeof (PosRpt));
32 tmp->ReqTyp = _ReqTyp;

33 tmp->Ccy = _Ccy;

34 tmp->Rslt = _Rslt;

35 tmp->AcctTyp = _AcctTyp;

36 tmp->SetPxTyp = _SetPxTyp;

37 tmp->PriSetPx = _PriSetPx;

38 tmp->RptID = _RptID;

39 tmp->SetPx = _SetPx;

40 tmp->BizDt = _BizDt;

41 tmp->Acct = _Acct;

42 tmp->Amt_obj = _Amt_obj;

43 tmp->Instrmt_obj = _Instrmt_obj;
44 tmp->Qty_objs = _Qty_objs;

45 tmp->Pty_objs = _Pty_objs;

46 tmp->Hdr_obj = _Hdr_obj;

47 return tmp;

49

50 void free_PosRpt(PosRpt* sp) {
51 free_Amt(sp->Amt_obj);

52 free_Instrmt(sp->Instrmt_obj);
53

20

T. Horn

15

54 Qty* tmp_Qty_objs = *sp->Qty_objs;
55 while (tmp_Qty_objs != NULL) {
56 free_Qty(tmp_Qty_objs);
57 tmp_Qty_objs++;
58
59 free(sp->Qty_objs);
60
61 Pty* tmp_Pty_objs = *sp->Pty_objs;
62 while (tmp_Pty_objs != NULL) {
63 free_Pty(tmp_Pty_objs);
64 tmp_Pty_objs++;
65
66 free(sp->Pty_objs);
67 free_Hdr(sp->Hdr_obj);
68 free(sp);
69 }
Util.h

1 #ifndef _Util_H_
2 #define _Util_H_

3

4 #include <time.h>

5

6 void** make_pointer_array(int size, ...);
7 struct tm parseDate(const char* date);

8

9 #endif // _Util_H_

Util.c

1 #include "Util.h"
2 #include <stdarg.h>
3 #include <stdlib.h>

4
5 void#* make_pointer_array(int size, ...) {

6 va_list ap;

7 va_start(ap, size);

8 void** ary = malloc(sizeof(void*) * size + 1);
9 int i;

10 for (i = 0; i < size; i++) {

1 ary[i] = va_arg(ap, voidx);

12

13 ary[il = NULL;

14 va_end(ap);

15 return ary;

16 }

18 struct tm parseDate(const char* date) {

2}

struct tm tmp;
strptime(date, "JFT%TZ", &tmp);
return tmp;

21

EENIROS I S

The SDMLib solution to the FIXML case for TTC2014

Christoph Eickhoff, Tobias George, Stefan Lindel, Albert Ziindorf

Kassel University, Software Engineering Research Group,
Wilhelmshoher Allee 73, 34121 Kassel, Germany

ceiltgelslin|zuendorf@cs.uni-kassel.de

This paper describes the SDMLib solution to the FIXML case for the TTC2014 [9]. SDMLIib provides
Java code generation for class models / class diagrams. In addition, SDMLIib provides a mechanism for
learning class models from generic example object structures. Thus, for the FIXML case we just added
an XML reader that reads an example file and creates a generic object structure reflecting its content.

1 Introduction

Our team at Kassel University found this case particularly interesting as we give a course on CASE tool
construction where one assignment to the students is to learn a class diagram from an XML file containing
object descriptions but without an explicit XML schema. Thus, the case looked quite familiar to us.

In addition, our team has developed a software development process called Story Driven Modeling 3, 1].
Story Driven Modeling starts with textual scenarios that describe example situations and how they evolve
through the execution of a certain user action. Next, the textual scenarios are extended with informal object
diagrams modeling how the desired program might represent the described situations as object structures at
runtime. Initially, the informal object diagrams may omit object types. The types are added in another design
step that formalizes the object diagrams until a class diagram can be derived. This initial class diagram may
be extended several times in order to support additional scenarios and in order to e.g. add support for
certain design patterns like composite pattern or visitor pattern or strategies. Then, an implementation of
the modeled classes may be generated using e.g. Fujaba [2] or UMLLab [8] or SDMLib [7].

To support Story Driven Modeling, SDMLib provides Generic Object Diagrams [S]. Generic Object
Diagrams are able to represent untyped object structures, they allow to add type information at runtime and
SDMLib is able to learn a class diagram from Generic Object Diagrams and to generate a Java implementa-
tion from it. This is discussed in Section 2.

To address the FIXML case, we just used the standard Java XML parser and wrote a small transformation
that translate the read XML data into a Generic Object Diagram. Then, we used the SDMLib mechanism to
learn a class diagram and to generate a Java implementation, cf. Section 3.

2 SDMLib support for Story Driven Modeling

SDMLib provides classes for a generic graph. This allows users to create generic object structures, e.g., in
a JUnit test as shown in Listing 1.

GenericGraph graph = new GenericGraph ();
22
GenericObject building = graph.createObjects ("WilliAllee", "Building")

© Albert Ziindorf
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
TTC 2014

2 The SDMLib solution to the FIXML case for TTC2014

5 .with("name", "WA73");

6

7 GenericObject wal3 = graph.createObjects ("seFloor", "Floor")
8 .with("name", "WA13").with("level", "1");

9

10 graph.createLinks (). withSrc(building). withTgt(wal3). withTgtLabel("has");

12 GenericObject wa03 = graph.createObjects ("digitalFloor",
13 .with("name", "WAO3").with("level",

"Floor")
"0").with("guest" ,"Ulrich");

15 graph.createLinks (). withSrc(building). withTgt(wa03). withTgtLabel ("has");

Listing 1: Creating a Generic Object Model via Java API

g1 :GenericGraph

obfects

g2 :GenericObject

name = "WilliAllee"
type = "Building"
icon=""

S
/ OWI r
Sutg fhgLinks rs

g4 :GenericLink g3 :GenericAttribute

tgtLabel = "has" name = "name"
srcLabel =" value = "WA73"

incommi\g‘;inks
t

g5 :GenericObject

g8 :GenericLink

tgtLabel = "has"
srcLabel =""

incommiNgLinks
t objects

g9 :GenericObject

o
name = "seFloor"
type = "Floor"

name = "digitalFloor"
type = "Floor"
icon=""

owper owner
owrler owner owl
trs trs trs
trs rs

g7 :GenericAttribute

g6 :GenericAttribute

g10 :GenericAttribute

g11 :GenericAttribute

g12 :GenericAttribute

name = "level"
value ="1"

name = "name"
value = "WA13"

name = "name"
value = "WAO03"

name = "level"
value ="0"

name = "guest"
value = "Ulrich"

Figure 1: Example Informal Generic Object Model

Using GraphViz [4], SDMLIb is able to render object models as object diagrams, cf. figure 1.

Listing 2 shows the SDMLib algorithm for learning a class model from a generic object structure.
First, line 4 loops through all generic objects and I% 6 queries the class model for a class with a name
corresponding to the type of the current generic object. Method getOrCreateClazz creates a new class, if

Albert Ziindorf 3

the object type shows up for the first time. Then, line 8 loops through the generic attributes attached to the
current generic object. For each attribute method getOrCreateAttribute retrieves an attribute declaration
in the current class, cf. line 9.

1 public ClassModel learnFromGenericObjects(String pName, GenericGraph gg){
2 this .setPackageName (pName);

3 // derive classes from object types

4 for (GenericObject gObj : gg.getObjects()) {

5 if (gObj.getType() != null) {

6 Clazz clazz = this.getOrCreateClazz (gObj.getType ());

7 // add attribute declarations

8 for (GenericAttribute attr : gObj.getAttrs()) {

9 Attribute attr = clazz.getOrCreateAttribute (attr.getName());
10 learnAttrType (attr , attr);

nooy)}

12 LinkedHashSet<String > alreadyUsedLabels = new LinkedHashSet<String >();
13 // now derive assocs from links

14 for (GenericLink link : gg.getLinks()) {

15 String sourceType = link.getSrc (). getType ();

16 if (sourceType == null) continue; //<============

17 String targetType = link.getTgt (). getType ();

18 if (targetType == null) continue; //<============

19 String sourcelLabel = link.getSrcLabel ();

20 if (sourceLabel == null) {

21 sourceLabel = StrUtil.downFirstChar (sourceType) + "s";

22 }

23 String targetLabel = link.getTgtLabel ();

24 if (targetLabel == null) {

25 targetLabel = StrUtil.downFirstChar (sourceType) + "s";

26 }

27 Association assoc = getOrCreateAssoc (sourceType, sourceLabel,

28 targetType , targetLabel);
29 if (alreadyUsedLabels.contains(

30 link . getSrc (). hashCode () + ":" + targetLabel)) {

31 assoc.getTarget (). setCard (R.MANY);

32 }

33 if (alreadyUsedLabels.contains(

34 link . getTgt (). hashCode() + ":" + sourceLabel)) {

35 assoc.getSource ().setCard (R.MANY);

36 }

37 alreadyUsedLabels.add(link . getSrc (). hashCode ()+":"+targetLabel);
38 alreadyUsedLabels.add(link . getTgt (). hashCode ()+":"+sourcelLabel);
39 }

40 return this;

41 }

Listing 2: Learning a Class Moté] from a Generic Object Model

4 The SDMLib solution to the FIXML case for TTC2014

Learning the type of an attribute is done by method 1learnAttrType called in line 10

Building of listing 2. Basically, we retrieve the value of the current generic attribute. For our
name :String generic object model, attribute values are just strings. To learn more specific attribute
types, we just try to parse the value string into an int, a double or a java.util.Date
value. On success, we store the detected type in variable attrType. On different at-

buildings tribute values belonging to the same attribute declaration, this parsing step may compute
hps * different results. For example one generic object may have a num attribute with value 42
Floor while the next generic object may have a num attribute with value 23.5. The first case

level int results in an attribute type int while the second produce an attribunte od type double.
name :String To resolve this, we compare the type computed for the current value with the type of the
guest :String attribute declaration that has been computed previously. If the new type is more general
than the old type, we switch to the new type.

Next, the loop in line 14 of listing 2 is used to learn associations from generic links.
For each link we retrieve the types of the connected objects and the role labels for the
link ends. Then, method getOrCreateAssoc searches the class model for a matching
association or creates one, otherwise. Note, that this step is sensible to the direction
of links, two similar links with swapped source and target roles might result in two
associations with swapped roles instead of a single one. This is easy to fix but results in
a more complicated learning algorithm and is thus omitted for lack of space.

Figure 2: Class
Model learned
from Generic
Object Model

Finally, we have to deal with association cardinalities. The most general approach is
to use to-many cardinality for all association roles. To-many associations are able to store to-one relations,
too, and thus to-many association would work in all cases. However, in many cases a to-one cardinality
would suffice and might be more natural to the user. Thus, SDMLib starts with a to-one cardinality for all
new associations and roles and we change the role cardinality as soon as there is an object with two similar
links attached to it.

Once a class model has been learned, we use Graphviz to render it to the user as a class diagram, cf.
figure 2. In addition, the user has the possibility to refactor the learned class diagram e.g. via the SDMLib
API. From the resulting class model, SDMLib generates a Java implementation with one plain Java class
per model class with private attributes and public get and set methods for each attribute and with private
attributes with public access methods for each association role (the access methods of the two roles that
build an association call each other to achieve referential integrity of the pairs of pointers that represent
a link, to-many associations use special container to hold multiple pointers). For each model class like
Building we generate a BuildingSet class. These classes are used for to-many roles. In addition, these
set classes provide the same methods as the original model classes, e.g. FloorSet::getName(). In a
set class, methods like getName () are applied to each contained element, the results are collected and
then returned. Thus, for a variable mainBuilding of type Building the call mainBuilding.getHas ()
delivers the set of floors of that building and mainBuilding.getHas () . getName () delivers a list of names
of these floors. We also generate model specific classes like BuildingP0 that are used to represent pattern
objects in model transformations. For more details see [6]. Finally, we generate factory classes that facilitate
the creation of model objects and that provide a reflective access layer for the the model. This means, you
may ask these factories for the names of all attributes and association roles of a model class and you may
read and write attribute values using their names as simple strings. This reflective layer is also used to
provide generic serialization mechanisms to load anc>ore model object structures from / in JSON or XML
format.

Albert Ziindorf 5

3 Solving the FIXML case with SDMLib

For the FIXML case, we just developed an XML reader that turns the example input data into generic object
structures. Then, the SDMLib techniques are used to learn a class model and to generate Java code for it. Our
solution to the FIXML case first learns one separate class model for each sample XML file. Then, we use all
sample files to learn one common class model that covers all cases. As the class model learning algorithm
for each generic object, attribute, and link first looks whether it has already an appropriate declaration, you
can also start with a class model learned from other cases and add more examples later.

Once we have learned a class model and we have generated its Java implementation, SDMLib also
allows to convert generic object structures into model specific object structures. This is done using the
reflective access layer generated for the model. Once the generic object structure has been transformed into
a model specific object structure, you may program model specific algorithms based on the generated Java
implementation leveraging static type checking and compile time consistency checks. Then you may load
XML files, convert them to model specific objects and run your algorithm. Your algorithm may also utilize
the set based model layer generated by SDMLIib or even the model transformation layer. As simple example
for the set based layer you may write currentOrder.getOrdqty () .getQty () .sum(). This looks up the
set of OrdQty objects attached to the current order. Then we look up the qty attribute of these objects.
Generally, attribute values are collected in list to allow multiple occurences of the same value. For lists of
numbers, SDMLib provides some special operations like min, max, and sum. The latter computes the sum
of the numbers of the list.

Thus, SDMLib does not only generate a Java implementation for the example XML files. It also provides
a mechanism to load XML files to a model specific object structure and SDMLib allows to run complex
algorithms and model transformations on that data. Overall, the FIXML case was made for us. SDMLib
provides a lot of functionality for generic object structures, learning class models, and generating Java code.

References

[1] 1. Diethelm, L. Geiger, and A. Ziindorf. Systematic story driven modeling. Technical Report, Universitit Kassel,
2002.

[2] T. Fischer, J. Niere, L. Torunski, and A. Ziindorf. Story diagrams: A new graph rewrite language based on the
unified modeling language and java. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, TAGT,
volume 1764 of Lecture Notes in Computer Science, pages 296-309. Springer, 1998.

3] U. Norbisrath, R. Jubeh, and A. Ziindorf. Story Driven Modeling. CreateSpace Publishing Platform, 2013.
4] A. Research. Graphviz - graph visualization software, 2008.
5] SDMLib Generic Object Diagrams. https://rawgit.com/fujaba/SDMLib/master/doc/index.html, 2014.

6] SDMLib Model Navigation and Model Transformations Example. https://rawgit.com/azuendorf/SDMLib/master/
SDMLib.net/doc/StudyRightObjectModelNavigationAndQueries.html, 2014.

[7] Story Driven Modeling Library. http://sdmlib.org/, 2014.
[8] UML LAB from Yatta Solutions. http://www.uml-lab.com/de/uml-lab/, 2014.
[9] FIXML Case for the TTC 2014. https://github.com/transformationtoolcontest/ttc2014-fixml, 2014.

26

FIXML toJava, C# and C++ Transfor mationswith

Dan Li, Danning Li Xiaoshan Li
Guizhou Academy of Sciences, Guiyang, China Faculty of Science and Technology, University of Macau,nahi
Volker Stolz

Bergen University College, Norway

QVTR-XSLT is a tool for design and execution of transforraat based on the graphical notation of
QVT Relation. In this paper, we present a solution to the 'MIXto Java, C# and C++" case study
of the Transformation Tool Contest (TTC) 2014 using the QVX< tool.

1 Introduction

The "FIXML to Java, C# and C++” case study of the Transforomafiool Contest (TTC) 2014 addresses
the problem of automatically synthesizing program codenffmancial messages expressed in FIX (Fi-
nancial Information eXchange) format. The problem can lo&dm down into three tasks: 1) generating
FIX model from FIX text file, 2) producing a model of the progrdanguage from the FIX model, and

3) converting the program model to program code of Java, G&4er. In this paper, the transforma-

tion tasks are tackled with QVTR-XSLT [1], a tool that supscediting and execution of the graphical

notation of QVT Relations (QVT-R) language [3].

As part of the model transformation standard proposed byothiect Management Group (OMG),
QVT-R is a high-level, declarative transformation langeiadis graphical notation provides a concise,
intuitive, and yet powerful way to define model transforroasi. In QVT-R, a transformation is defined
as a set ofelations (rules) between source and target metamodels, where sonetgiecifies how two
object diagrams, calledomain patternsrelate to each other. Optionally, a relation may have a pair
of whent andwhereclauses specified with an extended subset of Object Camstranguage (OCL)
to define the pre- and postconditions of the relation, rdsmdyg. A transformation may also include
gueriesandfunctions Transformations are driven by a single, designated teg-kelation.

QVTR-XSLT supports the graphical notation of QVT-R and tlkxeaution of a subset of QVT-R
by means of XSLT [4]. The tool supports unidirectional nanremental enforcement model-to-model
transformations of QVT-R. Features supported includesfamation inheritance through rule overrid-
ing, traceability of transformation executions, multifigut and output models, and in-place transfor
mations. In addition, we extend QVT-R with additional triamation parameter, conditional relation
call and graphical model query [2]. The tool providegraphical editorin which metamodels and trans-
formations can be specified using the graphical syntax, aod@ generatothat automatically generates
executable XSLT stylesheets for the transformationsraAsformation runneis also developed to exe-
cute a single or a chain of generated XSLT transformationsNmking a Saxon XSLT processor. It can
display the execution time and generate the execution iraequired.

The rest of the paper is structured as follows: Section ddhtces the design of a solution for the
case study. We discuss the experimental result and evatuattihe solution against the criteria given in
the case specification in Section 3.

27 © Dan Li, Danning Li, Xiaoshan Li & Volker Stolz
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
TTC 2014

2 Solution design

73] FIXmodel «MetaModel»
& FIXtoOD «Tran
|2 HtmlMetaModel <Hetalodel»

3 LanguageModel «MetaModel»

2] 00model <MetaModel»

& 00toLang «Transformation»

r?;J Sort00 «Transformation»

: r@J TextToFIX «Transformation»
Ea UML Standard Profile [UML_Stan
B[R EMFXMI [QVTR_Profile. mdzip]
E-ER QVIR [QVTR_Profile. mdzip)

Code engineering sets

rmatlon»

Figure 1: Solution overview.

FIXML to Java, C# and C++ Transformations with QVTR-XSLT

FIXmodel | 00model | | LanguageModel | ‘ HtmIMetaModel
a . k. A

S models
. Feature Model i
s . .
rnx Model ‘ Program
Code

Program
. i; 8 a transformations
TextToFIX FIXtoOO Sort00

Model
Figure 2: Overall transforioatprocess.

metamodels

‘ FIX Text

Using the graphical editor of QVTR-XSLT, the solution foetbhase study is designed as a QVT-R
transformation modekiXtoLangwhose outline is shown in Fig. 1. It consists of 4 metamodal$ 4
transformations. Among the metamoddit<{modelspecifies the structures of both FIX text model and
FIX model, OOmodeldefines the abstract model for the OO program languages hamndriguageModel
provides the concrete syntax features for each language.

To complete the tasks of the case study, transformasetioFIXreads a FIX text file and transforms
it to a FIX model (task 1, see Section 2.1), which is subsey@onverted into an abstract program
model by theFIXtoOO transformation (task 2, see Section 2.2). In case of C++¢lidmses defined in
the program model need to be sorted to ensure a class iselbdlafore being called. Transformation
SortOO0is dedicated to this purpose. For the next task, as QVTR-XSlifainly designed for model-
to-model transformations, the program model, along withldmguage concrete feature model, are first
transformed to program code represented as an HTML modettmdorms to thedtmIMetaModelof
Fig. 1. Then, a pre-defined XSLT stylesheet generates a fd&irfile of the program code from the
HTML model (see Section 2.3). This transformation procéss,various artifacts and their relation to

each other, are shown in Fig. 2.

2.1 FIX text to FIX mode transformation

FIXML

ABSNode
XMLNode N 0.*
name : String +subnodes

+attributes|0..*

XMLAttribute ABSAttribute
name : String [P
value : String

Figure 3: FIX metamodel.

<<Relation>> i
FIXtoFIX
{where=nds=node(); NodeToNode(nds,t);}
{isTopLevel}
<<Domain>> — <<Domain>>

Figure 4: Top relatibiXtoFIX.

The very first transformatiofiextToFIXtakes as input an XML text file and outputs a model of FIX
format. As shown in Fig. 3, we define a single metamde&modelfor both the source and target

28

Dan Li, Danning Li, Xiaoshan Li & Volker Stolz 3

models. QVTR-XSLT uses simple UML class diagrams to defineamedels, and requires that a model
has a unique root element, such as EieML shown in the Fig. 3. In the metamodel, two elements,
ABSNodeand ABSAttribute specify the structure of the source text model. Their dabses XMLNode
andXMLAttributg defines the metamodel of the target FIX model. Slightlyeddht from the metamodel
given in the case specification, we usaneproperty instead ofag to specify the tag of a FIX node.

The transformation itself is simple and straightforward. starts from the top relatiofIXtoFIX
(Fig. 4), which matches thEIXML element (the root of the source text model) in its left-haadt,p
and constructs the ro®iIXML element of the target model in its right-hand part. In Wieereclause,
function node()is used to obtain all direct subnodes owned by the root oftlhece model, and another
relationNodeToNodés invoked to subsequently map these subnodes. The magaingstly one-to-one.

2.2 FIX model to program model transformation

Package
<<Relation>> U
AttToProperty
{where=regexp="-+]?[0-9]*\.[0-9]+";
+type N OOElement tp=if matches(v,regexp) then ‘Double’ else ’String’ endif;}
name : String
<<Domain>> <<Domain>>
: XMLNode : Class
Property = =
= o attributes ” L
<<enumeration>> att : XMLAttribute EZRrmitive:
e tpe | S R o=t
order : String v)g?ue: . é?ring D(EILTI?Ie B value = "v"
Figure 5: Metamodel of program model. Figure 6: Rela#aioProperty

Fig. 5 illustrates the metamodel of the program model, wkietves as the target metamodel of the
transformationFIXtoOO. The three programming languages share the same abstréak slefinitions.

In the metamodel, we define a root elemeatkagethat contains a set d@flasses A class own#$roperties
which could be either of &rimitive type (e.g.,String or Double or anObjectof class type. Therder
property inObjectelements indicates the order of an object if there are nteltpjects with the same
name.

The challenge of the transformation is that in the sourceahibeétre may be multiple nodes with the
same tag name. These nodes are distributed throughout ttel,rand each of them may have a different
set of subnodes. We have to search the whole model to collextcairrences of this node, union all of
their subnodes to obtain a largest set, and convert the #a¢ foroperties of corresponding class in the
target model. As multiple subnodes with the same tag hameexiaywithin the same node, a function
is used to count the order of the subnodes, and store theiartterorder property of theDbjectelement.

We tackle the task of Extensions 3.1 (selecting appropdata types) in the relation that transforms
attribute nodes of the source model into primitive propsrof target model, as shown in Fig. 6. In the
whereclause, a regular expressimgexpis used in thenatchedunction to decide if the valueis of type
Doublg otherwise it is of typeString

2.3 Program model to program code transformation

This task is comprised of three steps: 1) sorting class deadas of the program model; 2) transforming
the program model into an HTML model of a particular programgmanguage; 3) rendering the HTML

29

4 FIXML to Java, C# and C++ Transformations with QVTR-XSLT

model to a text file.

Sorting program model. For C++, the class declarations should be ordered so thegadaare always
declared before they are used. We design transform&aoi®Ofor that purpose. It take®Omodelas
the source- and the target metamodel. The transformatiopta@ typical bubble sort algorithm. The
following function is defined for comparison of the pair ofaxknt classes:
function Compare(cl:Class, c2:Class) {
result=if c2.#Object.typerincludescl.name}hen cl—union(c2) else c2—union(cl) endif;
}

where the input parametet is located before2 in the source model. However, if clasg does not
include any object of typel, we consider2is “smaller” thancland swap them.

Program model toHTML model. This transformatiorDOtoLangtakes as input a program model and
a feature model, and generates an HTML model for the codeeopdinticular programming language.
It calls the sorting function defined iBortOOIif needed. The feature model, which conforms to the
metamodelLanguageModeldefines the concrete syntax features for each language:
<L anguageDef>

<LangDef name="Java" this="this." String="String" Double="DoeabiniVar="true" nul="null’ orderClass="false" .../>

<LangDef name="C#" this="this." String="string" Double="doublgiiVar="true" nul="null’ orderClass="false" .../>

<LangDef name="C++" this="" String="string" Double="double" ind¥="false" nul="NIL’ orderClass="true" .../>
</LanguageDef>

In addition, a parameter file is used for the transformatioindicate which language is currently wanted
and the file name of the feature model:

<parameter Root>
<currentLang>C++<furrentLang>

<sourceTypedM odel name="languageSpec" file="LanguageDef.xml"/>
</parameter Root>

HTML model to plain text. A pre-defined simple XSLT stylesheet of about 20 lines of X8bdle is
used to convert the HTML model of the program code into a ek file.

3 Experimentsand Evaluation
Using the QVTR-XSLT code generator, we load the QVT-R tramsgtion model and generate for each

transformation a XSLT stylesheet. Some measures of theftramations, such as lines of generated
XSLT code, development efforts, and model modularity, &i@s in Table 1.

Table 1: Measures of the transformations.

Name Number of relations Lines of Develop Modularity
/queries/functions XSLT code person-hours

TextToFix 3 81 3 0

FIXtoOO 6/3/1 181 10 -0.2

Sort00 1/3/3 117 7 0

OOtoLang 10/6/1 444 20 - 0.56

Total 20/12/5 857 40 -0.31

30

Dan Li, Danning Li, Xiaoshan Li & Volker Stolz 5

With the transformation runner, we load and execute a balelhiat chains all the transformations,
as well as individual XSLT transformations, on the examples/ided by the case study in a laptop of
Intel M330 2.13 GHz CPU, 3 GB memory, and running Windows 7 ldormhe sizes of examples and
the execution times for generating C++ code are shown ineTabThe execution time includes loading
and saving model files from/to disk. The DTD definition (setdine) of test4.xml has to be removed
first. Examples test7 and test8 are rejected because thewalid XML files.

Table 2: Experimental results
Example Size Batch TextToFIX FIXtoOO OOtoLang

(kb) (ms) (ms) (ms) (ms)
testl 0.65 16 <1 <1 15
test2 092 31 <1 15 16
test3 056 25 <1 8 16
test4 0.83 47 <1 16 31
tests 5.0 265 3 120 141
test6 12.4 1200 15 590 593

The generated programs are syntactically correct by cldgokee IDEs of corresponding languages.
Fortestlandtest2 comparing the generated programs with the program testpilevided by the case
study shows equivalent structure. We also manually vehniéygenerated program code with the original
XML examples. So there is a high confidence that the transftoms produce semantics preserving
results. As we can see from Table 2, the solution works wetlthe transformation algorithm also needs
to be optimized to convert larger models more efficiently.

Conclusion

We presented a solution for the "FIXML to Java, C# and C++"ecatidy of TTC 2014. Our so-
lution is founded on the standards introduced by OMG and W, makes use of well-known and
commonly adopted CASE tools and languages. We hope the tealsevall help to demonstrate that the
graphical notation of QVT-R, a combination of UML object giams and essential OCL expressions, as
well as the QVTR-XSLT tool, can be efficiently applied to mbalansformations in practice.

References

[1] Dan Li, Xiaoshan Li & Volker Stolz (2011)QVT-based model transformation using XSWKACM SIGSOFT
Softw. Eng. Note86, pp. 1-8, doit0. 1145/ 1921532, 1921563.

[2] Dan Li, Xiaoshan Li & Volker Stolz (2012)Model querying with graphical notation of QVT relationd&CM
SIGSOFT Softw. Eng. Note7(4), pp. 1-8, doi0. 1145/ 2237796. 2237808.

[3] Object Management Group (201 Meta Object Facility (MOF) 2.0 Query/View/Transformati®pecification,
version 1.1

[4] WWW Consortium (2007)XSL Transformations (XSLT) Version 2.0, W3C Recommemdaticailable at
http://ww. w3. or g/ TR/ 2007/ REC- xsl t 20- 20070123/ .

31

Solving the FIXML2Code-case study with HenshinTGG

Frank Hermann Nico Nachtigall Benjamin Braatz Susann Gottmann
Thomas Engel

Interdisciplinary Centre for Security, Reliability and Trust,
Université du Luxembourg, Luxembourg

)) *
firstname.lastname@uni.lu

Triple graph grammars (TGGs) provide a formal framework for bidirectional model transformations.
As in practice, TGGs are primarily used in pure model-to-model transformation scenarios, tools for
text-to-model and model-to-text transformations make them also applicable in text-to-text transfor-
mation contexts. This paper presents a solution for the text-to-text transformation case study of
the Transformation Tool Contest 2014 on translating FIXML (an XML notation for financial trans-
actions) to source code written in Java, C# or C++. The solution uses the HenshinTGG tool for
specifying and executing model-to-model transformations based on the formal concept of TGGs as
well as the Xtext tool for parsing XML content to yield its abstract syntax tree (text-to-model trans-
formation) and serialising abstract syntax trees to source code (model-to-text transformation). The
approach is evaluated concerning a given set of criteria.

1 Introduction

Triple graph grammars (TGGs) provide a formal framework for specifying consistent integrated models
of source and target models in bidirectional model transformations. Correspondences between the ele-
ments of source and target models are defined by triple rules, from which operational rules for forward
and backward transformations are derived automatically [5, 9]. Several tool implementations for TGGs
exist [7]. Numerous case studies have proven the applicability of TGGs in model-to-model (M2M) trans-
formation scenarios [4, 3]. In [6], we presented an approach for applying TGGs in a text-to-text (T2T)
transformation context for translating satellite procedures. We adapt this approach to provide a solution
for the T2T transformation case study of the TTC 2014 [8]. We evaluate the solution based on fixed
criteria: complexity, accuracy, development effort, fault tolerance, execution time, and modularity.

As depicted in Fig. 1, our transformation involves these steps: A text-to-model (T2M) transformation
step parses the the content of a FIXML file and yields its abstract syntax tree (AST). Then, a M2M
transformation is performed based on a given TGG to convert the source AST into the target AST.
Finally, the target AST is serialised back to source code via a model-to-text (M2T) transformation. We
combine Xtext [1] with the HenshinTGG tool to perform the T2M and M2T steps via Xfext and the M2M
step via HenshinTGG. Xtext is a tool for specifying domain specific textual languages and generating
parsers and serialisers for them. The parser checks that the input source code is well-formed and the
serialiser ensures that the generated output source code is well-defined. HenshinTGG is an extension of
the EMF-Henshin tool [2] and is used for specifying and executing M2M transformations based on the
formal concept of TGGs. The solution is available on SHARE'.

The paper is structured as follows. Sec. 2 describes the TGG tool implementation HenshinTGG,
Sec. 3 presents the details of our solution for the case study, Sec. 4 evaluates the solution concerning the
given criteria and Sec. 5 provides a conclusion and describes potential extensions.

*Supported by the Fonds National de la Recherche, Luxembourg (3968135, 4895603).
Thttp://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession. ..

(© Hermann et. al.
This work is licensed under the
Creative Commons Attribution License.

Submitted to: 32
TTC 2014

2 FIXMI 2Code with HenshinTGG

Implementation: EMF model instance

7t is represented by 1t
XML Parsing Source AST . AST-Conversion ~ TargetAST Serialisation Source
Content T2M (FIXML M2M (Java-, C#-, C++- M2T Code
(FIXMLfile) = (Xtext) AST) (HenshinTGG) AST) (Xtext) (Java, C#, C++)
L‘L conforms to L‘L

Implementation: EMF meta-model for ASTs

Figure 1: Main phases for the T2T-translation (Text-To-Text)

2 HenshinTGG

The main part of the solution involves the AST-conversion, i.e., the specification and execution of the
M2M transformation from FIXML ASTs to ASTs of Java, C# or C++ source code. ASTs are specified
by instance graphs that are typed over a meta-model which defines the allowed structure of the instance
graphs. Fig. 2 (right) depicts the meta-model of FIXML ASTs. Each FIXML AST has a root node of
type Model with at most one Header node connected by a header edge and with a number of XMLNodes
connected by edges of type nodes. The Header contains the XML declaration of a FIXML file and each
XMLNode represents a XML empty-element-tag (<tag />) or a XML start-tag (<tag>) together
with its matching XML end-tag (</tag>). XMLNodes may have several child elements, i.e., plain text
content (attribute entry) or a number of XML subnodes. Each Header and XMLNode may have several
XML Attributes of a specific name and with a certain value. The conversion of FIXML ASTs to
source code ASTs is performed based on the concept of TGGs (cf. App. A).

In order to perform the M2M transformation from FIXML ASTs to source code ASTs, we use the
TGG implementation HenshinTGG for model transformations which is an extension of the plain graph
transformation tool Henshin [2]. HenshinTGG is an Eclipse plugin providing a graphical development
and simulation environment for TGGs allowing the specification of triple graphs and triple rules and
execution of different kinds of TGG operations.

3 Solution

As already introduced in Sec. 1, we applied the general concept for the T2T-translation depicted in Fig. 1.
The presented solution concerns the output language Java only. We are confident that the Xtext grammar
could be generalised to a grammar that is capable to handle also C# and C++.

3.1 Parser for FIXML ASTs and Serialiser for Java ASTs

Fig. 2 (left) depicts the Xtext EBNF grammar of input DSL FIXML. Each rule of the grammar is iden-
tified by a non-terminal symbol separated by a colon from the rule specification body and ends with
a semicolon. E.g., the root rule Model specifies that each FIXML file has one optional XML Header
(line 4) and contains a number of XMLNodes. A Header contains the content of a usual XML header and
a number of Attributes (lines 5-7). For a detailed description of this Xtext grammar see Sec. B.1.
From the grammar, Xtext automatically generates the EMF meta-model in Fig. 2 (right) which serves
as meta-model for FIXML ASTs. Each parser rule becomes a node except for Entry, because Entry has
only unnamed references to terminal rules. Each named reference between two parser rules becomes an

33

Hermann et. al.

1 | grammar lLll.unl.snt.ttI:c2014.FIXML . attributes B Header
2 with org.eclipse.xtext.common.Terminals
3 | generate fIXML "http://www.uni.lu/snt/ttc2014/FIXML"
4 | Model : header=Header? nodes+=XMLNodex; 0.1
5 |Header {Header} "<" "2" "xml" 0.* header
6 attributes+=Attributex "2" ">" H Attribute
7 ("<"™ "im TDx STRING* ">")?; = e EString E Model
8 | XMLNode : "<" tag=ID attributes+=Attributex = value : EString
9 ((" / " ll> ") |
10 (">" subnodes+=XMLNodex* 0.% nodes
11 entry=Entry? "<" "/" end=ID ">") 0.*
12) attributes
, 4 E XMLNode
13 |Attribute : name=ID "=" value=STRING; :
14 |Entry (ID|INT|WS|ANY_OTHER| = tag : EString
= subnodes = entry : EString
15 ML_COMMENT | SL_COMMENT | STRING) +; 0.*

Figure 2: Xtext grammar for FIXML parser (left) and corresponding FIXML meta-model (right)

FT_Tag2Class %I
r—— ‘,_,f'.*-ii\‘lw TR e Parsing | AST-Conver- | Serialising
tag=tagName <tr> (;1 = .. name=tagName <+ (ln mS) Sion (ln mS) (ln mS)
_festure /oo 1:“1 testl.xml 147 500 1204
' =’ 7| |name-taghiame ‘ test2.xml 199 1063 1782
rl B testdxml | 174 1478 3307
o e testS.xml | 1012 5489 1749
NAC(Class-NameUnique) || test6.xml | 2082 11935 596
Figure 4: Execution times on SHARE

Figure 3: Generated FT-rule FT_Tag2Class

edge between the corresponding two nodes. Each named reference between a parser and a terminal rule
becomes an attribute of the corresponding node.

Analogously to the parser, the meta-model for Java ASTs (EMF meta-model) and the serialiser from
Java ASTs (EMF model instances) to Java source code are generated from the Xtext grammar for Java
(cf. App. B). Note that we only consider that subset of Java which is relevant for the translation.

3.2 M2M Transformation

As the main part of the solution involves the specification and execution of the M2M transformation
from FIXML ASTs to source code ASTs, we present one forward translation rule F7_Tag2Class for
converting parts of FIXML ASTs to parts of Java ASTs in this section. Forward translation rules are
derived automatically from triple rules that we specified with HenshinTGG. The forward translation
rules are applied with HenshinTGG in order to convert the ASTs. The rules include the following design
decisions: FIXML input files may contain lists of XML tags with the same name. In our solution, all
these list elements are visited and all occurring features of these tags are integrated within the class
definition. We have an empty constructor that creates initially empty lists. In our view, any content in
the list created by the empty constructor would be non-intuitive for the user of the generated Java code.
Forward translation rule FT_Tag2Class specifies the translation of a XMLNode with a certain tagName

34

4 FIXMI 2Code with HenshinTGG

into a class (class_def) of the same name and links the created class to the root node Model of the
target AST with edge classes. Furthermore, two constructors (method def nodes having the name
of the class) are created for the class with an empty body each. The rule is only applied if there does
not already exist a class with the same name (NAC ClassNameUnique), i.e., if the FIXML file contains
several XML nodes of the same name, only one of these nodes is translated by this rule.

4 Analysis

The approach is evaluated concerning the following criteria that are fixed for the case study [8].

Complexity The TGG comprises 14 triple rules altogether containing 27 nodes, 14 node attributes
and 12 edges in source graphs, 65 nodes, 40 node attributes and 48 edges in target
graphs as well as 20 nodes in correspondence graphs. Both Xtext grammars comprise
24 parser rules with 58 references between them. In total, this results in a complexity
score of 322.

Accuracy The syntactical correctness of the translation is ensured by its formal definition based
on forward translation rules [5], i.e., each FIXML file that is completely translated
yields source code that is correctly typed over the meta-model of the target pro-
gramming language. The constraints of the target language are expressed by graph
constraints and are translated to application conditions of the triple rules. So, the
translation of FIXML ASTs ensures that target ASTs fulfill the constraints.

Development We spent 8 person-hours for writing and debugging the solution. In detail: 1 hour for

effort the grammar of the parser, 2 hours for the grammar of the serialiser, and 5 hours for
the TGG. The experience level of our developers is: Expert.

Fault Files Test 7 & 8 of the FIXML case study [8] have syntax errors and should be iden-

tolerance tified as invalid by the translation. The fault tolerance of our solution is classified as

High. Invalid FIXML input files that do not correspond to the FIXML Xtext grammar
lead to Xtext parsing errors which are displayed on the console and the translation is
aborted. Test 8 is successfully detected as being invalid because the FIXML grammar
claims that each XML start-tag has a corresponding end-tag.
Syntactical restrictions that cannot be expressed by the grammar are defined by con-
straints in a custom Xtext validator. We defined a constraint claiming that each start-
tag has the name of its corresponding end-tag. Test 7 does not satisfy this constraint
and is classified as being invalid. HenshinTGG GUI visualises those fragments of a
FIXML AST that cannot be translated by marking them red. This allows debugging
and the adaptation of the triple rules to obtain a complete translation.

Execution The execution times of the translation steps for each test are as listed in Fig. 4.

time

Modularity The TGG has a score of -0.5 (21 dependencies between 14 triple rules). The Xtext
parsing grammar for XML has a score of -0.71 (12 references between 7 grammar
rules). The Xtext serialisation grammar for Java has a score of -0.64 (36 references
between 22 grammar rules). In total, this results in a score of -0.62.

Abstraction The abstraction level of the presented specification is classified as High, since, TGGs

level together with EBNF grammars are a declarative approach to specify the T2T trans-
formation.

35

Hermann et. al. 5

5 Conclusion

The paper provides a T2T transformation solution to the FIXML2Code case study of the TTC 2014 by
using the EMF tools Xtext and HenshinTGG. Xtext is used to parse FIXML content to an AST and to
serialise Java ASTs to Java source code. HenshinTGG is used to perform the main task of translating
FIXML ASTs into Java ASTs based on the formal concept of TGGs. This allowed the use of existing
formal results in order to ensure syntactical correctness of the translation. The approach was evaluated
based on a given set of fixed criteria which enables a comparison with other solutions to the case study.

The following extensions to the solution were proposed by the case study [8]. The presented approach
is flexible enough to cover these extensions.

(1) Selection of appropriate data types: In order to enable a distinction between data types in
FIXML ASTs, parser rule Attribute of the FIXML grammar must be modified with (valueS = STRING|
valuel = INT|...) for value = STRING. For each possible XML attribute type, two separate transfor-
mation rules must be defined such that XML attributes are transformed to member variables of correct
types in the source code.

(2) Generic transformation: The solution generates Java classes from FIXML sample files that re-
flect the general structure of FIXML files. A generation of classes based on FIXML schema definitions
is more appropriate in order to obtain a source code representation of the general structure. The pre-
sented approach can be adopted, since, Eclipse supports the automatic generation of EMF meta-models
from XML schemas which serve as meta-models for input ASTs, i.e., no Xtext grammar for parsing is
required. The Xtext grammar for serialisation does not need to be modified but the triple rules need to
be adapted accordingly to the new input EMF meta-model.

References

[1] The Eclipse Foundation (2012): Xtext — Language Development Framework — Version 2.2.1. Available at
http://www.eclipse.org/Xtext/.

[2] The Eclipse Foundation (2013): EMF Henshin — Version 0.9.4. Available athttp://www.eclipse.org/
modeling/emft/henshin/.

[3] H. Giese, S. Hildebrandt & S. Neumann (2010): Model Synchronization at Work: Keeping SysML and AU-
TOSAR Models Consistent. In G. Engels, C. Lewerentz, W. Schifer, A. Schiirr & B. Westfechtel, editors:
Graph Transformations and Model-Driven Engineering, LNCS 5765, Springer, pp. 555-579.

[4] J. Greenyer & J. Rieke (2012): Applying Advanced TGG Concepts for a Complex Transformation of Sequence
Diagram Specifications to Timed Game Automata. In A. Schiirr, D. Varré & G. Varrd, editors: Applications of
Graph Transformations with Industrial Relevance, LNCS 7233, Springer, pp. 222-237.

[5] F. Hermann, H. Ehrig, U. Golas & F. Orejas (2010): Efficient Analysis and Execution of Correct and Complete
Model Transformations Based on Triple Graph Grammars. In: MDI 2010, ACM, pp. 22-31.

[6] F. Hermann, S. Gottmann, N. Nachtigall, H. Ehrig, B. Braatz & T. Engel (2014): Triple Graph Grammars
in the Large for Translating Satellite Procedures. In: Theory and Practice of Model Transformations, LNCS
7909, Springer, pp. 50-51.

[7] S. Hildebrandt, L. Lambers, H. Giese, J. Rieke, J. Greenyer, W. Schéfer, M. Lauder, A. Anjorin & A. Schiirr
(2013): A Survey of Triple Graph Grammar Tools. ECEASST 57.

[8] K. Lano, S. Yassipour-Tehrani & K. Maroukian (2014): Case study: FIXML to Java, C# and C++. In: 7th
Transformation Tool Contest (TTC 2014), this volume, WS-CEUR.

[91 A. Schiirr & F. Klar (2008): 15 Years of Triple Graph Grammars. In H. Ehrig, R. Heckel, G. Rozenberg &
G. Taentzer, editors: Graph Transformations, LNCS 5214, Springer, pp. 411-425.

36

6 FIXMI 2Code with HenshinTGG

A Triple Graph Grammars

We briefly review some basic notations for TGGs. Note that the case study of this paper does not use
the backward transformation (source code to FIXML), but the forward transformation only. However,
TGGs still provide an intuitive framework that supports the designer to keep the transformation concise,
flexible and maintainable.

The correspondences between elements of a FIXML AST and an AST of source code are made
explicit by a triple graph. A triple graph is an integrated model consisting of a source model (FIXML
AST), a target model (AST of source code) and explicit correspondences between them. More precisely,
it consists of three graphs G5, G, and G, called source, correspondence, and target graphs, respectively,
together with two mappings (graph morphisms) sg: G — G° and t5: G — G”. The two mappings
specify a correspondence relation between elements of G and elements of G .

The correspondences between elements of FIXML ASTs and elements of ASTs of source code are
specified by triple rules. A triple rule tr = (t°,trC,tr") is an inclusion of triple graphs tr: L — R from
the left-hand side L = L5 &L L€ Ly LT to the right-hand side R = RS <& RC &y RT with (#': L' —
R)iegscry,sgotr® =trS osp and tgotr® = tr” o1, This implies that triple rules do not delete, which
ensures that the derived operational rules for the translation do not modify the given input. A triple rule
specifies how a given consistent integrated model can be extended simultaneously on all three compo-
nents yielding again a consistent integrated model. Intuitively, a triple rule specifies a fragment of the
source language and its corresponding fragment in the target language together with the links to relevant
context elements. A triple rule tr: L — R is applied to a triple graph G via a match morphismm : L — G
resulting in the triple graph H, where L is replaced by R in G. Technically, the transformation step is
defined by a pushout diagram [11] and we denote the step by G === H. Moreover, triple rules can be
extended by negative application conditions (NACs) for restricting their application to specific matches
[5, 12]. Thus, NACs can ensure that the rules are only applied in the right contexts. A triple graph
grammar 7GG = (TG,SG,TR) consists of a type triple graph TG, a start triple graph SG and a set TR of
triple rules, and generates the triple graph language L(7GG) C L(TG) containing all consistent integrated
models. In general, we assume the start graph to be empty in model transformations. For the case study,
the type triple graph consists of the type graph for FIXML ASTs (cf. Fig. 2 (right)) as the source graph,
the type graph for ASTs of source code as the target graph and a correspondence graph containing one
node that maps the model elements from source to target.

Example 1 (Triple Rules) An example of a triple rule of the TGG is presented in Fig. 7. The figure
shows an adapted screenshot of the HenshinTGG tool [2] using short notation. Left- and right-hand side
of a rule are depicted in one triple graph and the elements to be created have the label (++). The three
components of the triple rule are separated by vertical bars, i.e., the source, correspondence and target
graphs are visualised from left to right. The rule creates a XMLNode in the source and its corresponding
class (class_def node) in the target that is linked to an existing Model node as context element. The
correspondence is established via the CORR node. The NAC ClassNameUnique ensures that the rule is
only applicable if there does not already exist a class with the same name. In view of the other rules for
this case study, the depicted rule is of average rule size.

The operational forward translation rules (FT-rule) for executing forward model transformations are
derived automatically from the TGG [5]. A forward translation rule trpr and its original triple rule tr
differ only on the source component. Each source element (node, edge or attribute) is extended by a
Boolean valued translation attribute (tr). A source element that is created by #r is preserved by trpr and

37

Hermann et. al. 7

the translation attribute is changed from (tr) = false to (tr) = true. All preserved source elements in
tr are preserved by trpr and their translation attributes stay unchanged with (tr) = true.

Example 2 (Operational Translation Rules) Fig. 8 depicts the corresponding forward translation rule
of the triple rule in Fig. 7. The elements to be created are labelled with (++) and translation attributes
that change their values are indicated by label (tr).

A forward model transformation is executed by initially marking all elements of the given source
model G° with (tr) = false leading to G’ and applying the forward translation rules as long as possible.

Formally, a forward translation sequence (G5,Gy ity G, G") is given by an input source model G5,

a transformation sequence Gy tr:‘*r% G, obtained by executing the forward translation rules TRrr on
Go = (G <~ @ — @), and the resulting target model G’ obtained as restriction to the target component
of triple graph G, = (G> + G — GI) with GT = GI. A model transformation based on forward
translation rules MT: .2 (TG%) = .Z(TG") consists of all forward translation sequences with TG® and
TG" being the restriction of the triple type graph TG to the source or target component, respectively.
Note that a given source model G5 may correspond to different target models G”. In order to ensure
unique results, we presented in [5] how to use the automated conflict analysis engine of AGG [14] for
checking functional behaviour of model transformations.

B Deeper Insights into our Solution

As already introduced in Sec. 1, we applied the general concept for the T2T-translation depicted in
Fig. 1 which is adapted from the approach we presented in [6] for translating satellite procedures. It
consists of the phases parsing, AST-conversion (main phase), and serialisation and is executed using the
Eclipse Modeling Framework (EMF) tools Xtext and HenshinTGG. The Xtext framework supports the
syntax specification of textual domain specific languages (DSLs) and generates an optional formatting
configuration, based on the EBNF (Extended Backus-Naur Form) grammar specification of a DSL. I
addition, the Xtext framework generates the corresponding parser and serialiser. The parser checks that
the input source code is well-formed and the serialiser ensures that the generated output source code
is well-defined. HenshinTGG is an Eclipse plugin supporting the visual specification and execution of
EMF transformation systems, which is used for the main phase (AST conversion). The presented solution
concerns the output language Java only, but the presented solution seems to be flexible enough to enable
a smooth extension of the serialiser to output languages C# and C++.

B.1 Parser for FIXML

In Sec. 3.1, we broached the description of the Xtext EBNF grammar of input DSL FIXML. In this
section, we will complete this explanation.

A XMLNode is an empty-element-tag ((ID /)) of name ID and with a number of Attributes (lines 8
& 9) or a start-tag ((< ID >)) of name ID with a number of Attributes together with its corresponding
end-tag ((< /ID >)) (lines 8,10 & 11). IDs are imported by line 2 and allow an arbitrary string as
terminal that starts with a character or an underscore symbol. Note that start-tags and their end-tags
may have different tag names, since, tag and end allow arbitrary IDs. Therefore, we introduce an
additional Xtext constraint that claims that each start-tag has the name of its corresponding end-tag
(xmlnode.tag.equals(xmlnode.end)) Fig. 5.

38

8 FIXMI 2Code with HenshinTGG

1 | @Check

2 | def checkXMLNodeHasStartEndTagsOfSameName (XMLNode xmlnode) {

3 if (xmlnode.end != null && !xmlnode.tag.equals (xmlnode.end)) {
4 error ("Start-tag must have the name of its corresponding

5 end-tag.", TTC_XMLPackage.Literals::XML_NODE__END) ;

6 return;

7 }

8 |}

Figure 5: Xtext validator for FIXML syntax - constraint checkXMLNodeHasStartEndTags0fSameName

XMLNodes may have several child nodes (reference subnodes in line 10) subnodes as well as op-
tional plain text content of type Entry (lines 8-12). An Entry is a terminal that comprises combinations
of the following terminals: IDs, Integers, whitespaces (WS), any character symbol (ANY_OTHER), com-
ments and arbitrary STRINGs. An Attribute has a name of type ID and a value of type STRING.

B.2 Serialiser for Java ASTs

1 |grammar lu.uni.snt.secan.ttc_java.TTC_Java with org.eclipse.xtext.common.Terminals
2 | generate tTC_Java "http://www.uni.lu/snt/secan/ttc_java/TTC_Java"

3

4 |Model imports+=import_x classes+=class_defx;

5 | import_ "import" entry=fully_qualified_name ";";

6 | class_def "class" name=ID "{" initialDeclarations+=stmt=*
7 => featuret+=featurex "}";

8 | feature stmt | method_def;

9 | stmt (declaration | assignment) WeWg

10 |declaration type=ID typeParameter=typeParameter? name=ID
11 "=" defaultValue=exp;

12 | typeParameter ("<" typeP=ID ">");

13 | assignment var=fully_qualified_name "=" exp=exp;

14 | fully_qualified_name (ID ("." ID)=x*);

15 | exp atom | constructor_call | methodCall;

16 |constructor_call "new" method=methodCall;

17 | methodCall name=ID typeP=typeParameter? " (" ")";

18 |method_def name=ID " (" (argst=argument ("," argst+=argument)x)? ")"
19 "{" body=body "}";
20 | body {body} (stmts+=stmt) *;
21 | argument type=ID typeP=typeParameter? name=ID;
22 | atom string_val | int_val | variable_name;
23 |variable_name : name=1ID;
24 | string_val : value=STRING;
25 |int_val value=INT;

Figure 6: Xtext grammar for Java serialiser

Analogously to the parser in Sec. 3.1, the meta-model for Java ASTs (EMF meta-model) and the
serialiser from Java ASTs (EMF model instances) to Java source code are generated from the Xtext
grammar for Java listed in Fig. 6. Note that we only consider that subset of Java which is relevant for
the translation. Java source code may include several imports and class definitions (line 4). A class
contains a name of type ID together with a set of declarations as initialDeclarations and a set
of method definitions (method_def) (lines 6 & 7). A declaration contains an ID as type, an optional
generic typeParameter, a variable name of type ID and a defaultValue which can be any expression
(lines 10 & 11). An expression (exp) is either atomic, a constructor call or a method call (line 15). An

39

Hermann et. al. 9

NameUnique)

Tag2Class % NAC(Class-
sre classes

‘liglass det ¢
*name=tagName|:

class_def <++>
name=tagName <++>|

S
feature /<++> <t4> \featurc

:method _dei <++>
name=tagName <++>|

:method _dei <++>
name=tagName <++>|

body

chb <>

|_b0d! ':4+?{ |_b0d¥ ':4+?{

Figure 7: Triple rule Tag2Class

FT_Tag2Class %

XMLNode <i>_|” S o) tat [:class_det <++>

-) === o o z
tag=taghame ftr>| sdc <hdm name=tagName <++
<t Iy Y

feature / <++> -«.»+;.\\‘cc—.7.urc

:method del <++> | :method del <++> |

g 1 < e

body body
<k <ti>

NAC(Class-NameUnique)

‘lclass del |

Figure 8: Triple rule Tag2Class

atomic expression (atom) has a value of type STRING or INT or is the name of a variable (line 22). A
constructor call (constructor_call) contains the terminal new together with a method call (line 16).
A method call (methodCall) contains the name of the method and an optional generic typeParameter
(line 17). A method definition (method_def) contains a name, a list of arguments and a body (lines 18
& 19). A body is a list of statements (stmt) (line 20). An argument is of a certain type with an optional
generic typeParameter and has a name (line 21).

Adaptations for supporting C# and C++ The distinction which language specific tokens would be
used can be defined in the Xtext formatter specification. Thus, the presented solution seems to be flexible
enough to enable a smooth extension of the serialiser to output languages C# and C++, e.g., in Fig. 6 lines
6 & 7, we can add terminals private : and public : in front of initialDeclarations and feature
to mark the block of variable declarations as private and the block of methods as public in C++.

B.3 M2M Transformation

The main part of the solution involves the specification and execution of the M2M transformation from
FIXML ASTs to source code ASTs. We present core forward translation rules for converting FIXML
ASTs to Java ASTs in this section. Fig. 7 depicts a screenshot of triple rule Tag2Class as specified
in the HenshinTGG tool and Fig. 8 shows the corresponding forward translation rule that is derived
automatically from the triple rule Tag2Class that we specified with HenshinTGG. For all other derived

40

10 FIXMI 2Code with HenshinTGG

FT_Attribute2Attribute
b | ot Emathod del NAC(Attribute-
o dlddgsdele : : NameUnique)
at initialDeMarations '©2"V" |gumathod dofe—body Zbody st | """"" i """
stres | <> — args | <t+>) \I|~-‘_u.*|<1—+> : mm‘
1:Attribute <tr> N tgt |w :argument <++> P 1 initialDeclarations
name=nameXML <tr> " " i‘lm ¥ type="String" <++> type="String" <++> + pvon B _I
Sir—————— S <hix N e var="this."+nameXML <++> -declaration
<t+> =~ ' name=namexXmL
defaultValue Oeles P AL EEEETEREE R .
] |
:string_val <4+>] wariable_name <++>]
value=valueXML <++>| name=nameXM| <++>]

Figure 9: FT-rule FT_Attribute2Attribute

FT_Attribute2ExistingAttribute

src

2 XML Node [ir]] 4= Tl N py]
gt
RNy S lacosd e
attributes |
initialDeclarations
1:Adtribute <tr= i} tat [gectaration |
name=nameXML <tr> P name=namaxMi
value=valueXML =tr> - s s
<4t

Figure 10: FT-Rule FT_Attribute2 ExistingAttribute

forward translation rules in this section, the underlying triple rules are not shown explicitly, since, they
can be easily reconstructed from the forward translation rules (cf. Sec. 2).

Forward translation rule F7_Tag2Class is already presented in Sec. 3.2.

Rule FT_Attribute2Attribute (Fig. 9) takes an XMLNode that is already translated into a class and trans-
lates each XML Attribute with nameXML and valueXML of the XMLNode to a member variable (node of
type declaration) of the class by linking the variable to the class with edge initialDeclarations.
Already translated elements are indicated by labels [tr]. The created member variables name and value
get the same defaultValues (i.e., nameXML and valueXML) as the XML Attribute. The type of
the variable is set to String. Furthermore, the constructor of the class is extended by an argument of
type String having the name of the created member variable. The body of the constructor is extended
by an assignment which assigns the argument to the created member variable (assignment node).
Note that HenshinTGG stores the nodes of graphs in lists accordingly to their mapping numbers, i.e.,
the same constructor (node 6 : method def) will always be matched for extension while the other con-
structor (node 5 : method _def) stays unmodified and empty. In combination with rules FT_Tag2Class
and FT_Tag2ExistingClass, this rule will collect all XML attributes of XMLNodes with a certain name
and will append them to the corresponding class as member variables. The constructor is extended cor-
respondingly. The rule is only applicable if there does not yet exist a member variable of the same
nameXML for the class (NAC AttributeNameUnique).

Due to the NAC, only one of these attributes is translated by rule FT_Attribute2Attribute, if the
FIXML file contains several XML tags of the same name that share XML attributes of the same name.
Rule FT Attribute?ExistingAttribute translates the other Attributes by creating correspondences be-
tween the Attributes and the created member variable (node of type declaration) with CORR nodes
only.

41

O 001 W kW —

—
W = o

Hermann et. al. 11

Adaptations for supporting C# and C++ The String type in Java is written string in C# which
can be accomplished easily by substituting String by string for type in rule FT _Attribute2Attribute.
Similarly, the star symbol for pointers can be added to types in C++. For C++ compilers it is necessary to
declare classes before they are used in other classes. A simple syntactical ordering of classes accordingly
to their usage is not sufficient due to possible circular dependencies between classes. A simple solution
would be to add an empty class declaration (class className;) for each class at the beginning of a
C++ file. Rule FT_Tag2Class must be modified so that it additionally creates a declaration node for each
class linked to the Model node. Furthermore, the Java Xtext grammar must be extended by a rule for
declarations such that the declarations precede the class definitions syntactically. A separation of class
declarations and implementations into header and implementation files is also realisable without large
efforts. The forward translation rules would maintain a Model — Header node for the header file and a
Model — Impl node for the implementation file of the classes instead of one Model node only, i.e., C++
EMF model instances would contain not one but two ASTs that can be serialised into separate files.

C Some generated outputs

C.1 Generated Java AST (EMF model instance) for testS.xml.txt

— :class_def

:string_val

value=100

stiing_val

ralue=USD

:string_val

value=47.50

:string_val

value=)

:string_val

ralue=K\W

stiing_val

ralue=A0L

:string_val
valt S

:stiing_val
value=2003-11-22T00:00:00

Figure 11: Generated output Java AST (EMF model instance) for test5.xml.txt

C.2 Generated Java source code for testS.xml.txt

import java.util.Vector;

class FIXML ({
PosRpt PosRpt_object = new PosRpt () ;

FIXML () {
}

FIXML (PosRpt PosRpt_) {

this.PosRpt_object = PosRpt_;
}

42

15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78

12

class PosRpt {

String RptID = "5413864
String Rslt = "0";
String BizDt = "2003-09
String Acct = "1";
String AcctTyp = "1";
String SetPx = "0.00";
String SetPxTyp = "1";
String PriSetPx = "0.00
String ReqTyp = "O0";
String Ccy = "USD";

Vector<Pty> Pty_objects
Vector<Qty> Qty_objects

Hdr Hdr_object = new Hdr();
new Amt () ;

Amt Amt_object =
Instrmt Instrmt_object

PosRpt () {
}

PosRpt (String RptID, St
String AcctTyp,
String ReqTyp,
Vector<Qty> Qty

this.RptID = RptID;
this.Rslt = Rslt;

this.BizDt = BizDt;
this.Acct = Acct;

this.AcctTyp = Acct
this.SetPx = SetPx;
this.SetPxTyp = Set
this.PriSetPx = Pri
this.ReqTyp =
this.Ccy = Ccy;

_list,

31"

-10T00:00:00";

".
7

= new Vector<Pty>();
new Vector<Qty>();

)
= new Instrmt();

ring Rslt, String BizDt,
String SetPx, String SetPxTyp,
String Ccy,

Hdr Hdr_, Amt Amt_,

Typ;

PxTyp;
SetPx;

ReqTyp;

this

this.
this.
this.
this.

class Hdr {
String S
String P
String P
String S

Sndr Sndr_object =
Tgt Tgt_object =

OnBhlfOf
DlvrTo D

Hdr ()
}

Hdr (Stri

this.

this

.Pty_objects = Pty_list;
Qty_objects = Qty_1list;
Hdr_object = Hdr_;
Amt_object = Amt_;
Instrmt_object = Instrmt_;

nt = "2001-12-17T09:30:47-05:00";
osDup = "N";
osRsnd = "N";
egNum = "1002";
new Sndr () ;
new Tgt ();

OnBhlfOf_object =
lvrTo_object = new DlvrTo();

ng Snt, String PosDup,
Tgt Tgt_, OnBhlfOf OnBhlfOf_,
Snt = Snt;

String PosRsnd,

this.
this.
this.
this.
this.
this.

SegNum

Sndr_ob
Tgt_obj
OnBhlfO

.PosDup =
PosRsnd =

DlvrTo_object =

PosDup;

PosRsnd;

= SegNum;

ject = Sndr_;

ect = Tgt_;

f_object = OnBhlfOf_;
DlvrTo_;

new OnBhlfOf ();

DlvrTo DlvrTo_)

43

String SegNum,

FIXMI 2Code with HenshinTGG

String Acct,

String PriSetPx,

Vector<Pty> Pty_list,
Instrmt Instrmt_) {

Sndr Sndr_,

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

Hermann et. al.

}

class Pty {
String ID = "OCC";
String R = "21";
Sub Sub_object = new Sub();

Pty () {
}

Pty (String ID, String R, Sub Sub_) {
this.ID = ID;
this.R = R;
this.Sub_object = Sub_;

}

class Qty {
String Typ = "SOD";
String Long = "35";
String Short = "0";

oty () A
}

Oty (String Typ, String Long, String Short) {
this.Typ = Typ;
this.Long = Long;
this.Short = Short;
}

class Amt {

String Typ = "FMTM";
String Amt = "0.00";
Amt () {

}
Amt (String Typ, String Amt) {

this.Typ = Typ;
this.Amt = Amt;

}

class Instrmt {

String Sym = "AOL";

String ID = "KW";

String IDSrc = "J";

String CFI = "OCASPS";

String MMY = "20031122";

String Mat = "2003-11-22T00:00:00";
String Strk = "47.50";

String StrkCcy = "USD";

String Mult = "100";

Instrmt () {

}

Instrmt (String Sym, String ID, String IDSrc, String CFI, String MMY,

String Mat, String Strk, String StrkCcy, String Mult)
this.Sym = Sym;
this.ID = ID;
this.IDSrc = IDSrc;

44

{

13

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

14

this.CFI CFI;
this.MMY = MMY;
this.Mat = Mat;
this.Strk = Strk;
this.StrkCcy = StrkCcy;
this.Mult = Mult;

}

class Sndr {
String ID = "String";
String Sub = "String";
String Loc "String";

Sndr () {
}

Sndr (String ID, String Sub, String Loc) {
this.ID = ID;

this.Sub = Sub;
this.Loc = Loc;

}

class Tgt {

String ID = "String";
String Sub = "String";
String Loc = "String";
Tgt () {

}
Tgt (String ID, String Sub, String Loc) {
this.ID = ID;

this.Sub = Sub;
this.Loc = Loc;

}

class OnBhlfOf ({

String ID = "String";
String Sub = "String";
String Loc = "String";

OnBh1fOf () {
}

OnBhlfOf (String ID, String Sub, String Loc)
this.ID = ID;

this.Sub = Sub;
this.Loc = Loc;

}

class DlvrTo {

String ID = "String";
String Sub = "String";
String Loc = "String";

DlvrTo () |
}

DlvrTo (String ID, String Sub, String Loc) {
this.ID = ID;
this.Sub = Sub;

{

45

FIXMI 2Code with HenshinTGG

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

Hermann et. al. 15

this.Loc = Loc;
}

class Sub {

String ID = "ZZZ";
String Typ = "2";
Sub () {

}

Sub (String ID, String Typ) {
this.ID = ID;
this.Typ = Typ;

Appendix References

[10] The Eclipse Foundation (2013): EMF Henshin — Version 0.9.4. Available at http://www.eclipse.
org/modeling/emft/henshin/.

[11] H. Ehrig, K. Ehrig, U. Prange & G. Taentzer (2006): Fundamentals of Algebraic Graph Transformation.
EATCS Monographs in Theoretical Computer Science, Springer.

[12] U. Golas, H. Ehrig & F. Hermann (2011): Formal Specification of Model Transformations by Triple Graph
Grammars with Application Conditions. ECEASST.

[13] F. Hermann, H. Ehrig, U. Golas & F. Orejas (2010): Efficient Analysis and Execution of Correct and Complete
Model Transformations Based on Triple Graph Grammars. In: MDI 2010, ACM, pp. 22-31.

[14] TFS-Group, Technical University of Berlin (2014): AGG — Version 2.0.6. Available at http://user.cs.
tu-berlin.de/~gragra/agg/.

46

The TTC 2014 FIXML Case: Rascal Solution*

Pablo Inostroza Tijs van der Storm
Centrum Wiskunde & Informatica (CWI) Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands Amsterdam, The Netherlands
pvaldera@cwi.nl storm@cwi.nl

Rascal is a meta-programming language for processing source code in the broad sense (models, doc-
uments, formats, languages, etc.). In this short note we discuss the implementation of the “TTC’ 14
FIXML to Java, C# and C++ Case” in Rascal. In particular, we highlight the use of string templates
for code generation and relational analysis to deal with dependency-based ordering problems.

1 Introduction

Rascal is a meta-programming language for source code analysis and transformation [1, 2]. Concretely,
it is targeted at analyzing and processing any kind of “source code in the broad sense”; this includes
importing, analyzing, transforming, visualizing and generating, models, data files, program code, docu-
mentation, etc.

Rascal is a functional programming language in that all data is immutable (implemented using per-
sistent data structures), and functional programming concepts are used throughout: algebraic data types,
pattern matching, higher-order functions, comprehensions, etc.

Specifically for the domain of source code manipulation, Rascal features powerful primitives for
parsing (context-free grammars), traversal (visit statement), relational analysis (transitive closure, im-
age, etc.), and code generation (string templates). The standard library includes programming language
grammars (e.g., Java), IDE integration with Eclipse, numerous importers (e.g. XML, CSV, YAML, JSON
etc.) and a rich visualization framework.

In the following sections we discuss the realization of the TTC’ 14 FIXML case study [3] in Rascal.
We conclude the paper with some observations and concluding remarks. All code examples can be found
online at:

https://github.com/cwi-swat/ttc2014- fixml-case

2 The transformation
As proposed in the description of the case study, the solution transformation has been broken down into
the following sub transformations:

1. XML text to model of XML metamodel

2. model of XML metamodel to a metamodel of OO programming languages

3. OO metamodel to program text (for different OO programming languages)

Below we discuss their implementation.

*This research was supported by the Netherlands Organisation for Scientific Research (NWO) Jacquard Grant “Next Gen-
eration Auditing: Data-Assurance as a service” (638.001.214).

© Inostroza and Van der Storm
This work is licensed under the
Creative Commons Attribution License.

Submitted to: 47
TTC 2014

2 TTC’14: Rascal

2.1 Sub transformation 1: XML metamodel to OO metamodel

This task is readily addressed by Rascal’s standard library, as it contains a metamodel for XML and
(de)serialization functions. Thus, the only code that was necessary to perform this particular transfor-
martion was:

Node parseXMLDOM(loc src) = parseXMLDOMTrim(readFile(src));

The parseXMLDOMTrim function parses a string and produces a Node value, conforming to the XML
metamodel. For completeness purposes we present the internal representation of the XML metamodel,
whose essence is captured by these algebraic datatypes:

data Node
= document (Node root)
| attribute(Namespace namespace, str name, str text)
| element(Namespace namespace, str name, list[Node] children)
| charData(str text)
| cdata(str text)
| comment(str text)
| pi(str target, str text)
| entityRef(str name)
| charRef(int code)

data Namespace
= namespace(str prefix, str uri)
| none()

’

2.2 Sub transformation 2: XML metamodel to OO metamodel
The following datatypes capture the structure of the OO metamodel:

data OOModel = oomodel(list[Class] classes);
data Class = class(str name, list[Field] literalFields, list[Field] objFields);
data Field = objField(Type tipe, str name, str altName, list[Field] vals)
| literalField(Type tipe, str name, str altName, str val);
data Type = tipe(str className);

Note that we have defined an OO metamodel intended to specifically address this particular task. This
means that it is not comprehensive enough to model an arbitrarily complex OO system, but it serves as
the intermediate model from which all the desired output in the context of this task can be generated. For
instance, both data variants of the type Field for representing class fields possess an altName field. This
is needed to represent unambiguous parameters in the case of C++ code, as required by the particular
code style shown in the description of the use case.

An 00Model consists of a list of classes. Each class has a name, a number of literal fields, and a
number of object fields. A field can be either an object field or a literal field. The difference is that object
fields can have sub fields, whereas literal fields are directly initialized with a (primitive) value. Types

48

Inostroza and Van der Storm 3

are represented by the Type data type. Note that the difference between literal fields and object fields
is encoded in the Field type; however, for convenience, the class constructor also distinguishes them
explicitly.

In order to map a FIXML model to an OO model, it was necessary to bridge their conceptual gap
following the informal transformation rules presented in the description of the case study. Consider as an
example the transformation of an XML element to an OO class, specified by the function element2class.
Its formal parameter matches an element from the XML metamodel and deconstructs its fields, i.e., its
name and its children. Using a comprehension, the attributes are extracted from the list of the node’s
children by filtering those that are indeed XML attributes. On the other hand, the class data construc-
tor receives a name, a list of literal fields and a list of object fields. The attributes2field function
receives the list of nodes known to be attributes, and generates a list of literal fields by using a simple
comprehension.

Class element2class(element(_, name, children)) =
class(name, attributes2fields(attributes), elements2fields(elements))
when attributes := reverse([a | a <- children, a is attribute]),
elements := groupElementsByName(children);

list[Field] attributes2fields(list[Node] attributes) =
[literalField(tipe("String"), name, toAltName(name), val)| attribute(_,name,val) <-
attributes];

The whole XML to OO sub transformation was specified in 75 SLOC of Rascal code.

2.3 00O model to program text

Once the OO model is produced, the final step is to serialize it as a program in three different OO
languages: Java, C#, and C++. The three transformations are analogous. The main differences are
related to particular idioms of one implementation in respect to the others, particularly in the case of
C++. For instance, although the order in which classes are declared is not relevant in the case of Java
and C#, it matters in the case C++, given its declare-before-use policy. For this reason, we just present
the source code of the Java serialization, and discuss afterwards how we addressed this particularity of
the C++ transformation.

str class2javaClass(class(name, literalFields, objFields)) =
"class <name> {
' <fields2javaFields(literalFields, objFields)>
" <name>(){ }
" <fields2constructor(name, literalFields, objFields)>

"

str fields2constructor(str className, list[Field] literalFields, list[Field] objFields)=
"<className>(<toParameters(literalFields, objFields)>){
" <for (literalField(_, name, _, _) <- literalFields){>

’

this.<name> = <name>;

! <}>

49

4 TTC’14: Rascal

! <for (objField(_, name, altName, _) <- objFields){>
this.<name> = <altName>;
<}>

"

str fields2javaFields(list[Field] litFields, list[Field] objFields) =
"<for (literalField(tipe, name, _, val) <- litFields){>
" <tipe.className> <name> = \"<val>\";
'<}>
"<for (objField(tipe, name, _, vals) <- objFields){>
" <tipe.className> <name> = new <tipe.className>(<toArguments(vals)>);

'<}>";

The three functions produce strings using Rascal’s string templates. These templates support multi-
line strings (margins indicated by '), string interpolation (escaping expressions with the < and > charac-
ters) and automatic indentation. As a result, model-to-text transformations are very easy to express.

As mentioned before, the declare-before-use policy of C++ had to be taken into account. We solve
this problem by first sorting the list classes according to their dependencies (topological order):

list[Class] orderClasses(list[Class] classes) =
[classesMap[cName] | cName <- reverse(analysis::graphs::Graph::order(depGraph))]

when classesMap := (className: ¢ | c:class(className, _, _) <- classes),
depGraph := {<className, oName> | class(className, _, oFields) <- classes
, objField(tipe(oName), _, _, _) <- oFields};

The orderClasses function uses the order function from the graph analysis module (included in the
Rascal standard library), which computes the topological order of the nodes in a graph. Therefore, the
only required task in order to implement the declare-before-use policy was to create a dependency graph
between the classes in the model. The local variable depGraph receives its value from a comprehension
with two generators. This comprehension provides a good example of the advantage of combining
Rascal’s functional nature and its relational calculus support. Given a set of classes, the comprehension
builds a set of tuples (i.e., a binary relation) where its first member is the name of one class obtained
using the first generator, and the second member corresponds to the class name of an object field of such
a class, obtained by means of the second generator. In this way, the dependency graph is computed and
fed to the order function to produce the correct topological order.

3 Concluding Remarks

Implementing the FIXML case study in Rascal was straightforward, as Rascal was effectively designed
for supporting the analysis and transformation of source code artifacts. Because of this, many of the more
complex tasks were already solved using the standard library, e.g., XML parsing and topological sorting.
In summary, it took approximately 200 SLOC to implement the pipeline required to output the code
in the three required languages. The most complex part of the assignment was to identify the minimal
subset of an OO metamodel that we needed in order to implement this particular case study. By doing
that, we avoided unnecessary accidental complexity and conceived a metamodel that was described in
just 6 SLOC.

50

Inostroza and Van der Storm 5

References

[1] Paul Klint, Tijs van der Storm & Jurgen Vinju (2009): Rascal: A domain-specific language for source code
analysis and manipulation. In: SCAM, pp. 168-177.

[2] Paul Klint, Tijs van der Storm & Jurgen Vinju (2011): EASY Meta-programming with Rascal. In Jodo Fer-
nandes, Ralf Liammel, Joost Visser & Jodo Saraiva, editors: Generative and Transformational Techniques in
Software Engineering III, Lecture Notes in Computer Science 6491, Springer, pp. 222-289.

[3] K. Lano, S. Yassipour-Tehrani & K. Maroukian (2014): The TTC Case study: FIXML to Java, C and C++.
In: 7th Transformation Tool Contest (TTC 2014), EPTCS.

o1

Mapping FIXML to OO with Aspectual Code Generators

Steffen Zschaler, Sobhan Yassipour Tehrani
Department of Informatics, King’s College London

szschaler@acm.org, sobhan.yassipour_tehrani@kcl.ac.uk

This paper provides a solution to the TTC 2014 FIXML study case. The case requires the imple-
mentation of a straightforward mapping from XML messages in the FIXML format to a set of source
files implementing the schema of such a message and, optionally, an instantiation with the data from
the message. There is a requirement for producing code in a range of programming languages.

The biggest challenge for transformation design in this study case is that the same tag may occur
in multiple places in the FIXML message, but with a different set of attributes. The generator must
merge all of these occurrences into a single representation in the generated code. We demonstrate
how the use of symmetric, language-aware code generators relieves the transformation developer
almost entirely from considering this requirement. As a result, the transformation specifications we
have written are extremely straightforward and simple. We present generation to Java and C#.

1 Introduction

FIXML is a language used in the financial sector to express financial-transaction information for machine-
to-machine communication in electronic trading. Object-oriented wrappers are convenient for use in
end-point systems when reading, constructing, and manipulating FIXML messages. It is possible to
introduce new and custom formats for messages; this happens frequently.

The study case asks for implementations of code generators that produce wrapper classes given
a specific FIXML message. There are, thus, two parts to the problem posed: 1) to extract the message
schema and 2) to generate class code implementing this schema. The case description does, consequently,
ask for the solution to be broken down into two major phases (with an initialisation phase for reading the
XML document): 1) extracting the schema into an instance of a programming-language meta-model and
2) generation of source code from the model thus created.

The code-generation phase is almost trivial to implement as it effectively amounts to a textbook case
of class-diagram to class-skeleton generation. Schema extraction is a little bit more interesting in that it
requires the merging of information from different parts of the XML document: Tags of the same name
can occur in different places of the document, but with a different set of attributes and sub-nodes.

In our implementation, there are two design decisions that are worth noting:

1. We use symmetric language-aware aspects [6, 7] in the implementation of our code-generation
templates, obviating almost completely the need for any special consideration of the need for
merging in schema extraction; and

2. We use a completely target-language independent meta-model of classes and attributes (i.e., of the
schema). In fact, because of our use of symmetric aspects, our meta-model does not need to insist
on uniqueness of class names and becomes an object model of the FIXML message rather than the
extracted schema only. This enables us to easily generate a test method instantiating our generated
classes with exactly the data from the given FIXML message.

Our implementation is based on Epsilon [2-5] extended with symmetric-aspect support [6, 7].

Submitted to: 52

TTC 2014 © S. Zschaler & S. Y. Tehrani

93

54

95

S. Zschaler & S. Y. Tehrani 5

Java are almost identical for this FIXML transformation. The only real difference is the need to use
‘using System;’ at the beginning of each file to allow for the use of upper-case ‘String’ as a type name.

Because neither the class model nor the XML model contain any information specific to the target
language, the early transformations can be kept unchanged. Only the final code-generation needs to be
adjusted by 1) using the C#-specific template and 2) changing the language handler for the invocation
of eglMerge to csharp. Language handlers encapsulate language-specific information like the feature-
structure grammar and semantic merge-operators for unparsed blocks. A C# language handler did not
exist in the original version of symmetric aspects for code generation as presented in [6,7]. However,
as the architectures of the generation infrastructure and the underlying FEATUREHOUSE system are
designed to be extensible, adding one was a matter of a few minutes.

4 Conclusions and Outlook

We have presented a solution to the TTC 2014 FIXML case using symmetric aspects for code generation.
The key feature of our solution is that our implementation could be largely built language independently
and with almost no concern for schema derivation issues. We have not implemented the generator for
C++. However, this could be easily realised following the same ideas by adding an appropriate set of
code-generator templates.

Tables 1 and 2 show the results for the various metrics requested in the case specification.

References

[1] Sven Apel, Christian Késtner & Christian Lengauer (2009): FEATUREHOUSE: Language-Independent, Auto-
mated Software Composition. In Stephen Fickas, Joanne Atlee & Paola Inverardi, editors: Proc. 31st Int’l Conf.
on Software Engineering (ICSE’09), IEEE Computer Society, pp. 221-231, doi:10.1109/ICSE.2009.5070523.

[2] Dimitrios S. Kolovos, Richard F. Paige & Fiona Polack (2006): The Epsilon Object Language (EOL).
In Arend Rensink & Jos Warmer, editors: Proc. ECMDA-FA 2006, LNCS 4066, Springer, pp. 128-142,
doi:10.1007/11787044_11.

[3] Dimitrios S. Kolovos, Richard F. Paige & Fiona A.C. Polack (2008): The Epsilon Transformation Language.
In Antonio Vallecillo, Jeff Gray & Alfonso Pierantonio, editors: Proc. Ist Int’l. Conf. on Theory and Practice
of Model Transformations (ICMT’08), Lecture Notes in Computer Science 5063, Springer-Verlag.

[4] Dimitrios S. Kolovos, Louis M. Rose, James Williams, Nicholas Matragkas & Richard F. Paige (2012): A
Lightweight Approach for Managing XML Documents with MDE Languages. In Antonio Vallecillo, Juha-
Pekka Tolvanen, Ekkart Kindler, Harald Storrle & Dimitris Kolovos, editors: Proc. 8th European Conf. on
Modelling Foundations and Applications (ECMFA’12), LNCS 7349, Springer, pp. 118-132, doi:10.1007/978-
3-642-31491-9_11. Available at http://dx.doi.org/10.1007/978-3-642-31491-9_11.

[5]1 Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos & Fiona A. Polack (2008): The Epsilon Generation
Language. In Ina Schieferdecker & Alan Hartman, editors: Proc. 4th European Conf. on Model Driven
Architecture (ECMDA-FA’08), Springer, pp. 1-16, doi:10.1007/978-3-540-69100-6_1.

[6] Steffen Zschaler & Awais Rashid (2011): Symmetric Language-Aware Aspects for Modular Code Generators.
Technical Report TR-11-01, King’s College London, Department of Informatics.

[7] Steffen Zschaler & Awais Rashid (2011): Towards Modular Code Generators Using Symmetric Language-
Aware Aspects. In: Proceedings of the 1st International Workshop on Free Composition, FREECO 11, ACM,
New York, NY, USA, pp. 6:1-6:5, doi:10.1145/2068776.2068782. Available at http://doi.acm.org/10.
1145/2068776.2068782.

o6

6 Mapping FIXML to OO with Aspectual Code Generators
A Transformation Implementation Examples

Listing 1: Load XML implementation in EOL
generateFor (XMLDoc.root);

operation generateFor (e : Element) : XML!XMLNode {
var node : XML!XMLNode = new XML!XMLNode;
node.tag = e.tagName;

if (e.getAttributes().length > 0) {
for (idx in Sequence{l..e.getAttributes ().length}) {
var attr = e.getAttributes().item (idx - 1);

var xmlAttr : XML!XMLAttribute = new XML!XMLAttribute;

node.attributes = node.attributes->including (xmlAttr);
xmlAttr .name = attr.nodeName;
xmlAttr.value = attr.nodeValue;

}

for (elt in e.children) A{
node . subnodes = node.subnodes
->including (generateFor (elt));

return node;

}

o7

S. Zschaler & S. Y. Tehrani

Listing 2: XMLtoClass implementation in ETL

pre {
var STRING_TYPE : Classes!DataType = new Classes!DataType;
STRING_TYPE .name = "String”;

rule NodeToClass
transform s : XML!XMLNode
to t : Classes!Class {

t.name = s.tag;

var uniqueID = new Map;

for (attr in s.attributes) {
var newAttr = attr.equivalent ();
newAttr.name = newAttr.name.getUniqueVersion(uniquelID);
t.attributes = t.attributes->including (newAttr);

3

for (elt in s.subnodes) {

var attr : Classes!Attribute = new Classes!Attribute;
t.attributes = t.attributes->including(attr);
attr.name = elt.tag.getUniqueVersion(uniquelD);
attr.type ::= elt;

rule AttrToAttr
transform s : XML!XMLAttribute
to t : Classes!Attribute {

t.name = s.name;
t.value = s.value;

t.type = STRING_TYPE;

}

post {
var mdl : Classes!Model = new Classes!Model;
mdl.topClass ::= getTopNode ();

}

o8

8 Mapping FIXML to OO with Aspectual Code Generators

Listing 3: XMLtoClass implementation in ETL (ctd.)

operation getTopNode() : XML!XMLNode {
var resultSet = XML!XMLNode.all;
for (node in XML!XMLNode.all) {

resultSet = resultSet->excludingAll (node.subnodes);
}
return resultSet.random();
}
operation String getUniqueVersion(uniqueID) : String {
var result : Integer = 0;

if (uniqueID.containsKey(self)) {
result = uniqueID.get(self);
uniqueID.put(self, result + 1);

}

else {
uniqueID.put(self, 1);

}

return self + result;

Listing 4: ClassToJava controller template

[%
for (cl in Model!Class.all()) {
var t := TemplateFactory.load(’JavaOneClass.egl”’);
t.populate (’currentClass’, cl);
t.generate (tgtdir + cl.name + ’. java’);
T
%]

99

S. Zschaler & S. Y. Tehrani

Listing 5: ClassToJava per-class template

package [Y=pck¥%];

public class [%=currentClass.name%] {
VA
for (prop : Model!Attribute in currentClass.attributes) {
%]
private [%=prop.type.name?] [J=prop.name’] =
[%if (prop.type.isKindOf (Model!DataType)) {
%l "[Z=prop.value ZI1" [%
} else {
%] new [Y=prop.type.name’] () [%}%];
(%
}
%]

public [%=currentClass.name?%] () {}

[%if ((not currentClass.attributes->isEmpty()) and
// Java ts mot happy with too many parameters
(currentClass.attributes->size () <= 200)) {%]

public [J%=currentClass.name%] ([%

var first = true;
for (prop : Model!Attribute in currentClass.attributes) {
if (not first) {%], [%}
else {first = false;}
%1 [%=prop.type.name%] [%=prop.name%][%
Y1) A
(%
for (prop : Model!Attribute in
currentClass.attributes) {
%] this.[%=prop.name?%] = [J=prop.name¥];
[A}%]
}
[%h}%]

60

10 Mapping FIXML to OO with Aspectual Code Generators

Listing 6: Build workflow

<target name="generate-java" depends="generate-general ">
<epsilon.eglRegister
src="transformations/java/GenerateMain.egl">
<model ref="classes" as="Model"/>
<parameter name="tgtdir" value="${generate-tgtt/java/"/>
<parameter name="pck" value="${tgtsubdir}t. java"/>
</epsilon.eglRegister>

<epsilon.eglRegister
src="transformations/java/ToJava.egl">
<model ref="classes" as="Model"/>
<parameter name="tgtdir" value="${generate-tgt}t/java/"/>
<parameter name="pck" value="${tgtsubdir}t. java"/>
</epsilon.eglRegister>

<epsilon.eglMerge>
<file>
<include name="${generate-tgt}t/java/*. java" />

<superimpose artifactHandler="javal5" />
</file>
</epsilon.eglMerge>
</target>

Listing 7: Java main method controller template

[%
for (mdl in Model!Model) {
var t := TemplateFactory.load(’JavaMainMethod.egl’);
t.populate (’currentClass’, mdl.topClass);
t.generate (tgtdir + mdl.topClass.name + ’. java’);
}
%]

61

S. Zschaler & S. Y. Tehrani

Listing 8: Java main method template

11

package [%=pck%];

public class [J=currentClass.name%] {
public static void main (String[] args) {
[/i=currentClass.name’] top
= [%=currentClass.generateConstructorCall (D%];

}
}
[%
operation Model!Class generateConstructorCall() : String {
var result : String = "new " + self.name + " ",
// Java doesn’t like too many parameters
if (self.attributes->size() <= 200) {
var first = true;
for (attr in self.attributes) {
if (not first) {
result = result + ", ";
}
else {
first = false;
}
if (attr.type.isKindOf (Model!DataType)) {
result = result + ’"’ + attr.value + ’"’;
}
else {
result = result +
attr.type.generateConstructorCall ();
}
}
}
result = result + ")";
return result;
}
%]

62

12 Mapping FIXML to OO with Aspectual Code Generators

B Metrics

Complexity It is not entirely clear what is meant by an operator or
an entity/feature reference in this context, so the below

values are approximations:
LoadXML - 35
XMLToClass — 61

ClassToJava — 12 (controller template) + 34 (per-
class template) + 11 (main-method controller
template) + 29 (main-method generation) = 86

ClassToCS - 12 (controller template) + 31 (per-class
template) + 11 (main-method controller tem-
plate) + 26 (main-method generation) = 80

Execution time The following times (in milliseconds) were
measured when running all test cases on
a TravelMate laptop with i5 CPU run-
ning at 24GHz and 4GB of main memory.

Stage Minimum | Average | Maximum
LoadXML 78 299 1062
XMLToClass 31 304 1451
ClassToCSharp 63 1929 7317
ClassToJava 218 1713 5647

It should be noted that the times shown can vary sub-
stantially between runs of the experiment set. The
code-generation stage takes the most time, which is
in line with the fact that the main processing happens
here. Further breakdown of the timing for Java gener-
ation reveals the following for the same run as above:

Stage Minimum | Average | Maximum
RegisterJava 109 819 2636
MergeJava 109 894 3011

Abstraction level Medium as this is a declarative-imperative solution.

Table 1: Metrics

63

S. Zschaler & S. Y. Tehrani

Accuracy

Development effort

Fault tolerance

Modularity

Syntactic correctness (¢f. Table 3) and semantic
preservation are achieved. Uniqueness of attribute
names is guaranteed by XMLToClass.

Approx. 3.5 person hours for Java; approx. 0.5 addi-
tional person hours for C#; approx. 1 person hour for
a generalised build script (optional).

High — the transformation accurately reports errors in
the XML files.

Below are approximate values making assumptions
about the meaning of ’rule’:

LoadXML -1—-1/1=0
XMLToClass — 1 —5/6=1/6
ClassToJava —1—3/4=1/4
ClassToCS -1-3/4=1/4

Table 2: Metrics (ctd.)

TestCase 3: [epsilon.xml.loadModel] [Fatal Error]
test3.xml:25:3: The element type "Order"
must be terminated by the matching end-tag
"</Order>".

TestCase 7: [epsilon.xml.loadModel] [Fatal Error]
test7.xml:14:12: The element type "Sndr"
must be terminated by the matching end-tag
"</Sndr>".

TestCase 8: [epsilon.xml.loadModel] [Fatal Error]
test8.xml1:19:10: The element type "Hdr"
must be terminated by the matching end-tag
"</Hdr>".

Table 3: Error messages

64

13

A Model-Driven Solution for Financial Data Representation
Expressed in FIXML

Vahdat Abdelzad Hamoud Aljamaan Opeyemi Adesina
Miguel A. Garzon Timothy C. Lethbridge

University of Ottawa
School of Electrical Engineering and Computer Science,
Ottawa, Canada

{v.abdelzad,hjamaan,oadesOl3,mgarzon}@uottawa.ca, tcl@eecs.uottawa.ca

In this paper, we propose a solution based upon Umple for data transformation of Financial Informa-
tion eXchange protocol (FIXML). The proposed solution includes syntactic and semantic analysis
and automatic code generation. We discuss our solution based on development effort, modularity,
complexity, accuracy, fault tolerance, and execution time factors. We have applied our technique
to a set of FIXML test cases and evaluated the results in terms of error detection and execution
time. Results reveal that Umple is suitable for the transformation of FIXML data to object-oriented
languages.

1 Introduction

Accuracy of information elicited via financial data processing is crucial to decision makers and portfolio
managers in financial domains [12]. Achieving this goal for huge volume of data might be difficult
or impossible without automated, dependable, flexible, and scalable implementation solutions. Model-
based design and automated code generation methods [7, 11], thereby provide inter-connected partial
solutions to developing these systems with minimum effort and defects. Proponents of these methods
[6, 9, 7] argued that they tend to deliver better quality artifacts because of their promises of higher
productivity, reduced turn-around times, increased portability, and elimination of manual coding errors.

Hence, this paper provides a transformation solution to financial transactions expressed in a FIXML
format. Our transformation approach reverse engineers FIXML data into Umple model which is trans-
lated later into targeted object-oriented languages. In our transformation, Umple is seen as M1 level in
which Umple classes representing the FIXML schema. Umple [1, 2] is an open-source model-oriented
language we adopted for the FIXML transformation contest [10]. Proposed solution allows us to have
a real-time graphical visualization of FIXML documents, which is done without code generation, in the
form of a class diagram. Input FIXML documents can be processed in three environments including
UmpleOnline [4], Umple Eclipse plugin, and Umple command-line tool [5]. The results obtained from
the test cases show that the generated code is syntactically and semantically accurate and robust.

The rest of this paper is organized as follows. In Section 2, we present why Umple has been chosen
for this transformation. Section 3 describes our solution based upon parsing, analysis, and code genera-
tion. We will focus on the evaluation of our work and results in Section 4. Finally, we will present the
conclusions in Section 5.

65 © V. Abdelzad et al.
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
TTC 2014

2 A Model-Driven Solution for Financial Data Representation Expressed in FIXML

2 Why Umple?

Umple [1, 2] is an open-source model-oriented language which we have adopted for FIXML transfor-
mation contest [10]. Our reasons for choosing Umple are as follows. Firstly, the lightweight capabilities
of Umple allow modelers and programmers to seamlessly build applications by having a coding layer
within the textual model, which is impossible with just modelling solutions [2]. Secondly, Umple has
been developed with a focus on three key qualities named usability, completeness, and scalability. These
are prerequisite to any successful tools for generating code from a plethora of data, which is usually gen-
erated, and often require processing from financial domains. Thirdly, the integration of FIXML to Umple
only requires us to define a grammar to parse FIXML documents and create instances of its meta-model.
The parser analyses the input text statically against the defined FIXML grammar. Upon successful static
analysis, Umple constructs the internal model of the input as an instance of its own metamodel which
is then used to generate the target languages. Fourthly, Umple has already supported code-generation
for several object-oriented programming languages. Last but not least, it allows us to visualize the cor-
responding UML class diagram with attributes and associations between them. This diagram helps to
visualize FIXML documents automatically. Umple’s architecture is presented in Figure 1.

Parsing Meta-model Code Sample
Umple Code classes Generation Application

Tokenization Meta-model Syntax / Semantic
Tests. Tests Code Tests . Tests

Figure 1: The components of the Umple System.

3 Our solution to the FIXML challenge

To address the challenge, we added an extension to Umple to parse FIXML documents and to process
them such that they become instances of Umples own internal metamodel. We use Umples mixin capa-
bility to inject the algorithm for analysis of the FIXML input into Umple. The mixin capability helps us
not to alter base Umple code but to create the FIXML extension as a separate concern. The Umple mixin
mechanism automatically adds the algorithm to the core of Umple.

The first step in our process is to create a valid model from a FIXML document. To achieve this,
we need to perform a syntactic and sematic validation of FIXML documents. We validated FIXML
documents in two phases. In the first phase, our parser verifies that we have a syntactically valid FIXML
document. Then, it produces an internal syntax tree but does not cover semantic checking yet. In the
second phase, we do semantic checking for FIXML documents. This validates that we have the same
opening and ending tag names. In the second step of having a valid model, Umple meta-model which
adds semantic constraints guarantees that we have a valid model and also generates completely valid
code for target programming languages.

For syntactic validation, we have defined a set of grammars to parse FIXML documents. The FIXML
grammar can be accessed at [3] . Umple has its own EBNF syntax which has special features adapted to
processing source that contains multiple languages.

In our solution, we consider tag attributes to be Umple attributes for the model. In the process of
analysis, we detect the type of attributes (Integer, Double, and String) and use the correct Umple types for
these attributes. On the other hand, whenever we are unable to detect correct types, we assigned a String

66

N R

[Nl IEN B Y N O R S

—

V. Abdelzad et al. 3

type. With this we are able to have a correct and robust model and code generation. We also are able to
detect the errors in the values of attributes. Moreover, we automatically create related set and get methods
for those attributes. We defined attributes with private visibility and generated automatically related set
and get methods so as to support data encapsulation. For example, Listing 1 shows a FIXML document
in which there is a tag with three attributes. According to the values of attributes, we have two integer
attributes and a float attribute. The generated code for the FIXML document in Listing 1 is represented
in Listing 2. We removed here set and get methods and other codes (such as constructors, delete, toString
etc.) due to space limitation. All generated code can be obtained online through UmpleOnline [5].

’<FIXML> <Order Cl0rdID="123456" Side="2" Px="93.25"> </0Order></FIXML>

Listing 1: A sample FIXML document

class Order{
private int Cl10rdID, Side;
private double Px;
//The rest of code }

Listing 2: Java code with proper attribute types

In [10], Lano et al. used an instance variable in generated code for every nested tag in FIXML
documents. This approach is also applied to the nested tags with the same name (which results in the
same objects). Listing 3, for example, shows three nested tags with the same name called Pty. The
generated code for Java according to the solution proposed in [10] is shown in Listing 4. In Listing 4,
we can see that there are three instance variables and a constructor with three parameters. This approach
is not correct for large FIXML documents and also it does not have a good code implementation for
associations in model-driven development. In fact, when we have a large FIXML document with a tag
which has more than 255 nested tags, this approach will not work. According to the solution in [10],
we should add all of those object instances as parameters to the related class constructors. However, it
is impossible because there is a limitation on the number of parameters in programming languages (e.g.
limitation of 255 words for method parameters in Java).

<PosRpt>
<Pty ID="0CC" R="21"/> <Pty ID="99999" R="4"/> <Pty ID="C" R="38"/>
</PosRpt >

Listing 3: A sample FIXML document

class PosRpt {

Pty Pty_object_1 new Pty ("0CC","21");
Pty Pty_object_2 new Pty("99999","4");
Pty Pty_object_2 new Pty("C","38");
PosRpt (Pty Pty_1, Pty Pty_2, Pty Pty_3){

this.Pty_object_1 = Pty_1;
this.Pty_object_2 Pty_2;
this.Pty_object_3 Pty_3;

}
PosRpt O{ } }

Listing 4: Java code generated by the solution in [10]

We have addressed this with the concept of association in the model and arrays as inputs for those
same objects in the implementation. Listing 5 shows our generated code in which we have just an
instance variable and a constructor with a parameter. With this, we resolved the limitation related to the
number of parameters in programming languages. In the same vein, we have just an instance variable

67

00NN AW =

— o —
AW~ OO

4 A Model-Driven Solution for Financial Data Representation Expressed in FIXML

which helps us not to lose the model-driven meaning of associations even in the code level. It means that
we have an instance variable for each association without worries about multiplicity.

class PosRpt{

private List<Pty> Pty_Object;

public PosRpt(Pty... allPty_Object)

{
Pty_Object = new ArrayList<Pty>();
boolean didAddPty_Object = setPty_Object(allPty_Object);

}

public PosRpt ()

{
Pty_Object.add(new Pty ("0OCC", 21));
Pty_Object.add(new Pty ("99999", 4));
Pty_Object.add(new Pty("C", 38));

} //the rest of code

Listing 5: Java Code generated using our approach

4 Results and Evaluation

In this section, we present the results and evaluation of our implementation. The code generated from
any given FIXML documents conforms to their native syntax and semantics. We achieved syntactic
conformance by invoking static analyzer embedded in Umple compiler. With this approach, we were
able to uncover errors and modify our implementation to ensure syntactic correctness of the generated
code. In the same vein, we have adopted the concept of associations in order to preserve semantics as
expected. With Umple, creation of links by associations ensures that unique names are created for every
instance variables of the same class and preserves the underlying semantics.

We raised the level of abstraction, and minimized development time as well as complexity for future
changes. We achieved this with the aid of Umple, which is a level higher than general purpose program-
ming languages, for developing our solution. We performed model-driven development and automatic
code generation for the solution. This has been achieved with the minimum effort and belief that fu-
ture extension or modification will require minimum effort too. The approximate development effort for
implementation, testing and debugging is 5 man-hour.

The solution is robust and detected malformed FIXML documents provided as test cases [10]. The
solution parses test cases #1, #2, #5, and #6 but the remaining set of test cases are considered as mal-
formed documents. The parser specifies exactly the tag which includes a sub-tag with errors but it is
unable to show the exact address of the sub-tag. We have been working on a new parsing engine to
solve this issue. Since, Umple has been developed in a modular way, this modification will not have any
side-effect in the functionality of our solution. Our solution also provides a real-time graphical visual-
ization for FIXML documents. As shown in Figure 2, it can be visualized as a UML class diagram with
attributes and associations between objects (right pane). This is done without code generation so it is
independent of target object-oriented languages.

We have instrumented our compiler with a Timer to measure the time taken to process an input file
and produce the target code. Specifically, the Timer measures the time in ms (System.currentTimeMillis())
taken to 1) parses an input file 2) to analyze and build an instance of the Umple metamodel 3) to generate
source codes. Table 1 summarizes the executions times in milliseconds, for each of the eight FIXML test
cases. It shows that our technique gives good performance results even for larger inputs, as is the case

68

V. Abdelzad et al. 5

for the test #8. The tests were executed on a machine exhibiting the following characteristics: Intel Core
i5-2400 CPU @ 3.10GHz, RAM: 8.00 GB, Win 8 - 64 bits, JRE 7.

5

Conclusions

In this paper, we proposed and implemented a solution for automatic object-oriented code generation
for financial data representation expressed in FIXML. In order to achieve this, we utilized Umple which
includes mechanisms for parsing, analysis, and automatic code generation. Extending Umple grammar
to support FIXML satisfied the requirement for accurate syntactic and semantic processing of FIXML
documents and provision of a flexible way for ongoing modification. Furthermore, the solution provides
a real-time visualization for FIXML documents without code generation.

References

(1]

(2]

(3]

(4]
(5]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

Omar Badreddin (2010): Umple: a model-oriented programming language. 2010 ACM/IEEE 32nd Interna-
tional Conference on Software Engineering 2, pp. 337-338, doi:10.1145/1810295.1810381.

Omar Badreddin, Andrew Forward & Timothy C Lethbridge (2012): Model oriented programming: an
empirical study of comprehension. In: Proceedings of the 2012 Conference of the Center for Advanced
Studies on Collaborative Research, CASCON 12, IBM Corp., pp. 73-86. Available at http://d1l.acm.
org/citation.cfm?id=2399776.2399784.

CRuiSE: FIXML Grammar in Umple. Available at https://code.google.com/p/umple/source/
browse/trunk/cruise.umple/src/umple_fixml.grammar.

CRuiSE: Umple Online. Available at http://try.umple.org.
CRuiSE: Umple tools. Available at http://cruise.eecs.uottawa.ca/umple/UmpleTools.html.

Krysztof Czarnecki & Ulrich Eisenecker (2000): Generative Programming: Methods, Tools, and Application.
Addison-Wesley.

Ewen Denney & Bernd Fischer (2009): Generating Code Review Documentation for Auto-Generated
Mission-Critical Software. In: Third IEEE International Conference on Space Mission Challenges for Infor-
mation Technology, IEEE, pp. 394-401, doi:10.1109/SMC-IT.2009.54. Available at http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5226807.

Robert Grossman & Yunhong Gu (2008): Data mining using high performance data clouds. In: Proceeding
of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 08,
ACM Press, New York, New York, USA, p. 920. Available at http://dl.acm.org/citation.cfm?id=
1401890.1402000.

Anneke Kleppe, Jos Warmer & Wim Bast (2003): MDA Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley.

K. Lano, S. Yassipour-Tehrani & K. Maroukian: Case study: FIXML to Java, C# and C++. In: Trans-
formation Tool Contest - TTC2014. Available at https://github.com/TransformationToolContest/
ttc2014-fixml/blob/master/case_description.pdf.

M Bostrom Nakiéenovié: An Agile Driven Architecture Modernization to a Model-Driven Development
Solution — An Industrial Experience Report. International Journal On Advances in Software 5(3—4), pp.
308-322. Available at http://www.thinkmind.org/index.php?view=article&articleid=soft_
v5_n34_2012_13.

J.W. O’Brien (1970): How market theory can help investors set goals, select investment managers and
appraise investment performance. Financial Analysts Journal 26(4), pp. 91-103. Available at http:
//www.jstor.org/stable/4470707.

69

6 A Model-Driven Solution for Financial Data Representation Expressed in FIXML

A APPENDIX

u R [A OP- limna Draw on the right, write (Umple) model code on the left. Generate Java, C++, PHP or Ruby code from your models.
n ip e online Visit the User Manual or the Umple Home Page for help. Download Umple Report an Issue
Line=[1 Create Bookmarkable URL
E?F?;(nl\\‘lltrirswon:"l.o" encoding="ASCII"?> SAVE & RESET OuBHITOF DiviTa ”
<PosRpt RptID="541386421" Rslt="0" : .
P D2 200309 10700:00:00" Acct="1" = ID: String 1D : String D : Swing
AcctTyp="1" |select Example ¥ Sub : String Sub - String -
SetPx="0.00" SetPxTyp="1" PriSetPx="0.00" Loc : String Loc - String Typ : Integer
ReqTyp="0" Ccy="USD"> %2 Choose fre 3
@ R dr Snt="2001- 12~ 17T09:30: £7-05: 00" Rl Tot_Objec OmBHOTANGETTo Object | o 0-Cbiset
PosDup="N" PosRsnd="N" SegqNum="1002"=
<Sndr ID="String" Sst SE‘ét_rm "LLOC:;?trlnﬂ}';‘> —_—
<Tgt ID="String" Sub="Strin oc="String"/>
<O%Bh|f0f i) ="gStrmg“ Sub='95trmg“ Loc="gstrin "> DRAW
<DlvrTo ID="String" Sub="String" Loc="String"/> g Class = Jbje 1 Hdy/Object
</Hdr> h Hdr 1 Hdr_Object 1 Piv_Dhbject
<Pty ID="OCC" R="21"/> # Association [=] - Qv
<Pty ID="99999" R="4"/> Snt - String Pry -
<Pty ID= ="38"= X, Generalization i Typ - String
<Sub ID="ZZZ" Typ="2"/> - PosDup : String ID:String | | ;o - Integer 1
/Pty > : | ~ PosRsnd : String R : Integer A
<Oty Typ="S0D" Long="35" Shhort:"o"ajf ij Delete joey SeqNum - Integer 3 Py OBec Short : Integer
<Qty Typ="FIN" Long="20" Short="10"/> al . Y o i
<Qt¥ T;g:"IAS" Lon%: RES [Ut ey | Bdr_Object Quy_Object
<Amt Typ="FMTM" Amt="0.00"/=>
<Instrmt Sym="A0L" ID="KW" IDSrc="1"
CFI="OCASPS" MMY="20031122"
Mat="2003-11-22T00:00:00" i i
Strk="47.50" StrkCcy="USD" Mult="100"/=> 1'RosRpt_Obje 1 PosRpt/ Obje
</PosRpt> GENERATE PosRpt 1 [Pos
</FIXML=> Shpl
Java Code RptID : Integer
1 PosRpt_Objecq Rslt : Integer
Generate Code BizDt : String LP
| Acet : Integer
AcctTyp : Integer
OPTIONS RefPy - Timthla
Figure 2: Test case #2 loaded in UmpleOnline
Table 1: Execution time for the eight FIXML test cases
Execution Time (in ms)

Component Case #1 | Case #2 | Case #3 | Case #4 | Case #5 | Case #6 | Case #7 | Case #8
Parsing 314 333 324 331 396 607 322 329
Analyzing 17 20 18 20 27 41 17 18
Generating Java Code | 198 430 265 294 1543 3572 221 214
Total Time: 529 783 607 645 1966 4220 560 561

70

A Solution to the FIXML Case Study using Triple Graph
Grammars and eMoflon

Géza Kulcsar Erhan Leblebici Anthony Anjorin
Technische Universitit Darmstadt Technische Universitit Darmstadt Technische Universitit Darmstadt
Real-Time Systems Lab Real-Time Systems Lab Real-Time Systems Lab
Merckstr. 25 Merckstr. 25 Merckstr. 25
64283 Darmstadt, Germany 64283 Darmstadt, Germany 64283 Darmstadt, Germany

{geza.kulcsar|erhan.leblebici|anthony.anjorin}@es.tu-darmstadt.de

Triple Graph Grammars (TGGs) are a bidirectional model transformation language, which has been
successfully used in different application scenarios over the years.

Our solution for the FIXML case study of the Transformation Tool Contest (TTC 2014) is imple-
mented using TGGs and eMoflon (www . emoflon. org), a meta-modelling and model transformation
tool developed at the Real-Time Systems Lab of TU Darmstadt.

The solution, available as a virtual machine hosted on Share [5], includes the following: (i) an
XML parser to a generic tree model called MocaTree (already a built-in feature of eMoflon), (ii) a
target meta-model specification, (iii) TGG rules describing a bidirectional transformation between
MocaTree and the target meta-model, and (iv) a StringTemplate-based (www . stringtemplate.org)
code generator for Java, C# and C++.

1 Introduction

Triple Graph Grammars (TGGs) [4] are a rule-based, declarative language, used for specifying transfor-
mations, where both directions (forward and backward) can be derived from the same specification.

The FIXML case study [3] is a text-to-text transformation based on the FIX (Financial Information
eXchange) message format and its XML representation. The target format of the transformation is object-
oriented code representing the same data structure originally expressed by the input FIXML data.

Such applications, where an input (tree- or graph-like) model should be transformed to another struc-
ture according to some mapping between the elements, are effectively solved using TGGs. Additionally,
given such a transformation, consisting of a set of TGG rules, a correspondence model representing
traceability links between the source and target model instances is also maintained.

In this paper, we present the latest TGG-features provided by eMoflon by solving the FIXML case
study of TTC 2014 and evaluating our solution. Using the solution, we demonstrate a relatively new
TGG modularity concept, rule refinement and show what can be achieved with it.

2 Solution With Triple Graph Grammars

The case study consists of the following steps: (i) parsing the XML input data into an instance of a source
meta-model for a tree of nodes with attributes, (ii) transforming the source model using TGGs into an
instance of a self-specified target meta-model tailored to the needs of object-oriented languages, and
(iii) generating code in Java, C# and C++ from the target model using StringTemplate. In the following,
details of the implementation of each step are given.

Submitted to: 71
TTC 2014

2 A Solution to the FIXML Case Study using TGGs and eMoflon

«EClass»
CompilationUnit

VRN

== == +compilationUnit +fixmIClass | neS: ixmlClass : FixpriClass

« ass» « ass» ilationUnit : C. ilationUnit

: n . name == chitdflcda rsmg
FixmiClass FixmlAttribute

- name :EString - name :EString

- level :Elnt - value :EString
‘k i
«EClass»
. . . «EClass»
LIXmIOb/sctAtHbuts FixmiObjectAttributeAttribute

- type :EString -

- name :EString
- value :EString

Figure 1: Target meta-model Figure 2: First rule

2.1 Step I: XML to Source

For this transformation, eMoflon already provides an XML adapter (a parser and an unparser) which,
given an XML tree, can create an instance of a generic tree meta-model called MocaTree. The structure of
a MocaTree is the following: (i) it may have a Folder as root element (not obligatory), (ii) a Folder can
contain Files (a File can be root as well), (iii) a File is a container of Nodes, and (iv) a Node can have
Attributes. In our transformation, there is always a single File root representing the file containing
the XML data, the XML tags are the Nodes of the tree and XML attributes become Attributes of the
corresponding Node.

2.2 Step II: Source to Target

This part of the transformation is implemented with TGGs. A TGG consists of a set of rules which
describe how two models (instantiating two different meta-models) are built up simultaneously. The me-
diator graph describing the mapping between source and target model elements is called correspondence
graph. Such a rule set immediately defines both source-to-target and target-to-source transformations.
A rule prescribes the context (model parts that have to exist before rule application) and the elements
that are added to the models and the correspondence graph during rule application. In this sense, TGG
transformations are monotonic (do not delete).

Our target meta-model, chosen to fit the object-oriented structure of our desired output is depicted
in Fig. 1. Our CompilationUnit class serves as the root container can contain FixmlClasses and
FixmlAttributes referencing each other. Those class attributes, which are not single variables but
are also objects themselves are contained by the corresponding class as FixmlObjectAttribute. Be-
sides this containment reference, they also need another one showing which class they instantiate. They
also have a containment self-reference as an object containment chain can be arbitrarily long. Finally,
FixmlObjectAttribute can contain Fixml0bjectAttributeAttributes — although classes already
contain the attribute list, actual member object instances may have different values which we have to in-
clude in the model. (FixmlAttributes and FixmlObjectAttributeAttributes are technically the
same - they have been separated only for the purpose of code generation as they are handled differently.)

Designing a TGG begins by identifying the semantic correspondences between model elements. As
the TGG language is fully declarative, rules have to be declared so that they are applied only in the
intended context and a sequence of rule applications always results in a correct model.

72

Géza Kulcsdr, Erhan Leblebici, Anthony Anjorin 3

Regarding the case study, we can conceive our transformation as fulfilling two tasks simultaneously:
building a rooted tree of (attributed) object attributes, i.e., expanding the model vertically, and for all
child nodes, creating a class if it does not exist, i.e., expanding the model horizontally.

In our experience, that is the main challenge when realizing this transformation with TGGs: TGG
rules translate each model element only once, so rules have to be formulated in such a way that all
corresponding elements (in both forward and backward directions) have to be immediately added to
the target model if the context for processing a new source element (node or attribute) is present. This
requirement of a transformation with TGGs calls for carefully specified rule contexts.

The TGG Rules. We can examine the tasks of translating child nodes and translating attributes
separately. In the following, FIXML classes are simply referred to as classes.

Using rule refinement, one is able to specify the common parts of TGG rules as separate rules, and
then later derive the actual rules of it using a kind of inheritance, where the inheriting rule has to contain
only what differentiates it from its ancestor. This results in more rules but a decreased amount of objects
within rules what makes them more comprehensible. In addition, the rule diagram showing inheritances
reflects the logical structure of the TGG.

Another advantage is that rule refinement relies on the existing TGG rule pattern syntax as opposed
to, e.g., a template-based solution which would result in an additional layer on top of the TGG specifica-
tion. The technique is flexible and has only a limited amount of restrictions; we have to note that this can
also lead to misuse and, thus, overcomplicated diagrams. This is the general drawback of refinements:
their application is not always trivial and getting used to thinking in refinement diagrams requires some
practice. Finally, while the resulting overview diagram can be a valuable tool for maintenance, it might
be challenging to design it.

For further details on rule refinement, we refer to [1] and our eMoflon handbook [2]. In the following,
a semantic description of our rule set is given and the rule diagram of our implementation is shown; the
detailed presentation of the single rules is omitted because of space restrictions.

Root rule. Our first rule is straightforward: we have to map the XML tag right after the <FIXML>
element to a Fixm1Class contained by a CompilationUnit.

Attribute rules. This task can be covered with two rules. A Level 0 attribute rule simply maps all
attributes of the root node in source to a FIXML attribute of the root class.

Each attribute in lower levels (Level N) has to be mapped to an object attribute attribute of the parent
object attribute and a FIXML attribute of the corresponding referred class (as in the Level O case). This
mapping can be specified with a TGG rule which inherits from a first level attribute rule.

Node rules. We have to separate the nodes along two dimensions when specifying the rules we need
for handling nodes: (1) if the node processed is Level 0 (direct descendant of the root node) or Level N
and (2) if it is the first occurrence of this node name or not (rest). We always have to create a new object
attribute for a node and a new class, if there is no existing class for this type of node; Level 0 object
attributes are direct descendants of a class, while Level N ones are children of another object attribute.

Figure 2 shows the First rule, one of the abstract rules, which specifies the context for a first
occurrence of a node. The black boxes (in the upper part) represent the context in the visual syntax of
eMoflon. Green boxes (childNode in the lower part) are the newly created elements. A crossed-out box
means a negative application condition: the object can not be part of the context. This (abstract) rule
requires, that when a new node from the source is processed, there is no FIXML class already there with
the same name. (In this rule, there are no correspondence links directly present.)

Rule diagram. The diagram how the transformation rule set has been implemented can be seen in
Figure 3. Using rule refinement, it can be specified which rules should be actually generated from the
description for transformation purposes, avoiding having too general rules included in the transformation

73

4 A Solution to the FIXML Case Study using TGGs and eMoflon

«Rule» «Rule» «Rule» «Rule»
TagToFixmlClass FirstLeveld [Level0 = RestLevel0
i | L
«Rule» <Rule»
AttributeLevel0 «Rule» ue
. Rest
T First
Att .;;Rt”li” N «Rule» «Rule» «Rule»
ributeleve FirstLevelN > LevelN <t RestLevelN

Figure 3: Rule diagram for source-to-target model transformation

system (the names of abstract rules are in italics).

2.3 Step III: Target to Code

This step has been implemented using StringTemplate, a template language and engine for generating
source code. In general, StringTemplate is a very simple, minimalistic template language, that enforces
a strict separation between logic (i.e., the actual transformation) and a view of the model. This fits well
to our approach as we focus on TGG rules and handle the complexity of the transformation there and not
in the templates.

Although our target model resembles our expectations of a model representing structural information
in object-oriented format, it still has to be post-processed in order to (1) contain empty attributes where
an object attribute has less contained attributes and/or object attributes than the class it instantiates and
(2) deleting multiple neighbour attributes of the same name.

2.4 A TGG Advantage: Backward Transformation

In our solution, we also included another operation for demonstrating one of the advantages of TGGs:
without any further efforts, a backward transformation on the target outputs of the given test cases can
be performed. Utilizing the built-in XML unparser of eMoflon, we are capable of recreating the original
XML input of the transformation. This step included in the solution is solely for demonstration purposes,
but the backward transformation provided here could be actually applied in a possible application where
actual model instances are, for instance, refactored and are to be translated back to FIXML descriptions.

3 Evaluation

In this chapter, we give an evaluation of our solution, taking the different aspects, as specified by the case
study, into consideration.

The abstraction level of the solution is high as the main transformation is specified in a fully declar-
ative way. Its complexity can not be evaluated in this context as it is not clear how “operator” and
“reference” should be interpreted in our TGG visual syntax. The resulting program code is syntactically
and semantically correct, although it is not directly compilable as some language-specific details have

74

Géza Kulcsdr, Erhan Leblebici, Anthony Anjorin

testl.xml | test2.xml | test3.xml | test4.xml | test5.xml | test6.xml
FWD 0.862 0.4265 0.2254 0.2172 2.6568 52.4381
BWD 0.3302 0.3064 0.119 0.2116 5.2227 73.1619

Table 1: Execution times for the test cases test1.xml-test6.xml in both directions

been omitted (as in the case study as well). The solution has been developed by a newcomer to TGGs, so
the development effort was higher than usual: approx. 30 person-hours of which 25 was spent with the
TGG specification and learning TGGs.

The solution is highly fault tolerant as it does not accept invalid XMLs as input and accurate error
descriptions are shown.

The aspect of modularity can be addressed in our solution in the following way: r is the number of
TGG rules and d is the number of inheritance arrows. This results in a modularity score of 1 — % ~0.1.

The average execution times (in seconds) of 10 runs in our SHARE environment for the test cases
testl.xml to test6.xml in forward (FWD) and backward (BWD) direction are summarized in Table 1.

4 Conclusion and Future Work

In this paper, we presented our solution for the FIXML case study of Transformation Tool Contest 2014
using Triple Graph Grammars (TGGs) using eMoflon. We demonstrated a relatively new TGG concept,
rule refinement, which enables more structured TGG rule sets. In addition to the required transformation
from FIXML to object-oriented code, we have also shown that a TGG specification immediately provides
a backward transformation as well, allowing us to produce FIXML trees from target models.

Our future plans include performing scalability measurements based on our FIXML case study so-
lution, which we can then use for identifying performance bottlenecks. The process of tailoring a
transformation-based model generator to an already existing meta-model and a TGG may provide us
important experience for a further goal: the ability to derive such model generators automatically from a
TGG transformation.

References

[1] Anthony Anjorin, Karsten Saller, Malte Lochau & Andy Schiirr (2014): Modularizing Triple Graph Grammars
Using Rule Refinement. In: FASE, pp. 340-354.

eMoflon online handbook (2014): http: //www. moflon. org/ fileadmin/dounload/moflon-ide/
eclipse-plugin/documents/release/eMoflonTutorial. pdf.

Kevin Lano, Sobhan Yassipour-Tehrani & Krikor Maroukian (2014): Case study: FIXML to Java, C# and
C++.

Andy Schiirr (1994): Specification of Graph Translators with Triple Graph Grammars. In E. Mayr, G. Schmidt
& G. Tinhofer, editors: 20th Int. Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes
in Computer Science (LNCS) 903, Springer Verlag, Heidelberg, pp. 151-163.

FIXML Transformation Solution with eMoflon hosted on Share (2014): http://4s. iets. tue. nl/
staff/pvgorp/ share/ ?page=ConfigureNewSessionévdi=XP-TUe_ TGG-Comparison_ eMoflon_
08_05_2013_TTC14_eMoflon_FIXML. vds.

(2]

(3]

(4]

(5]

75

Solving the TTC’14 FIXML Case Study with SIGMA

Filip Krikava Philippe Collet
University Lille 1 - LIFL, France Université Nice - Sophia Antipolis, France
INRIA Lille, Nord Europe CNRS, I3S, UMR 7271
filip.krikava@inria.fr philippe.collet@unice.fr

In this paper we describe a solution for the Transformation Tool Contest 2014 (TTC’14)
FIXML case study using SIGMA, a family of Scala internal Domain-Specific Languages (DSLs)
that provides an expressive and efficient API for model consistency checking and model trans-
formations. We solve both the core transformation task and its three extensions.

1 Introduction

In this paper we describe our solution for the TTC’ 14 FIXML case study [3] using the SIGMA
internal DSLs [2]. In addition to solving the core tasks that consists of generating Java, C# and
C++ code from FIXML messages structure, we also solve all the proposed extensions for deter-
mining appropriate types of element attributes, generating C code and generic FIXML schema
transformation. Our solution supports array generation for multiple sibling XML nodes that share
the same name, and most notably it generates proper constructor calls, keeping the initial values
as they occur in the XML document. Purposely, we choose a non-trivial object-oriented model in
order to demonstrate that SIGMA can be easily applied in complex transformations. Finally, for all
target languages, the generated code is complete, including all necessary statements so it compiles
without any problems or warning'.

The solution was developed in SIGMA, a family of Scala® internal DSLs for model manipula-
tion tasks such as model validation, model to model (M2M), and model to text (M2T) transforma-
tions. Scala is a statically typed production-ready General-Purpose Language (GPL) that supports
both object-oriented and functional styles of programming. It uses type inference to combine static
type safety with a “look and feel” close to dynamically typed languages. SIGMA DSLs are embed-
ded in Scala as a library allowing one to manipulate models using high-level constructs similar to
the ones found in the external model manipulation DSLs such as ETL or ATL 3. The intent is to pro-
vide an approach that developers can use to implement many of the practical model manipulations
within a familiar environment, with a reduced learning overhead as well as improved usability and
performance. The solution is based on the Eclipse Modeling Framework (EMF), which is a pop-
ular meta-modeling framework widely used in both academia and industry, and which is directly
supported by SIGMA.

The complete source code is available on Github as well as directly runnable from a SHARE
environment”,

! Tested using OpenJDK 1.7, Mono 3.2 and Clang 6.0 on OSX 10.9
’http://scala-lang.org

3Epsilon —https://www.eclipse.org/epsilon/, ATL — https://www.eclipse.org/atl/
4Github — http://bit.ly/ImHSCHY, SHARE — http://bit.ly/lsSWDeB

76

Submitted to:
TTC 2014

LR W —

2 Solving the TTC’14 FIXML Case Study with SIGMA

2 Solution Description

The core problem of this case study is generating source code from a FIXML message structure.
The input is a file representing an FIXML 4.4 message [1] and the output is some Java, C# and
C++ sources that represent the structure of the given FIXML message. As suggested, our solution
is realized by a systematic model transformation from an XML file to an XML model, which is
transformed into an object-oriented language model, from which we serialize into source code.
Prerequisites In SIGMA, EMF models are aligned with Scala through automatically generated
extension traits (placed in an src-gen folder) that allows for a seamless model navigation and mod-
ification using standard Scala expressions. This includes omitting get and set prefixes, convenient
first-order logic collection operations (e.g., map, filter, reduce), and first-class constructs for cre-
ating new model elements.

2.1 FIXML XML Message to XML Model

The parsing of an XML document is handled by a Scala library. Therefore this tasks in essentially
a M2M transformation between the Scala XML model and the XML model specified in the case
study description. This is a trivial operational-style transformation that has been realized by the
FIXMLParser class.

2.2 XML Model to ObjLang Model

The ObjLang meta-model chosen for this solution originates from the Featherweight Java model °.
It provides a reasonable abstraction for an object-oriented programming language, supporting basic
classes, fields and expressions.

In SIGMA, a M2M transformation is represented as a Scala class that inherits from the momT
base class. Concretely, the xMimvM20bjLang our transformation class is defined as:

class XMLMM2ObjlLang extends M2MT with XMLMM with Objlang { // mix-in generated extensions
// rule definitions

}

Within the class body, an arbitrary number of transformation rules can be specified as methods
using parameters to define the transformation source-target relation. For example, the first rule of
the transformation from xMNode into a class is defined as:

def ruleXMLNode2Class (s: XMLNode, t: Class)

.allSameSiblings foreach (associate(_, t))

.name = s.tag

.members ++= s.sTargets|[Constructor]

.members ++= s.allAttributes.sTarget [Field]; t.members ++= s.allSubnodes.sTarget [Field]

tcttn

}

This rule represents a matched rule which is automatically applied for all matching elements. When
such a rule is executed, the transformation engine first creates all the defined target elements and
then calls the method whose body populates their content using arbitrary Scala code. A matched
rule is applied once and only once for each matching source element, creating a 1:1 or 1:N mapping.
However, in the current scenario, all XML node siblings with the same tag name should be mapped
into the same class (N:1 mapping). This can be done by explicitly associating the siblings to the
same class (line 2)°. The starget (s) methods are used to relate the corresponding target element(s)

Shttp://bit.ly/1lmHRkwM
5The al1SameSiblings is a helper collecting all same named siblings.

77

F. Kiikava and P. Collet 3

that has been already or can be transformed from source element(s). On lines 4 and 5 the use
of these methods will populate the content of the newly created class by in turn executing the
correspcn1ding rules, ie. ruleXMLNode2DefaultConstructor, ruleXMLNode2NoneDefaultConstructor,
ruleXMIAttribute2Field and ruleXMINode2Field.

The last rule converting XML nodes into fields has to handle multiple same-tag siblings. While
the case description proposes to use either multiple fields or a collection, the former brings a scala-
bility problem since in Java, there is a limit of the maximum number of method parameters already
exceeded by the test case 5. Therefore we have opted for the latter and use arrays. Moreover, even
though it has not been specifically requested in the case study, our transformation keeps the default
values of the attributes of the different nodes and use them for constructing the instances. This is
done by the rulexmiNode2Constructorcall rule.

2.3 ObjLang Model to Source code

This task involves transforming the ObjLang model into source code. SIGMA provides a template-
based code-explicit’ M2T transformation DSL that relies on Scala support for multi-line string
literal and string interpolation. Since we target multiple programming languages, we organize
the code generation in a set of Scala classes and use inheritance and class mix-ins to modu-
larly compose configurations for the respective languages. In the base classes we define meth-
ods that synthesize expressions and data types (BaseobjrLangMrT) and abstract a class generation
(BaseoObjLang2class). Then we use these bases to configure concrete transformations.

The class objrLang2Java contains the Java language specifics and it is almost the same as the C#
objLang2Csharp generator. For C++, the situation is more complicated, since next to the class im-
plementation (objLang2cppclassimpl) a header file has to be generated (objLang2cPPClassHeader).
Furthermore, the ObjLang model is less suitable for C++ classes and thus extra work has to be
performed in the M2T transformation. The following is an example of a C++ header generator:

class ObjLang2CPPClassHeader extends BaseObjLang2Class with ObjLang2CPP with ObjLang2CPPHeader |
override def header = {
super.header

source.fields map (_.type_) collect {
case x: Class => x
} map (_.cppHeaderFile) foreach { hdr =>

!'s"#include ${hdr.quoted}"
}
lendl
}

override def genFields = {
!"public:" indent {
super.genFields
}
}

override def genConstructors = {
!"public:" indent {
super.genConstructors
}
}
}

It mixes in basic traits and then overrides the template that generates the different segments of
the source code. For example, in C++ we need to add the pub1ic keyword before the fields and
constructor declarations. The unary ! (bang) operator provides a convenient way to output text.
The s string prefix denotes an interpolated string, which can include Scala expressions.

71t is the output text instead of the transformation code that is escaped.

78

4 Solving the TTC’14 FIXML Case Study with SIGMA

3 Extensions

In this section we describe our solutions to the case study extensions. Each extension has been
implemented as a separate project on GitHub and therefore an interested reader can easily see what
exactly has been changed.

3.1 Extension 1 - Selection of Appropriate Data Types

In this extension we use a simple heuristics to find an appropriate type for a field based on observed
attribute values. We only cover numbers (int, long, double), but since the process is mechanical,
it can be easily extended to cover all XML Schema data types. The ObjLang meta-model was
extended with new expressions representing the new type literals. In the M2M transformation we
added a function, guesspataType, Which uses regular expressions to guess a data type based on a
single attribute value. An attribute can occur multiple times with different values and therefore
we need to consider all values at the same time in order to infer a type that is wide enough. An
overridden function guesspataType takes a sequence of attribute values, guesses their individual
types and then simply reduces the type to the largest one.

3.2 [Extension 2 - Extension to Additional Languages

This extension adds a support for the C language. Since C is not an object-oriented language, more
work has to be done in the code generator part, but the M2M transformations remain untouched.
Instead of classes, we generate C structs with appropriate functions simulating object constructors.
In order to simplify the code generator, we use a helper function that allows us to initialize arrays
using simple expressions, which is not directly supported by the C language or by its standard li-
brary. Despite the lack of object orientation, our organization of the M2T transformation templates
makes the implementation only 36 lines longer than the C++ version.

3.3 Extension 3 - Generic Transformation

Essentially, a generic FIXML Schema to ObjLang model transformation means creating a generic
XML schema to ObjLang transformation. Such a task is far from being trivial and it would require
a significant engineering effort. Therefore we have chosen an alternative solution in which we
transform Java classes generated from an XML schema by the JAXB tool®. The advantage of
this solution is that the JAXB already does all the hard work of parsing XML schema, resolving
the element inheritance, substitutability, data types and others. The resulting Java classes in fact
represents an object-oriented model and therefore the actual M2M transformation into ObjLang is
rather straight forward. Finally, the JAXB can be thought of as a another model transformation.
Therefore our solution is still within the model-driven engineering domain while demonstrating a
strong advantage of internal DSL in reusing very easily another API with the host language.

The new input is a location of the FIXML XSD files and the new transformation workflow con-
sists of (1) XSD to Java sources using JAXB, (2) Java source to Java classes using a Java compiler,
(3) Java classes to ObjLang, (4) ObjLang to source source. The ObjModel had to be extended
to cover enumerated types a notion of inheritance and abstract classes. The new transformation
(7ava20bijLang) is about 30% smaller than the original transformation and arguably less complex.
It also demonstrates SIGMA support for manipulating different models than EMF, i.e., Java model

8Java Architecture for XML Binding https://jaxb. java.net/
79

F. Kiikava and P. Collet 5

implemented using Java reflection (savaclassModel). The M2T transformation remained mostly un-
touched apart from the model extensions. It is important to note that the C code generator supports
neither class inheritance nor abstract classes.

4

Evaluation and Conclusion

We evaluate our solution to the core problem using the evaluation criteria proposed in the case
study description [3].

The complexity as the number of operator occurrences, features and entity type name references
in the specification expressions. To the best of our knowledge there is no tool providing this
metric for Scala code. We therefore only provide our own estimate for the M2M transformation,
which contains about 450 expressions and uses 18 meta-models classes with 23 references.
The accuracy measures the syntactical correctness of the generated source code and how well
the code represents the FIXML messages. The generated code compiles for all languages with-
out any warning nor any special compiler settings. Using arrays to represent same-tag sibling
nodes improves the quality and scalability of the code which is further enhanced by data type
heuristics for field types. Finally, we have also implemented the generic FIXML Schema trans-
formation that should result in a complete representation of FIXML messages in the different
languages.

The development effort is estimated to be about 15 person-hours for the core problem.

The fault tolerance is high since the Scala XML library can detect invalid XML with accurate
parsing errors.

For all test cases (1, 2, 5 and 6), the execution time is about 7500ms for all the transformations
on SHARE.

Modularity for the M2M transformation is 1 — % = % = 0.125, where d is the number of depen-
dencies between rules and r is the number of rules.

The level of abstraction for both the M2M and M2T transformations is medium since the rules
are defined declaratively (high abstraction), but their content is an imperative code (medium).
Despite that we opted for a complex ObjLang model, the resulting transformations are rather

expressive and quite concise. The complete implementation of the core problem consists of 500
lines of Scala code’. This FIXML case study provides a good illustration for some of the capabili-
ties of an internal DSL approach to model manipulations in the model-driven engineering domain.

Acknowledgments This work is partially supported by the Datalyse project (www.datalyse.fr).

References

[1] FIXML (2004): FIXML 4.4 Schema Version Guide.
[2] Filip Krikava, Philippe Collet & Robert B France (2014): Manipulating Models Using Internal Domain-

Specific Languages. In: Symposium on Applied Computing (SAC), track on Programming Languages
(PL), SAC.

[3] K. Lano, S. Yassipour-Tehrani & K. Maroukian (2014): Case study: FIXML to Java, C# and C++. In:

Transformation Tool Contest 2014.

9The extension 1 consists of 550, extension 2 of 720 and extension 3 of 770 source lines of code.

80

[T RV R

6 Solving the TTC’14 FIXML Case Study with SIGMA

A Meta-Models

A.1 XML Meta-Model
The XML model specified in the case study description [3].

H XMLNode i H XMLAttribute

- attributes -
T tag : EString e 5 name : EString
0..* | T value : EString

subnodes| 0..*

Figure 1: XML meta-model

A.2 ObjLang Meta-Model

The meta-model representing an object oriented language originating from the Featherweight Java
model, concretely from the version available at the EMFtext website'”.

B XML File to XML Model Transformation

protected def parseNodes (nodes: Iterable[Node]): Iterable[XMLNode] = {
val elems = nodes collect { case e: Elem => e }
for (elem <- elems) yield XMLNode (
tag = elem.label,
subnodes = parseNodes (elem.child),
attributes = parseAttributes(elem.attributes))
}

protected def parseAttributes (metaData: MetaData) =
metaData collect {
case e: xml.Attribute => XMLAttribute (name = e.key, value = e.value.toString)

}

C XML Model to ObjLang Model Transformation Rules

def ruleXMLNode2DefaultConstructor (s: XMLNode, t: Constructor) {

s.allSameSiblings foreach (associate(_, t))

}

def rulexXMLNode2NonDefaultConstructor (s: XMLNode, t: Constructor) = guardedBy {
!'s.isEmptyLeaf

} transform {
s.allSameSiblings foreach (associate(_, t))

Ohttp://bit.ly/ImHRkWM

81

F. Kiikava and P. Collet

N

I Y S N

E NamedElement [DataType [stringLiteral
T name : EString & value : EString
l\ll type |
H Classifier H Class — H ArrayLiteral E NullLiteral
<+—
type |1
H TypedElement
=} elements ||, 0..*
T many : EBoolean . -
0..x| fields E Expression
0..* | members —>
A Zﬁ H Field E Member
expression | 1
arguments | 0 * 0..1|initialvalue
field |1
0.%
H Constructor [€— ConstructorCall
constructors
0 1 constructor
0..* |, initialisations
B Fieldinitialisiation]|
0..*|, parameters
H Parameter |1 H ParameterAccess
parameter
Figure 2: ObjLang meta-model
for (e <- (s.allAttributes ++ s.allSubnodes.distinctBy(_.tag))) {
val param = e.sTarget [Parameter]
val field = e.sTarget [Field]
t.parameters += param
t.initialisations += FieldInitialisiation (
field = field,
expression = ParameterAccess (parameter = param))
}
}
def ruleXMLAttribute2ConstructorParameter (s: XMLAttribute, t: Parameter) ({

}

t.name =
t.type_ =

checkName (s.name)
s.sTarget [Field] .type_

def ruleXMLNode2ConstructorParameter (s:

}

val field = s.sTarget [Field]

t.name = field.name
t.many = field.many
t.type_ = field.type_

XMLNode,

t: Parameter) {

82

8 Solving the TTC’ 14 FIXML Case Study with SIGMA

1 @LazyUnique
2 def ruleXMLAttribute2Field(s: XMLAttribute, t: Field) {
3 t.name = checkName (s.name)

4
5 t.type_ = DTString

6 t.initialValue = StringLiteral (s.value)

7}

1 @LazyUnique

2 def ruleXMLNode2Field(s: XMLNode, t: Field) {

3 val allSiblings = s.allSameSiblings

4 allSiblings foreach (associate(_, t))

5

6 t.type_ = s.sTarget [Class]

7

8 val groups = (s +: allSiblings) groupBy (_.eContainer)
9 val max = groups.values map (_.size) max

10

11 if (max > 1) {

12 t.name = s.tag + "_objects"

13 t.many = true

14 val init = ArrayLiteral (type_ = s.sTarget[Class])

15 val siblings = groups (s.eContainer)

16

17 init.elements ++= siblings.sTarget [ConstructorCall]
18 init.elements ++= 0 until (max - siblings.size) map (_ => NullLiteral())
19 t.initialvalue = init
20 } else {

21 t.name = s.tag + "_object"

22 t.initialValue = s.sTarget [ConstructorCall]

23 }
24}

1 QLazy

2 def ruleXMLNode2ConstructorCall (s: XMLNode, t: ConstructorCall) {
3 val constructor = s.sTargets[Constructor]

4 .find { ¢ =>

5 (c.parameters.isEmpty && s.isEmptyLeaf) ||

6 (c.parameters.nonEmpty && !s.isEmptyLeaf)

7 }

8 .get

10 t.constructor = constructor

12 t.arguments ++= {

13 for {

14 param <- constructor.parameters

15 source = param.sSource.get

16 } yield {

17 source match {

18 case attr: XMLAttribute =>

19 // we can cast since attributes have always primitive types
20 val dataType = param.type_.asInstanceOf [DataType]
21

22 s.attributes

23 .find(_.name == attr.name)

24 .map { local => StringLiteral (local.value) }

25 .getOrElse (NullLiteral())

26

27 case node: XMLNode =>

28 s.subnodes.filter (_.tag == node.tag) match {

29

30 case Seq() if !param.many =>

31 NullLiteral ()

32 case Seq(x) if !param.many =>

33 x.sTarget [ConstructorCall]

34 case Seqg(xs @ _»*) =>

35 val groups = (node +: node.allSameSiblings) groupBy (_.eContainer)

83

0N U AW~

[C R TR,

® N U AW —

F. Kiikava and P. Collet 9

val max = groups.values map (_.size) max

val init = Arrayliteral (type_ = param.type_)

init.elements ++= xs.sTarget [ConstructorCall]

init.elements ++= 0 until (max - xs.size) map (_ => NullLiteral())
init

D Handling Constructor Arguments

The number of same-tag sibling nodes can vary within a parent node. For example:

<Pty ID="OCC" R="21"/>
<Pty ID="C" R="38">
<Sub ID="Zzz" Typ="2"/>

</Pty>
<Pty ID="C" R="38" z="Q">

<Sub ID="Z7zz" Typ="2"/>

<Sub ID="Z77Zz" Typ="3" Oed="X"/>
</Pty>

The sub should be represented by an array field and the default initialization of posrpt should
equal to the following (in Java):

public Pty[] Pty_objects = new Pty[] {

new Pty ("OCC", "21", null, new Sub[] { null, null }),
new Pty ("C", "38", null, new Sub[] { new Sub("Zzz", "2", null), null }),
new Pty ("C", "38", "Q", new Sub[] { new Sub("zzz", "2", null), new Sub("zzz", "3", "X") })

}i

Note that the first and second instances of pty contain two and one nu11 respectively in the place of

missing sub subnode.
The constructorcall used for field initializations in the rulexMLNode2Field iS created from an

XML node using the last rule in the transformation:

@Lazy
def ruleXMLNode2ConstructorCall (s: XMLNode, t: ConstructorCall) {

val constructor = s.sTargets|[Constructor]
.find { ¢ =>
(c.parameters.isEmpty && s.isEmptyLeaf) ||
(c.parameters.nonEmpty && !s.isEmptyLeaf)
}
.get
t.constructor = constructor

t.arguments ++= {
for {
param <—- constructor.parameters
source = param.sSource.get
} yield {
source match {
case attr: XMLAttribute =>
// we can cast since attributes have always primitive types

84

L I N R N

10 Solving the TTC’14 FIXML Case Study with SIGMA

val dataType = param.type_.asInstanceOf [DataType]

s.attributes
.find(_.name == attr.name)
.map { local => StringLiteral (local.value) }
.getOrElse (NullLiteral())

case node: XMLNode =>
s.subnodes.filter (_.tag == node.tag) match {

case Seq() if !param.many =>
Nullliteral ()
case Seq(x) if !param.many =>
x.sTarget [ConstructorCall]
case Seq(xs @ _~*) =>
val groups = (node +: node.allSameSiblings) groupBy (_.eContainer)
val max = groups.values map (_.size) max

val init = Arrayliteral (type_ = param.type_)

init.elements ++= xs.sTarget [ConstructorCall]

init.elements ++= 0 until (max - xs.size) map (_ => NulllLiteral())
init

First we need to find which constructor shall be used depending on whether the given XML
node (or any of its same-tag siblings) contains any attributes or subnodes. Next, we need to resolve
the arguments for the case of non-default constructor. We do this by using the sources, i.e., the
source elements (XML node or XML attribute) that were used to create the constructor parameters.
SIGMA provides ssource method that is the inverse of starget call with the difference that it will
not trigger any rule execution. In the pattern matching we need to cover all possible cases such
as an attribute defined locally or an attribute defined in a same-tag sibling, thus using nu11 for its
initialization.

E Data Type Heuristics

// basic types

val DTString = DataType (name "string")
val DTDouble = DataType (name "double")
val DTLong = DataType (name = "long")

val DTInteger = DataType (name = "int")

// it also stores the promotion ordering from right to left
val Builtins = Seq(DTString, DTDouble, DTLong, DTInteger)

private val PDouble = """ ([+-]?\d+.\d+)""". ¢
private val PInteger = """ ([+-]2\d+)""".r
def guessDataType (value: String): DataType = value match {
case PDouble(_) => DTDouble
case PInteger () => Try(Integer.parselnt (value)) map (_ => DTInteger) getOrElse (DTLong)
case _ => DTString
}
def guessDataType (values: Seq[String]): DataType =
values map guessDataType reduce { (a, b) =>

if (Builtins.indexOf (a) < Builtins.indexOf (b)) a else b
}

85

S

® NN R W —

F. Kiikava and P. Collet

F Generating C Code

Input document:

<Pty ID="C" R="38">
<Sub ID="ZZz7Zz" Typ="2"/>
<Sub ID="Zz7Zz" Typ="2"/>
</Pty>

Generated C code:

#include "Sub.h"

typedef struct ({
char+ _R;
char+ _1ID;
Sub+** Sub_objects;
} Pty;
Pty* Pty_new();
Pty Pty_init_custom(Pty* this, charx _R, charx
Pty» Pty_init (Ptyx this);

#endif // _Pty H_

_ID,

Pty* Pty_new() {
return (Pty*) malloc(sizeof (Pty));
}

Ptyx Pty_init_custom(Pty* this, charx _R, charx
this->_R = _R;
this->_ID = _1ID;
this->Sub_objects = Sub_objects;
return this;

}

Ptyx Pty_init (Pty this) {
this->_R = "21";
this->_ID = "OCC";

this->Sub_objects = (Sub**) new_array (2, Sub_init_custom(Sub_new(),

return this;

_ID,

86

Subxx Sub_objects);

Sub+** Sub_objects)

Solving the FIXML Case Study using Epsilon and Java

Horacio Hoyos Jaime Chavarriaga
University of York, UK. Universidad de los Andes, Colombia.
horacio.hoyos.rodriguez@Qieee.org ja.chavarriaga908Q@uniandes.edu.co

Paola Gomez
Universidad de los Andes, Colombia.

pa.gomez398Q@uniandes.edu.co

The Financial Information eXchange (FIX) protocol is the de facto messaging standard for pre-trade
and trade communication in the global equity markets. FIXML, the XML-based specification for FIX,
is the subject of one of the case studies for the 2014 Transformation Tool Contest. This paper presents
our solution to generate Java, C# and C++ source code to support user provided FIXML messages
using Java and the Epsilon transformation languages.

1 Introduction

This paper presents a solution to the 2014 Transformation Tool Contest (TTC) FIXML case [2]. It consists
of a chain of transformation steps that takes a FIXML message and produces source code that represents
the elements of that message as classes and the message content as instances of that classes.

Our solution' is implemented using Epsilon? and Java. It comprises three steps: the first step produces
a model of the XML elements in the message, then another step transforms this model into a model of the
classes and objects that represent the original message, and finally the last step produces the corresponding
source code in Java, C# and C++.

The remainder of this paper is structured as follows. Section 2 presents how we use Epsilon to solve
the case, Section 3 presents an evaluation of our solution, and Section 4 concludes the paper.

2 FIXML Solution using Epsilon

Epsilon is a set of task-specific languages for model management that can be easily integrated in Java. It
includes languages such as the Epsilon Transformation Language (ETL) for processing and transforming
models, and the Epsilon Generation Language (EGL) for generating code from models [1].

Our solution consists of a transformation chain that comprises: 1. A step that transforms an XML file
into a corresponding XML-model implemented using a Java-based model loader, 2. An XML-model to
Object-model transformation step implemented using the ETL, and 3. An Object-model to source code
transformation implemented using the EGL.

2.1 XML message to XML-model transformation

The first task is processing a FIXML message to create a corresponding XML-model, i.e., an EMF-based
model representing the XML nodes and attributes. The resulting XML model must be conform to the

Ihttps://github.com/arcanefoam/fixml
*http://www.eclipse.org/gmt/epsilon

]7 © H. Hoyos, J. Chavarriga & P. Gémez
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
TTC 2014

2 Solving the FIXML Case Study using Epsilon and Java

a 4 XML Node PosRpt
4 XML Attribute RptlD

<FIXHL> <4 ML Attribute Acct
<PogRpt RprID="541" 4 4 XML Node Pty'
0.1 :;‘t;‘;'l:->l](‘[‘ R=V21" /> < XML Attribute ID
XMLNode |— <Pry ID=r99%/> ’ 4 XML Attribute R
tag: String <Pty R="38"> 4 4 XML Node Pty
atributes| * <Sub ID="ZZ"/> < XML Attribute 1D
</Pry> 4 < XML Node Pty
0. * | subnodes XMLAttribute </PosRpt> 4 ML Attribute R
= pAks 4+ 4 XML Node Sub

< XML Attribute D

(a) XML metamodel (b) FIXML message and the corresponding XML-model

Figure 1: Example Models of the XML-model to Object-model transformation

metamodel specified in the case description [2] and depicted in Figure 1a. For instance, Figure 1b shows a
simple FIXML message with six XML tags and the corresponding XML-model. The right-hand model
includes an instance of the XML Node meta-class for each tag in the left-hand file: one for top-level
PosRp tag, three for the inner Pty tags, and another one for the Sub tag inside the last Pty instance. In
addition, each XML Node instance includes a set of XML-Attribute instances according to the values
in the original XML file. Note in the figure that the three XML node instances for the Pty tags include
different attributes: one includes XML-attributes for ID and R, other only an XML-attribute for ID, and
the other only one for R.

Although Epsilon provides facilities to process XML files?, we implement this first step using a
Java SAX XML parser and the EMF framework. We opt for the SAX XML parser because it gives us
more control about how the XML syntax errors are detected and how the application will inform the
user of malformed input files. Our implementation consists of a Java class with handlers for each XML
processing event in the SAX parser*: Each time the SAX parser detects an XML tag our class uses the
EMF to create a XML-Node instance, and each time the parser detects an attribute our class creates an
XML-Attribute instance. In consequence, when the SAX parser ends the processing of the XML file, our
class has produced the complete XML-model as specified in the case study.

2.2 XML-model to Object-Model transformation

Once the XML-model is created, it is transformed into a corresponding Object-Model, i.e., an EMF-based
model representing the classes that correspond to structure of the message structure, and the objects that
correspond to the data in the message.

The FIMXL case description [2] does not specify a metamodel for the Object-Model. Figure 2a
describes the object metamodel we are using in our solution. The root is a meta-class named Model, which
serves as a container of all elements. This Model contains a set of Clazz, a meta-class that represents
each class to be created. In turn, each Clazz may be related to another Clazz, to a set of Attributes
and to a set of Instances. Finally, each Instance may contain a set of AttributeValues.

The case description [2] defines some informal rules about how the XML-model must be transformed
into a corresponding Object-Model: 1. XML tags must be translated into Classes in the target model,
2. XML attributes must be mapped to Attributes, and 3. Nested XML tags become Properties (i.e., as

3http://www.eclipse.org/epsilon/doc/articles/plain-xml/
“https://www.jcp.org/en/jst/detail 2id=206

88

H. Hoyos, J. Chavarriga & P. Gémez 3

4 & platform/resource/co.edu.unia
Model abject
4 4 ClazzPasRpt
+ Attribute RptlD
4 Attribute Acct
4 4 Instance PosRpt
Attribute Value 541
Attribute Value 1

H Model
T name : EString
I

[Hoaz | attributes | H Attribute |
o '| T name : Estrmg‘

T narne : EString

1| attribute 4 4 ClazxPty

clazzes 4 Attibute ID
4 Attribute R

instances | g * 0.* | values 4 Instance Pty
[Hinstance |1 walues [Attributevaluel 4 Instance Pty
T name : EString | instance 0. | T text: Estrmg‘ 4 Instance Pty

4 4 ClazzSub
o F 4 Attiibute ID
children + Instance Sub

(a) Object metamodel used in our (b) Object Model corresponding to the FIXML message
solution in Figure 1

Figure 2: Example Models of the XML-model to Object-model transformation

member objects or relationships to other Classes). In addition, based on the examples included in the
description, we define a set of additional rules: 1. XML nodes must be transformed into Instances of the
Class that correspond to the XML tag, 2. the values of the XML Attributes must be mapped to Attribute
Values of the Instances, and 3. in an XML node, nested XML nodes must be transformed into relationships
between the parent instance and the children instances.

We implement this second step using an ETL Transformation. This transformation has rules to
create clazzes and instances for each tag in the FIXML model. Basically each of the FIXML types is
transformed into a set. Each set contains both the object description and the object instance. Thus, for
example, a FIXML Node is transformed into a Clazz and an Instance. A look-up of previously defined
Clazzes ensures that Clazzes are not duplicated. The same logic applies for Attributes.

2.3 Object-Model to source code transformation

The final step comprises the generation of the Java, C# and C++ source code that correspond to the
Object-Model obtained before.

Based on the examples provided in the description, we define a set of general rules to generate the
code: (a) Every Clazz of the Object-Model must be generated into a class, (b) the Attributes of a
Clazz must be typed as String and declared as private in the corresponding class, (c) for each class, the
relationships to other Clazzes are implemented as typed lists of objects, (d) each class includes additional
methods to add objects to the object lists, (e) the default constructor for every class creates an instance
with attribute values and relationships that corresponds to the first XML node of the Object-Model, and
(f) an additional constructor with parameters assigns values to the class attributes.

These rules are adapted to the peculiarities of each language. For instance, for Java, each class is
generated in a different “.java” file. For C#, each class is generated in a “.cs” file. And for C++, each class
is generated in a “.h” file for the class interface and a “.cpp” file with the implementation. Also, these
rules consider other limitations imposed by these languages, e.g., Java does not accept more than 256
arguments in each method.

We implement these transformation rules using three different EGL templates: one for Java, other for
C# and another for C++. Basically each template consists of fragments of source code with marks that are
replaced by the values in the elements of the object model during code generation. In our implementation,
the generation of the three languages are launched in parallel using java threads.

89

4 Solving the FIXML Case Study using Epsilon and Java

3 Evaluation of the Solution

The 2014 TTC FIXML case description [2] defines seven (7) measures to evaluate the solutions systemati-
cally: Abstraction level, Complexity, Accuracy, Development effort, Fault Tolerance, Execution Time and
Modularity. The following are the results of evaluating our solution based on these measures.

Execution time. The execution time is measured as the milliseconds spent for executing each of the
three stages with the provided FIXML files. The following table shows the average execution time of ten
(10) consecutive executions of our solution using the sample FIXML files provided in the description.

. XML XmlModel ObjectModel

Test file Init EMF to XmlModel | to ObjectModel ilo code
test].xml 767.9 249.7 696.0 804.1

test2.xml 751.0 256.9 901.0 1055.9
test3.xml 770.2 262.7 796.5 1256.8
testd.xml 7454 375.5 2995.9 2382.7
testS.xml 779.8 323.6 1643.9 1471.9
test6.xml 7454 375.5 2995.9 2382.7

Table 1: Execution time (in milliseconds) of processing the example FIMXL messages

Abstraction Level. Our solution combines imperative code in Java and declarative scripts in ETL and
EGL. As a result, according to the evaluation criteria [2], the abstraction level of (a) the Java code to launch
transformations is low, (b) XML to XML-model transformation is low, (¢) XML-model to Object-model
transformation is high, (d) Object-model to code transformation is high, and (e) the overall solution is
medium

Complexity. For the Java code used to take the XML file and create an XML-model, we measure the
complexity c as the sum of e, the number of expressions and instructions involved in processing the XML
tags and create the corresponding model; r., the number of references to meta-classes and r,, the number
of references to meta-class properties. The corresponding values: a) 18 for ¢, b) 2 for r,, and c) 8 for r,,,
provide a complexity of 28 for the first transformation step.

For the transformation scripts in ETL and EGL, we measure the complexity ¢ as the sum of e, the
number of EOL expressions and functions; 7., the number of references to meta-classes and r,, the number
of references to meta-class properties. As a result, the complexity to take the XML-model and create an
Object-model was 66 (e = 35, r. =8, r, =23), and to take this model in order to create the java code was
76 (e =24, r. =3, r, =49), the C# code was 71 (e = 22, r. = 3, r, = 46), and the C++ code was 112 (e =
41, r. = 6, rp, = 64). Finally, the sum of all complexities provides the overall complexity which is 353.

Accuracy. According to the evaluation criteria, we consider our solution accurate after performing a set
of testing procedures that includes processing the set of FIXML messages provided in the case description
and compiling the resulting code using the JDK compiler® for the Java code, the Mono compiler® for the
NET code and GCC/MingW’ for the C++ code.

Fault tolerance. According to the evaluation criteria [2], our solution is High: it detects erroneous
XML files and present information about the error.

Shttps://jdk7.java.net/download.html
Shttp://www.mono-project.com/CSharp_Compiler
"http://www.mingw.org/

90

H. Hoyos, J. Chavarriga & P. Gémez 5

Modularity. Modularity m is measured as m = 1 — (d/r), where d is the number of dependencies
between rules (implicit or explicit calls, ordering dependencies, inheritance or other forms of control or
data dependence) and r is the number of rules.

For the XML to XML-model transformation, the Java code consists of a class with event-handler
methods, i.e., a class with methods that are invoked during the processing of an XML document. We
measure the number of rules as the number of event-handler methods (i.e., r = 4). And, because these
methods does not invoke one to the other, we consider that there is not dependencies among these rules
(i.e., d = 0). Thus, the modularity corresponds to 1.

In ETL, each rule uses an equivalents method to obtain the model elements produced by other rules.
We measure the dependencies d as the number of times that the equivalents method is used in all the rules.
For instance, the XML-model to Object-model transformation uses only three rules (i.e., » = 3) but all
these rules uses the equivalents method four times (i.e., d = 4). Thus, the modularity is —0.33.

In EGL, an operation is a reusable text template that can be included as a part of any other template.
Thus, we measure 7 as the number of operations, including the main template, and d as the number of times
that an operation invokes another operation. For instance, the Object-model to Java code transformation
includes a main template and three operations (i.e., r = 4) and all these operations invoke other operations
five times (i.e., d = 5). That means that the modularity corresponds to —0.25.

The following table details the measures for modularity of our solution.

Element r d Modularity
XML to XML-model 4 0 1
XML-model to Object-model 3| 4 -0.33
Object-model to code Java 415 -0.25
C# 415 -0.25
C++ 8 | 10 -0.25

Table 2: Modularity of each transformation step of the solution

Development effort. The effort of developing each element, measured in person-hours, was : 4h
for the XML to XML-model transformation, 2h for the XML-model to Object-model step, 2h for the
code generation in java, 1h for the generation in c#, and 4h for the code in C++. We must clarify that
the first transformation we create was the Object-Model to Java transformation, and we later use that
transformation as a foundation to create the transformations for the other languages.

4 Conclusions

In this paper, we have discussed our solution to the TTC 2014 FIXML case based on Epsilon. This solution
is structured as requested (i.e., there is a generic XML-to-XMLModel transformation, an XMLModel-to-
ObjectModel transformation, and an ObjectModel-to-Text transformation) and evaluated using the criteria
defined in the case description.

References

[1] Dimitris Kolovos, Louis Rose, Antonio Garcia-Dominguez & Richard Paige (2014): The Epsilon Book.
Available at http://www.eclipse.org/epsilon/doc/book/.

[2] K. Lano, S. Yassipour-Tehrani & K. Maroukian (2014): Case study: FIXML to Java, C# and C++. In:
Transformation Tool Contest 2014.

91

Part II.
The Movie Database Case

92

The TTC 2014 Movie Database Case

Tassilo Horn Christian Krause
Institute for Software Technology SAP Innovation Center, Germany

University Koblenz-Landau, Germany christian.krause01@sap.con

horn@uni-koblenz.de

Matthias Tichy
Chalmers | University of Gothenburg, Sweden

matthias.tichy@cse.gu.se

Social networks and other web 2.0 platforms use huge amounts of data to offer new services to
customers. Often this data can be expressed as huge graphs and thus could be seen as a potential
new application field for model transformations. However, this application area requires that model
transformation tools scale to models with millions of objects. This transformation case targets this
application area by using the IMDb movie database as a model. The transformation deals with
identifying all actor couples which perform together in a set of at least three movies.

1 Introduction

The driving force behind social networks and other new web 2.0 offerings is often a huge amount of data
from which interesting information can be extracted. Consequently, concepts like MapReduce [4] and
libraries like Hadoop [2] and Giraph [1] have been developed to efficiently process this huge amount of
data. However, model transformation approaches have not adressed this field so far.

Automotive software is an already well-established application field for model-driven software en-
gineering and its models also approach huge sizes. As a consequence from these two examples, model
transformation approaches must be scalable to models with million objects to be applicable for these
application areas.

In the following, we present a case which uses the IMDb movie database [6] as a data source. The
IMDb movie database contains information about movies, actors performing in the movies, movie rat-
ings, etc. The main task is to develop a model transformation which identifies all couples of two actors
who perform in at least three common movies and calculate the average rating of those movies.! This
core task is then generalized to cliques of n actors. Furthermore, some queries calculating top-15 lists of
couples and cliques are to be written. Evaluation criteria are correctness/completeness and performance.

In the next section, we describe the case in more detail including the meta model as well as the
different core and extension tasks. After that, Section 3 presents the evaluation criteria for submitted
solutions to this case.

2 Detailed Case Description

We use the IMDb data about movies, actors, actresses, and movie ratings for this transformation case.
The resulting metamodel is shown in Figure 1. The names of actors and actresses are always unique in

I This task together with a solution in Henshin is also described in [7].

Submitted to: 93
TTC 2014

2 The TTC 2014 Movie Database Case

the models. In addition to the obvious classes, the metamodel contains a common superclass for actors
and actresses as well as classes for groups of actors which play in common movies. The class Group
contains the attribute avgRating which is intended to store the average rating of the common movies of
the group of actors. The metamodel distinguishes between groups of two persons (a Couple) or a Clique
of n persons to support the different tasks in this transformation case.

0..*
<<enumeration>> H Movie -
£ MovieType = title : EString | commonMovies
= MOVIE = rating : EDouble
-1V = year : Elnt H Group
= VIDEO = type : MovieTyp = avgRating : EDouble
- VIDEOGAME
movies| 0..*
*
persons | O.. p10.1
E Person B Couple
= name : EString
p2 0.1 H Clique
0..*
persons
H Actor H Actress

Figure 1: A metamodel for the relevant aspects of the movie database

The EMF model as well as a parser for the IMDb database files is available at [S]. The pre-parsed
IMDb models are available on request®. The transformation case will use synthetic data (see Task 1) as
well as real IMDD data for the evaluation of the correctness and performance of the submitted solutions.

2.1 Task 1: Generating Test Data

The goal of this task is to generate (synthetic) test data which will be used later to evaluate the cor-
rectness and the performance of the solution of the main task. The transformation to be implemented
takes an empty model and a parameter N > 0, and generates movies, actresses, actors, and references
between them. The number of objects to be generated is determined by the parameter N. Specifically, the
transformation is supposed to generate SN actors, SN actresses and 10N movies, totalling in 20N nodes.
Additionally, the references between persons and movies are generated in a specified way.

The specific patterns to be generated are shown in the Henshin [3] rules in Figure 2. Each of the
two used rules generates five persons and five movies. The five persons in the rule createPositive play
together in three movies. In contrast, every possible pair of persons generated by the rule createNegative
plays together in at most two movies. The movie ratings and the name of the persons are derived from the
rule parameter n which takes the values from O to N — 1. The entry point for the test data generator is the
iterated unit createExample. The unit has the integer-valued parameter N which determines the number
of loops to execute. Specifically, this unit executes the sequential unit create Test N times with parameter
values 0...N — 1 for n. The unit createTest invokes the rule createPositive and createNegative both
with n as parameter. Test data should be generated for N being 1000, 2000, 3000, 4000, 5000, 10000,
50000, 100000, and 200000.

2Contact Matthias Tichy for getting access.

94

T. Horn, C. Krause, M. Tichy 3

& IteratedUnit createExample(N:EInt) [n=0.N-1] | |£ SequentialUnit createTest(n:Elnt)

D l o Q createPositive(n) 'l createNegative(n)]_’@

= Rule createPositive(n:Elnt)

«create» «create» «create» «create» «create»

:Movie :Movie :Movie :Movie :Movie

= rating=10*n = rating=(10*n+1)[$—__ _| = rating=(10*n+2)| ___—2 = rating=(10*n+3) = rating=(10*n+4)
«create» /«create» «create» «create» «create»

a:Actor b:Actor c:Actor d:Actress e:Actress

= name="a"+(10*n) = name="a"+(10*n+1) = name="a"+(10*n+2) = name="a"+(10*n+3) = name="a"+(10*n+4)

=» Rule createNegative(n:EInt)

«create» «create» «create» «create» «create»

:Movie :Movie :Movie :Movie :Movie

= rating=(10*n+5) = rating=(10*n+6) = rating:(lO*n+7)><El ratingT=(10*n+8)><E' rating=(10*n+9)
«create» «create» «create» «create» «create»
:Actor :Actor :Actress :Actress :Actress
= pame="a"+(10*n+5) = name="a"+(10*n+6) = pame="a"+(10*n+7) = name="a"+(10*n+8) = pame="a"+(10*n+9)

Figure 2: Henshin specification for generating synthetic movie test data.

2.2 Task 2: Finding Couples

In this task, a transformation shall be implemented that takes a graph consisting of inter-connected
movies, actors and actresses as input, and creates additional nodes and links in this graph. Specifi-
cally, the task is to find all pairs of persons (actors or actresses) which played together in at least three
movies. For every such pair, the transformation is supposed to create an object of type Couple referencing
both persons using the p1 and p2 references, and referencing all movies in which both persons played in
using the commonMovies reference.

2.3 Task 3: Computing Average Rankings

The input model of this task is the one generated in Task 2, i.e., a graph consisting of movie, actor, actress
and couple nodes. The goal of this task is to set the avgRating-attribute of all couple nodes to the average
(i.e. the arithmetic mean) of the ratings of all movies that both persons played in.

2.4 Extension Task 1: Compute Top-15 Couples

The goal of this task is to produce top-15 lists of the couples created by Task 2. For this purpose, two
model queries should be given.
(a) Compute the top 15 couples according to the average rating of their common movies (requires
Task 3 to be solved).
(b) Compute the top 15 couples according to the number of common movies.

95

4 The TTC 2014 Movie Database Case

Each of the couples in the top-15 lists should be printed with the names of the two persons, the
average rating (only if Task 3 has been solved), and the number of the couple’s common movies. We
don’t require printing the common movies’ titles because the couple with the most common movies in
the complete IMDb model has more than 400 of them. If two couples have the same value for the average
rating/number of common movies, their order should be determined in some stable manner.

2.5 Extension Task 2: Finding Cliques

This extension task is a generalization of Task 2. A clique is a group of at least n persons (with n > 3)
acting together in at least 3 movies. So a couple is essentially a clique of size n = 2.

The extension task is to find cliques of a given size n, and to create a Clique element for each of
them referencing the clique’s members using the persons reference and its common movies using the
commonMovies reference.

The task will be evaluated for n € {3,4,5}, so it could be solved by writing three similar rules man-
ually. However, to achieve a full completeness score for this task, a solution should work for any n > 3.
Therefore, a transformation could have n as a parameter, or there could be a higher-order transformation
that receives n and generates a rule creating cliques of exactly that size.

2.6 Extension Task 3: Compute Average Rankings for Cliques

Like it was done for couples in Task 3, the avgRating attribute of cliques should be set to the average
rating of all its common movies.

2.7 Extension Task 4: Compute Top-15 Cliques

This is a variant of Extension Task 1 for cliques instead of couples. Again, two queries should be given.
(a) Compute the top-15 cliques of a given size n according to the average rating of their common
movies (requires Extension Task 3 to be solved).
(b) Compute the top-15 cliques of a given size n according to the number of common movies.
Again, every clique should be printed with the names of its members, the average rating, and the
number of common movies.

3 Evaluation Criteria

The evaluation of the submitted transformation will be done on synthetic data as well as real data from
the IMDb database. The IMDb database is regularly updated. In order to provide a common set of data,
we provide the models generated from the IMDb database in December 2013 to participants by request?.

3.1 Correctness and Completeness

All tasks and extension tasks are scored evenly with zero to three points. Zero means the task has not

been tackled at all, three points means the task has been completely solved and the implementation is

correct. The performance of a solution is not relevant, here. If a solution works correctly for the smaller

models but won’t terminate or run out of memory for the larger models, it may still achieve three points.
The following list explains the evaluation criteria for the individual tasks.

96

T. Horn, C. Krause, M. Tichy 5

Task 1 The test data generation will be evaluated for different values of N. The correct number of
elements, their relationships, and the correctly set attribute values will be assessed.

Task 2 The correct number of couples will be evaluated for both the synthetic and the IMDb models.
Furthermore, the correct setting of the p1, p2, and commonMovies references will be spot-checked.

Task 3 The correct average ranking of couples will be checked for both synthetic and IMDb models.

Ext. Task 1 The Top-15 lists of couples will be evaluated for both the synthetic and the IMDb models.

Ext. Task 2 The finding of cliques will be evaluated for the sizes n € {3,4,5} for the synthetic models
and for n = 3 for the IMDb models. The main criterion is that the value of n can be chosen freely,
i.e., the rule for a given n is not written manually but it is a parameter to the transformation or a
parameter to a higher-order transformation generating a transformation for that value.

Ext. Task 3 The correct average ranking of cliques will be checked for both synthetic and IMDb models.

Ext. Task 4 The Top-15 lists of cliques will be evaluated for both the synthetic (n € {3,4,5}) and the
IMDb models (n = 3). Like for Extension Task 1, the a stable sorting according to (a) average
rating, or (b) number of common movies is enough to achieve a full score.

3.2 Benchmarks

The goal of this task is to generate a performance benchmark of your solution to Task 2 (finding couples).
This benchmark should be executed using two different sets of input data:

(a) synthetic test data generated using the transformation for Task 1,

(b) provided data from the IMDb movie database (available at [6]; parsable, e.g., using [5]).
For both cases, you should run the transformation for Task 2 and measure the time needed to complete the
transformation (without loading and saving the model). If you solved also the extension task 2 (finding
cliques), please also generate benchmarks for these cases using n € {3,4,5} for the synthetic test models
and n = 3 for the IMDb models.

In order to evaluate the scalability of the solution and to compare it with other solutions, you should
use specific input models / model sizes. For the synthetic test data, please use the values for N stated in
Section 2.1. For the IMDb data version, please use the provided models which are available on request?.

The benchmark results are scored by comparing the run-times with the other solutions. The fastest
solution gets 21 points (same amount as for correctness and completeness). The rest of the solutions get
proportional scores.

References

[11 Apache Software Foundation. Apache Giraph. http://giraph.apache.org.
[2] Apache Software Foundation. Apache Hadoop. http://hadoop.apache.org.

[3] T. Arendt, E. Bierman, S. Jurack, C. Krause, and G. Taentzer. Henshin: Advanced concepts and tools for
in-place EMF model transformations. In Proc. MoDELS 2010, LNCS 6394, pages 121-135. Springer, 2010.

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters. Commun.
ACM, 51(1):107-113, January 2008.

[5] Tassilo Horn. IMDB2EMEF: https://github.com/tsdh/imdb2emnf.
[6] Internet Movie Database (IMDB). Alternative interfaces: http://www.imdb.com/interfaces.

[7] Christian Krause, Matthias Tichy, and Holger Giese. Implementing graph transformations in the bulk syn-
chronous parallel model. In Proc. FASE 2014. Springer, 2014. Accepted for publication.

97

Solving the Movie Database Case with QVTo

Christopher Gerking Christian Heinzemann
Software Engineering Group, Fraunhofer IPT,
Heinz Nixdorf Institute, Project Group Mechatronic Systems Design,
University of Paderborn, Germany Software Engineering, Paderborn, Germany
christopher.gerking@uni-paderborn.de christian.heinzemann@ipt.fraunhofer.de

This paper proposes a solution to the IMDb movie database case of the Transformation Tool Contest
2014. Our solution is based on the Eclipse implementation of the OMG standard QVTo. We imple-
mented all of the tasks including all of the extension tasks. Our benchmark results show that QVTo
is able to handle models with a few thousand objects.

1 Introduction

This paper proposes a solution to the movie database case [3] of the Transformation Tool Contest 2014.
The objective of the movie database case is to derive a set of performance results that indicate the ability
of model transformation languages to process large models with millions of objects. The case study is
based on the IMDb movie database that stores information about movies, actors, actresses, and ratings.

We use QVT Operational Mappings (QVTo, [4]) for solving the different tasks of the movie database
case. QVTo is a textual, imperative model transformation language based on OCL [5] that is standardized
by the OMG. It natively supports metamodels specified in EMF [6] such as the provided IMDb meta-
model. In this paper, we use the QVTo implementation of the Eclipse Model to Model Transformation
(MMT) project’.

The Eclipse implementation of the QVTo standard is open source and already widely used in other
open-source and academical projects. It is used, for example, within the Graphical Modeling Framework
(GMF?) and in the Papyrus project’. Recently, it has been used for translating software design models to
verification models [1] and for generating operational behavior specifications out of declarative ones [2].

In our implementation, we created seven transformations for solving the different tasks of the movie
database case. We implemented the three main tasks and all of the extension tasks. Our implementation
demonstrates that QVTo enables a concise specification of the solutions. Four out of seven tasks require
less than 30 lines of code. Our benchmark results show that the Eclipse implementation of QVTo is
currently able to handle input models with a few thousand objects in a reasonable amount of time.

The paper is structured as follows. We first briefly review the movie database case in Section 2 and
QVTo in Section 3. Thereafter, Section 4 describes our solution that we implemented in QVTo. We
provide benchmark results concerning runtime of our transformations in Section 5 before concluding the
paper in Section 6.

1http://projects.eclipse.org/projects/modeling.mmt.qvt—oml
Zhttp://eclipse.org/gnf-tooling/
3https://www.eclipse.org/papyrus/

© C. Gerking & C. Heinzemann
This work is licensed under the
Creative Commons Attribution License.

Submitted to: 98
TTC 2014

2 Solving the Movie Database Case with QVTo

2 The Movie Database Case

The movie database case is based on a simple metamodel for storing movies and the actors who played in
these movies [3]. Therefore, it provides the classes Movie, Actor, and Actress. In addition, the metamodel
comprises classes to represent a Couple or Clique. A clique consists of n persons that played together in
at least 3 movies while n > 2. A couple is a clique with n = 2, i.e., two persons who played together in
at least 3 movies.

3 QVT Operational Mappings

QVT Operational Mappings (QVTo, [4]) is a textual, imperative language for defining unidirectional
model-to-model transformations. The current Eclipse implementation of QVTo natively supports the
specification of model transformations based on EMF metamodels. Since QVTo is an imperative ex-
tension of OCL [5], the Eclipse implementation also provides access to numerous OCL operations that
enable to build collections (e.g., sets) of objects.

A QVTo transformation refers to one or more input metamodels and one or more output metamod-
els. Then, a transformation run transforms instances of the input metamodels to instances of the output
metamodels. QVTo also enables inplace transformations where one and the same model instance acts
as both input and output, enabling model modifications as required for the movie database case. Each
transformation has a name and a unique entry point denoted by main (). Using so called configuration
properties, QVTo supports the parametrization of transformations by means of primitive data types.

In our implementation, we use mappings, helpers, and constructors. A mapping translates an object
of an input model to an object of an output model. A helper may be used to perform auxiliary com-
putations but also for creating additional objects in the output model. Finally, constructors enable the
parametrized instantiation of classes which are part of the output metamodel.

4 Solution

In the following, we present our solutions to the tasks that were given as part of the IMDb movie database
case. For each of the tasks, we provide a QVTo model transformation operating on concrete instances of
the IMDb metamodel. Our overall design goal is to keep the solutions concise with respect to the trans-
formation size. Thus, we prefer using high-level native language features provided by QVTo, avoiding
more complex manual implementations by means of low-level constructs whenever possible.

4.1 Generating Test Data

For the generation of test data, we developed a QVTo transformation with a single IMDb output model.
In addition, we declare a transformation parameter N using a QVTo configuration property such that the
resulting amount of test data may be configured along with the invocation of the transformation.

The implementation of our transformation reflects the structure of the given Henshin specification [3]
in terms of imperative operation calls. Thus, the given Henshin units correspond to dedicated helper
operations parametrized by means of integer values. The actual instantiation takes places inside dedicated
constructor operations for the types Movie, Actor, and Actress.

99

C. Gerking & C. Heinzemann 3

4.2 Finding Couples

The solution for this task is based on an inplace transformation that accepts an existing IMDb input
model and will output the same model after manipulating it. The required manipulation for this task is
the addition of Couple elements as defined in Section 2. In order to detect the set of couples, our approach
is to traverse all pairs of persons. We achieve this by iterating over the set of persons using an imperative
forEach loop with two iterator variables. During the iteration, we create a Couple element for every
unique pair that is a valid couple:

persons —>forEach(pl,p2) {
Set{pl,p2}—>map createCouple();

In order to achieve uniqueness, we must not create a new Couple if an existing one already refers to
the same two persons (regardless of their order). Therefore, we use an operational mapping operation to
generate a Couple for every valid and unique input pair. The mapping is declared as follows:

mapping Set(Person) :: createCouple() : Couple when {self—>isValidCouple ()}

An operational mapping is an imperative operation that behaves according to a partial mathematical
function, i.e., maps each input to at most one output. Thus, the first invocation of a mapping with
a certain input will potentially create the appropriate result. However, reinvoking the mapping with an
equal input will not produce another result, but return the cached result of the prior invocation. To exploit
this mapping behavior for the creation of unique couples, we represent input pairs using the OCL Set
type. The equality behavior of this built-in collection type ensures that two pairs compare equal if they
refer to the same persons regardless of their ordering.

In order to not generate any invalid couples, we check the validity inside a when clause of the
createCouple mapping. This causes a mapping invocation to be skipped whenever the input Set is
not a pair or has less than three common movies.

4.3 Computing Average Rankings

Task 3 and Extension Task 3 of the IMDb movie database case require to compute the average rankings
for couples or cliques. Our solution to this challenge is based on a QVTo inplace transformation. We
traverse the set of groups inside the given IMDb model by means of an imperative forEach loop. During
each iteration, we compute the average rating for one of the detected groups. To obtain the sum of
ratings for the common movies, we use the sum operation defined for OCL collections. We compute the
arithmetic mean by simply dividing the sum of ratings by the number of movies:

couple.avgRating := couple.commonMovies.rating —>sum() / couple.commonMovies—>size () ;

4.4 Computing the Top-15 Groups

Extension Task 1 and 4 require to query information from the given IMDb model. In particular, the
challenge is to query the top-15 couples/cliques according to their average ratings and their number of
common movies. Hence, our QVTo-based solutions declare only input and no output models.

In order to obtain the top-15, we sort all existing groups as required. Whereas this approach consti-
tutes a computational overhead since only the top-15 is of interest, it allows for a concise solution. By
using the predefined sortedBy operation for OCL collections, we avoid more complex manual imple-
mentations. The listing below illustrates the sorting of couples by average rating. Based on the sorted

100

4 Solving the Movie Database Case with QVTo

sequence of couples or cliques, we iterate over the first 15 elements and print out the desired information
about each group using QVTo’s 1log operation.

var sorted = couples—>sortedBy(—avgRating);

4.5 Finding Cliques

Our solution to Extension Task 2 comprises a QVTo configuration property that represents the desired
size n of the cliques to be obtained. The major challenge in comparison to Task 2 is to retrieve all
candidate sets consisting of n persons in order to check each of these sets for being a valid clique. Since
n is not fixed to a certain value (such as n=2 for Task 2), it is not possible to solve this problem using
a fixed number of iterator variables as described in Section 4.2. Instead, we construct the candidate sets
explicitly inside a helper operation. The signature below illustrates that the operation accepts a set of
persons and returns all candidate subsets for cliques:

helper Set(Person) :: candidates() : Set(Set(Person))

The implementation of the candidates operation is based on an incremental approach. Starting
with an empty set of persons, we iterate over every given person and create new sets by adding the
current person to each of the sets already created before.

In order to save runtime, we evaluate the validity of any constructed set on the fly. This means that we
discard a constructed set if the number of common movies goes below three, because no valid extension
to a clique with three or more common movies exists. In addition, our solution does not construct sets
with more than n persons, which would be an evitable overhead. After constructing all clique candidates,
we map each valid candidate set to an appropriate Clique instance similar to our solution for Task 2.

5 Evaluation and Benchmarks

In our evaluation, we particularly focus on the relationship between code conciseness and runtime per-
formance for QVTo. Table 1 summarizes the measured runtime for the transformations from invocation
to termination, as well as the transformation size in terms of the underlying source lines of code (SLOC).
The performance testing was carried out on a quad-core 2,2 GHz machine with 8 GB of main memory
running the 3.4.0 release version of Eclipse QVTo. Our measurements are based on the parameter values
N € {50,100, 150,200,250, 300,350,400} for the size of the synthetic test data. For each N, Table 1 also
shows the resulting number of model elements generated in Task 1. Our measurements are based on the
size n = 3 for the cliques to be detected in Extension Task 2.

Table 1: Evaluation of Conciseness and Performance

Runtime
N 50 100 150 200 250 300 350 400 SLOC

Elements || 1000 | 2000 | 3000 4000 5000 6000 7000 8000

Task 1 2.2s 0.1s 0.2s 0.2s 0.2s 0.3s 0.3s 0.4s 59

Task 2 43s | 15.2s | 36.6s 63.3s 939s | 134.1s | 179.2s | 234.7s 24

Task 3 0.3s 0.1s 0.2s 0.3s 0.4s 0.6s 0.7s 0.9s 8
Ext. Task 1 0.3s 0.1s 0.2s 0.3s 0.4s 0.6s 0.7s 1.0s 28
Ext. Task 2 || 14.1s | 53.6s | 122.6s | 225.6s | 345.5s | 487.3s | 654.3s | 1371.9s 47
Ext. Task 3 0.2s 0.1s 0.3s 0.5s 0.8s 0.9s 1.2s 3.5s 8
Ext. Task 4 | 0.2s 0.2s 0.3s 0.5s 0.8s 1.0s 1.2s 3.4s 37

101

C. Gerking & C. Heinzemann 5

Table 1 indicates a superlinear increase for the runtime of complex challenges such as Task 2 or
Extension Task 2. Consequently, QVTo is not able to provide an acceptable transformation runtime for
realistic models based on the IMDb movie database. Thus, the conciseness enabled by QVTo (reflected
by the small number of source code lines) is obviously out of proportion to the measured runtime.

The detected performance limitations are traceable to QVTo’s missing native support for the con-
struction of powersets (which is required to generate all candidate sets for couples or cliques). In con-
trast to QVTo as an imperative language, declarative approaches might achieve considerable runtime
improvements by obtaining all possible subsets using nondeterministic matching techniques. Further-
more, QVTo as a dedicated model transformation language does not provide a broader scope of actions
when it comes to performance tweaks. In contrast, using general-purpose languages (such as Java) gives
rise to specific implementational variations that could drastically improve the performance.

Nevertheless, focusing on the small number of source code lines illustrated in Table 1, our evaluation
shows that QVTo enables a concise specification of the transformations for all tasks. Thus, despite the
detected performance drawbacks, we regard our major design goal as reached.

6 Conclusions

This paper presents a solution to the movie database case of the Transformation Tool Contest 2014 based
on the Eclipse implementation of QVTo. Our results show that QVTo enables for a concise specification
of transformations. However, QVTo is only able to handle synthetic test models with a few thousand
objects in a reasonable amount of time but not realistic models based on the IMDb movie database.

Our benchmark results indicate two promising directions for future works. First, realizing parts of a
QVTo transformation inside a Java blackbox [4] is an option to integrate more efficient implementations.
We excluded blackboxes in order to keep the focus on plain model-to-model transformations. Second,
the QVT/OCL specifications [4, 5] could be extended by missing operations such as computing a power
set for Extension Task 2. A promising approach in that direction is the implementation of an extensible
standard library for OCL [7]. However, such library extensions are only useful if the additional operations
are equipped with an efficient implementation or further improve the code conciseness.

References

[1] Christopher Gerking (2013): Transparent UPPAAL-based Verifcation of MechatronicUML Models. Master’s
thesis, University of Paderborn.

[2] Christian Heinzemann & Steffen Becker (2013): Executing reconfigurations in hierarchical component archi-
tectures. In Philippe Kruchten, Dimitra Giannakopoulou & Massimo Tivoli, editors: CBSE’13, Proceedings
of the 16th ACM SIGSOFT Symposium on Component Based Software Engineering, ACM, pp. 3—12.

[3] Tassilo Horn, Christian Krause & Matthias Tichy (2014): The TTC 2014 Movie Database Case.

[4] Object Management Group (2011): Meta Object Facility (MOF) 2.0 Query/View/Transformation. Available
athttp://www.omg.org/spec/QVT/1.1/. Document formal/2011-01-01.

[5] Object Management Group (2012): Object Constraint Language (OCL) 2.3.1. Available at http://www.
omg.org/spec/0CL/2.3.1/. Document formal/2012-01-01.

[6] David Steinberg, Frank Budinsky, Marcelo Paternostro & Ed Merks (2008): EMF: Eclipse Modeling Frame-
work, 2nd edition. The Eclipse Series, Addison-Wesley.

[7] Edward D. Willink (2011): Modeling the OCL Standard Library. Electronic Communications of the EASST
44. Available at http://journal.ub.tu-berlin.de/eceasst/article/view/663.

102

Movie Database Case: An EMF-INCQUERY Solution®

Gébor Szarnyas Oszkér Semerdath Benedek [zs6 Csaba Debreceni

Abel Hegediis ~ Zoltan Ujhelyi ~ Gabor Bergmann

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,
H-1117 Magyar tudésok krt. 2., Budapest, Hungary

{szarnyas, semerath, izso, debreceni, abel.hegedus, ujhelyiz, bergmann}@mit.bme.hu

This paper presents a solution for the Movie Database Case of the Transformation Tool Contest 2014,
using EMF-INCQUERY and Xtend for implementing the model transformation.

1 Introduction

Automated model transformations are frequently integrated to modeling environments, requiring both
high performance and a concise programming interface to support software engineers. The objective of
the EMF-INCQUERY [2] framework is to provide a declarative way to define queries over EMF models.
EMF-INCQUERY extended the pattern language of VIATRA with new features (including transitive
closure, role navigation, match count) and tailored it to EMF models [1].

EMF-INCQUERY is developed with a focus on incremental query evaluation. The latest develop-
ments extend this concept by providing a preliminary rule execution engine to perform transformations.
As the engine is under heavy development, the design of a dedicated rule language (instead of using the
API of the engine) is currently subject to future work. Conceptually, the environment relies on graph
transformation (GT) rules: conditions are specified as EMF-INCQUERY patterns, while model manipu-
lation and environment configuration is managed using the Xtend language [3].

One case study of the 2014 Transformation Tool Contest describes a movie database transforma-
tion [4]. The main characteristics of the transformation related to the application of EMF-INCQUERY
are that 1) it only adds new elements to the input model (i.e. couple and group are does not modify the
input model), and ii) it is non-incremental (i.e. creating a new group will not affect rule applicability).

The rest of the paper is structured as follows: Section 2 gives an overview of the implementation,
Section 3 describes the solution including measurement results, and Section 4 concludes our paper.

2 Architecture Overview

The overview of the rule-based solution is illustrated in Figure 1a. The input of the transformation is a
movie model. The result is a transformed movie model including various groups (couples and n-cliques)
and their average rating [4]. The transformation runs in a Java application, that uses pattern matchers
provided by EMF-INCQUERY and model manipulation specified in Xtend. The pattern matcher monitors

*This work was partially supported by the MONDO (EU ICT-611125) and TAMOP (4.2.2.B-10/1-2010-0009) projects.
This research was realized in the frames of TAMOP 4.2.4. A/1-11-1-2012-0001 ,National Excellence Program — Elaborating
and operating an inland student and researcher personal support system”. The project was subsidized by the European Union
and co-financed by the European Social Fund.

© G. Szédrnyas et al.
This work is licensed under the
Creative Commons Attribution License.

Submitted to: 103
TTC 2014

W00 ~NO U WN -

2 Movie Database Case: An EMF-INCQUERY solution

} [l Containedelement| children 0.* | B Root

N
H Movie 0t]
£ MovieType | | = title : EString commonMovies

- MOVIE > rating : EDouble

=W © year: Elnt 5 Group

- VIDEO > type : MovieType S avgRating : EDouble

-~ VIDEOGAME S EAttribute0

Java application movies | 0.* i
R (L2 persons | 0.4 ‘
condition consequence p1 0.1
| _Bperson le— | B Couple
[Sname Estringle— |
Pattern RLCULEEIN Rule execution [p2 0.1
=l - E
matcher engine 0.*
R —
Movie model Transformed 7 persons
movie model
«monitors » «modifies » T ‘ Sy e
(a) The specification and runtime (b) Our extended metamodel

Figure 1: Overview of our approach

the resources to incrementally update match sets. The application initially reads the input movie database,
creates the output resources, then executes the transformation, and finally serializes the results into files.
In the Ecore model of the specification, no containment hierarchy is used and all objects are held in
the contents list of the EMF resource. However, the performance of the transformation was affected by
the resource implementation used (since it will determine the implementation of the list operations). To
avoid this issue, we have extended the metamodel by a Root object (see Figure 1b). This object serves
as a container for all Group, Movie and Person objects. According to our experiments, this increases the
speed of the pattern matching by a factor of two. For compatibility with the specification, we ensured that
our solution works with the models provided and persists outputs in a format without this root element.

3 Solution

3.1 Patterns and Transformations

Task 1: Generating Test Data The synthetic test data is generated in Xtend (see Listing A.2.1). The
code tightly follows the specification defined in the case description [4].

Task 2: Finding Couples Couples are listed with the following pattern:

pattern personsToCouple (plname, p2name) {
find cast(plname, M1); find cast(p2name, M1);
find cast(plname, M2); find cast(p2name, M2);
find cast(plname, M3); find cast(p2name, M3);
M1 != M2; M2 != M3; M1 != M3;
check (plname < p2name) ;
}
pattern cast(name, M) { Movie.persons.name(M, name); }
pattern personName(p, pName) { Person.name(p, pName); I}

Note that the cast pattern returns the names of persons that play in a given movie. This is important
since the names of the persons can be used to avoid symmetric matches in the personsToCouple pattern
by sorting. The Couple objects are created and configured in Xtend (see createCouples in line 45 of

Listing A.2.2). This includes setting the pl and p2 references using a personName pattern and computing
the commonMovies by simple set intersection operators (retainAll).

104

S W

W ~NO O WN e

G. Szdrnyas et al. 3

Task 3: Computing Average Rankings The average rankings are computed in Xtend by calculating
the mean of the rating attributes of a couple’s common movies (see calculateAvgRatings in line 122 of
Listing A.2.2). The movies are enumerated with the following pattern:

pattern commonMoviesOfCouple(c, m) { Couple.commonMovies(c, m); }

Extension Task 1: Compute Top-15 Couples This task is mostly implemented in Xtend (see top-
GroupByRating in line 70 and topGroupByCommonMovies in line 84 of Listing A.2.2), however, it uses
the groupSize pattern in order to filter the groups with the particular number of members.
pattern groupSize (group, S) {

Group (group) ;

S == count find member0fGroup(_, group);

}

This pattern uses the count find construct which computes the number of matches for a given pattern.
Additionally, specific comparators are used to sort and determine the top-15 lists by rating or number of
common movies (see Listing A.2.4).

Extension Task 2: Finding Cliques The pattern for finding cliques is implemented similarly to the
persons ToCouple pattern 3.1. The pattern for 3-cliques is defined as follows:

pattern personsTo3Clique(P1, P2, P3) {
find cast(P1, M1); find cast(P2, M1); find cast(P3, M1);
find cast(P1, M2); find cast(P2, M2); find cast(P3, M2);
find cast(P1, M3); find cast (P2, M3); find cast(P3, M3);
M1 !'= M2; M2 != M3; M1 != M3;
check (P1 < P2); check(P2 < P3);
check (P1 < P3);

The creation of cliques is done similarly to couples (see createCliques in line 138 of Listing A.2.2).
However, this pattern has a redundant check constraint, as P, < P> and P, < P; already imply P; < P;.
This works as a hint for the query engine and allows it to filter the permutation of the results (e.g.
(az,a1,a3),(ay,a3,a2),...)) earlier.

For performance considerations, additional patterns were defined manually for 4- and 5-cliques. For
larger cliques (n > 5), patterns could be automatically generated using code generation techniques.

General solution for n-cliques. We also provide the outline for a more general solution (for arbitrary
n values). For the sake of clarity, we will refer to couples as 2-cliques. In this approach, the cliques are
built iteratively. Suppose we already have all k-cliques in the graph (e.g. we already added the 2-, 3-, 4-
and 5-cliques with the previous patterns). To get the (k+ 1)-cliques, we look for a group go and a person
po that (i) have at least 3 movies in common, (ii) g = goU{po} is a group that is not a subset of any other
groups (see Figure 2).

Formally, (ii) can be expressed as (Ag’) : g C g’. Using g = go U {po}, we derive the following
expression (Ag"): (g0 C &) A (po € g'). The go C g’ expression can be formulated as follows: (Vp € go) :
p € g'. As the EMF-INCQUERY Pattern Language does not have a universal quantifier, we rewrite this
using the existential quantifier: (Ap € go) :p € &'

The resulting expression for condition (ii) is the following: (Ag'): (Ap€go):p€&)N(po€g).
We have implemented this general solution (see Listing A.2.3). Pattern subsetOfGroup implements
condition (ii), while nextClique pattern is capable of determining the (k + 1)-cliques given a model

105

4 Movie Database Case: An EMF-INCQUERY solution

° o
Yo Po
l/

g

Figure 2: Matching 3-clique groups in the positive test pattern. g¢ is a couple.

containing all k-cliques. This approach is functionally correct, however, it only works for very small
input models and hence is omitted from our measurements.

Extension Task 3: The average rankings are computed the same way as in task 3.
Extension Task 4: The top 15 average rankings are computed the same way as in extension task 2.

3.2 Optimizations

To increase the performance of the transformations, we carried out some optimizations. (1) The com-
mon movies of the two Person objects are computed from Xtend instead of EMF-INCQUERY. (2) The
patterns for 3-, 4- and 5-cliques are implemented manually. (3) Common subpatterns were identified and
extracted them into separate patterns, as the engine can reuse the pattern for each occurrence, and makes
the query definition file easier to maintain. For an example, see the cast pattern in A.1.

3.3 Benchmark Results

The implementation was benchmarked in the SHARE cloud, on an Ubuntu 12.04 64-bit operating system
running in a VirtualBox environment. The virtual machine used one core of an Intel Xeon E5-2650 CPU
and had 6 GB of RAM. The transformations were ran in a timeout window of 10 minutes.

3.4 Synthetic model

Results are displayed in Figure 3. The diagram shows the transformation times for creating couples and
cliques for synthetic models. The results show that the transformations run in near linear time.

The dominating factor of the running time is the initialization of the query engine. However, after
initialization, creating groups can be carried out efficiently. Furthermore, our experiments showed that
the limiting factor for our solution is the memory consumption of the incremental query engine. Given
more memory, the solution is capable of transforming larger models as well.

3.5 IMDb model

In the given time range and memory constraints, the transformation of the IMDb model could only
generate the couples and 3-cliques for the smallest instance model. Finding the couples took 3 minutes,

106

G. Szdrnyas et al. 5

Runtime of Transformation Tasks
100

90

60

50

Time (s)

40
30

20

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size (N)

—e—Couples —e-3-Clique 4-Clique —e-5-Clique

Figure 3: Benchmark results

while finding 3-cliques took 6. However, in case of a live and evolving model, our solution is capable of
incrementally running the transformation which in practice results in near instantaneous response time.

3.6 Transformation Correctness and Reproducibility

Our solution was developed as Eclipse plug-ins, however, it is also available as a command line applica-
tion compiled using the Apache Maven.The transformation runs correctly for the provided test cases on
SHARE!, and the source code is also available in a Git repository?. The results of the transformations
were spot-checked for both synthetic and IMDb models.

4 Conclusion

In this paper we have presented our implementation of the Movie Database Case. The solution uses
EMF-INCQUERY as a model query engine: the transformation is specified using declarative graph pat-
tern queries over EMF models for rule preconditions, and Xtend code for model manipulations. The
main conclusion of the performance evaluation is that EMF-IncQuery’s incremental approach is not a
good fit for this case study as the transformation is very model manipulation dominant.

References

[1] Gabor Bergmann, Zoltan Ujhelyi, Istvdn Rith & Daniel Varr6 (2011): A Graph Query Language for EMF
models. In: Theory and Practice of Model Transformations, Fourth Int. Conf., LNCS 6707, Springer.

[2] Eclipse.org (2014): EMF-IncQuery. http://eclipse.org/incquery/.
[3] Eclipse.org (2014): Xtend — Modernized Java. https://www.eclipse.org/xtend/.

[4] Matthias Tichy Tassilo Horn, Christian Krause (2014): The TTC 2014 Movie Database Case. In: 7th Trans-
formation Tool Contest (TTC 2014), EPTCS.

Thttp://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSessionkvdi=Ubuntul2LTS_TTC14_
64bit_TTC14-EIQ-imdb.vdi
Ihttps://git.inf.mit.bme.hu/w?p=projects/viatra/ttcl4-eiq.git (username: anonymous, no password).

107

6 Movie Database Case: An EMF-INCQUERY solution

A Appendix — Movie Database Case Transformation Code

A.1 EMF-INCQUERY Graph Patterns

package hu.bme.mit.ttc.imdb.queries
import "http://movies/1.0"
// Shorthand patterns

pattern personName(p, pName) {
Person.name (p, pName) ;

© 0 N U WN -

}

o
= O

// Actor with name is part of the case of movie M
pattern cast(name, M) {
Movie.persons.name (M, name);

e
S w N

}

=
[3]

// Movie m is a common movie of Couple c
pattern commonMoviesOfCouple(c, m) {
Couple.commonMovies (c, m);

[
© 00 N

}

NN
= O

/ * %
* This pattern determines if a person is a member of a group.
*/
pattern memberOfGroup (person, group) {
Couple.pl(group,person) ;
} or {
Couple.p2(group,person) ;
} or {

Clique.persons (group, person);

WNNNNDNDNNDN
O ©WONOO P WN

}

w W
N =

/**
* This pattern determines the size of a group.
*/
pattern groupSize (group, S) {
Group (group) ;
S == count find member0fGroup(_, group);

W W wwww
0N O W

}

D w
o ©

// Couple patterns
/ * %
* This pattern looks for two person names (plname, p2name), who were in the cast of
* three different movies (M1, M2, M3).
* The names are ordered lexicographically in order to list the same pair only one
* (the match set contains only {(al, a2)} instead of {(al, a2), (a2, al)}.
4
pattern personsToCouple (plname, p2name) {
find cast(plname, M1); find cast(p2name, M1);
find cast(plname, M2); find cast(p2name, M2);
find cast(plname, M3); find cast(p2name, M3);

oD DD DD D DD
N OWWOowNO O D WwN -

M1 !'= M2; M2 != M3; M1 != M3;

[Sal)]
B W

check (plname < p2name) ;

[}
[}

}

a o
~N o

/ **

58 * This pattern looks for the common movies of a couple.

59 * The couple is determined with the personsToCouple pattern.
60 */

108

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113

114

115
116
117
118
119

G. Szdrnyas et al.

pattern commonMoviesToCouple (plname, p2name,
find personsToCouple (plname, p2name);

Person.movies (pl, m);
Person.movies (p2, m);
Person.name (pl,plname) ;
Person.name (p2, p2name) ;

check (plname < p2name) ;

}

/ * %

m) {

* Returns with the number of common movies of a couple.

*/

pattern countOfCommonMoviesOfCouple(pl, p2, n) {

Couple.pl(c, pl);
Couple.p2(c, p2);
n == count find commonMoviesOfCouple (c,

}

// Clique patterns

/**
* Similarly to the couple pattern,
*/

pattern personsTo3Clique(P1, P2, P3) {
find cast(P1, M1); find cast(P2, M1); find
find cast(P1, M2); find cast (P2, M2); find
find cast(P1, M3); find cast(P2, M3); find
M1 != M2; M2 != M3; M1 != M3;
check (P1 < P2); check(P2 < P3);
}
/**
* Similarly to the couple pattern,
x/
pattern personsTo4Clique(P1, P2, P3, P4) {
find cast(P1, M1); find cast (P2, M1); find
find cast(P1, M2); find cast (P2, M2); find
find cast(P1, M3); find cast (P2, M3); find
M1 != M2; M2 != M3; M1 != M3;
check (P1 < P2); check(P2 < P3); check(P3 <
¥
/**
* Similarly to the couple pattern,
x/
pattern personsTo5Clique(P1, P2, P3, P4, P5)
find cast(P1, M1); find cast (P2, M1); find
P5, M1);
find cast(P1, M2); find cast (P2, M2); find
P5, M2);
find cast(P1, M3); find cast(P2, M3); find
P5, M3);
M1 != M2; M2 != M3; M1 != M3;
check (P1 < P2); check(P2 < P3); check(P3 <

}

_m) ;

this pattern looks for

cast (P3,
cast (P3,
cast (P3,

M1);
M2) ;
M3);

this pattern looks for

cast (P3,
cast (P3,
cast (P3,

M1);
M2) ;
M3) ;

P4);

this pattern looks for

{
cast (P3, M1);

cast (P3, M2);

cast (P3, M3);

P4); check (P4

109

3-cliques.

4-cliques.

find cast (P4,
find cast (P4,
find cast (P4,

6-cliques.

find cast (P4,

find cast (P4,

find cast (P4,

< P5);

M1);
M2) ;
M3) ;

M1);
M2) ;

M3) ;

find cast(
find cast(

find cast (

8 Movie Database Case: An EMF-INCQUERY solution

A.2 Xtend Code
A.2.1 Generator Code

1 /%%

2 * This class implements the test model generator logic.
3 %/

4 class Generator {

5

6 // The EMF resource on which the transformation operates
7 public Resource r

8

9 // We define this extension to help with model element creation
10 extension MoviesFactory = MoviesFactory.eINSTANCE

11

12 // method to generate an example of size N

13 def generate(int N) {

14 createExample (N) ;

15 }

16

17 // create N test cases in the model

18 def createExample (int N) {

19 (0 .. N - 1).forEach[createTest (it)]

20 }

21

22 // create a test cases in the model with parameter n
23 def createTest (int n) {

24 createPositive (n)

25 createNegative (n)

26 T

27

28 // create a positive match for the test case

29 // initialize some movies and actors/actresses

30 // create interconnections according to a logic that will yield a positive match
31 def createPositive (int n) {

32 val movies = newArrayList ()

33 (0 .. 4).forEach[movies += createMovie(10 * n + it)]
34

35 val a = createActor ("a" + (10 * n))

36 val b = createActor("a" + (10 * n + 1))

37 val c = createActor ("a" + (10 * n + 2))

38 val d = createActress("a" + (10 * n + 3))

39 val e = createActress("a" + (10 * n + 4))

40

41 val actors = #[a, b, c, d, el

42 val firstTwo = #[a, Db]

43 val lastTwo = #[d, el

44

45 movies.get (0) .persons += firstTwo;

46 (1 .. 3).forEach[movies.get(it).persons += actors]
47 movies.get (4) .persons += lastTwo

48

49 r.contents += actors

50 r.contents += movies

51 }

52

53 // create a positive match for the test case

54 // initialize some movies and actors/actresses

55 // create interconnections according to a logic that will yield a negative match
56 def createNegative(int n) {

57 val movies = newArrayList ()

58 (6 .. 9).forEach[movies += createMovie (10 * n + it)]
59

60 val a = createActor ("a" + (10 * n + 5))

61 val b = createActor("a" + (10 * n + 6))

110

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

© 0 N T A W N R

NN NN N B R B R e s e s
G A O RO ©®® N O W N B O

G. Szdrnyas et al.

val ¢ = createlActress("a" + (10 * n + 7))
val d = createActress("a" + (10 * n + 8))
val e = createActress("a" + (10 * n + 9))
val actors = #[a, b, c, d, el

movies.get (0) .persons += #[a, b]
movies.get (1) .persons += #[a, b, c]

movies.get (2) .persons += #[b, c, dl
movies.get (3) .persons += #[c, d, el
movies.get (4) .persons += #[d, el

r.contents += actors
r.contents += movies

}

// create a movie with the given rating
def createMovie(int rating) {

val movie = createMovie
movie.rating = rating
movie

}

// create an actor with the given name
def createActor (String name) {

val actor = createActor
actor.name = name
actor

}

// create an actress with the given name
def createActress(String name) {

val actress = createActress
actress.name = name
actress

A.2.2 Transformation Code

/% %

* This class implements the transformation logic.
*/

class Transformation {

/ **
* Initialize the transformation processor on a resource.
* The runtime of the transformation steps are logged.
* Q@param r The target resource of the transformation.
* @param bmr The benchmark logger.

*/
new (Resource r, BenchmarkResults bmr) {
this.r = r;
this.bmr = bmr;
this.root = r.contents.get (0) as Root
}

// to store the benchmark results
protected val BenchmarkResults bmr;
// to store the model

protected Resource r

////// Resources Management

protected val Root root;
/ * %

111

10

Movie Database Case: An EMF-INCQUERY solution

* Helper function to add elements to the target resource.

* @param

*/

def addElementToResource (ContainedElement containedElement) {
root.children.add(containedElement)

}

def addElementsToResource(Collection<? extends ContainedElement> containedElements) {
root.children.addAll (containedElements)

¥

def getElementsFromResource () {
root.children

¥

1111777771777 777177777777777

// to help with model manipulation
extension MoviesFactory = MoviesFactory.eINSTANCE
extension Imdb = Imdb.instance

// create couples
public def createCouples() {
val engine = AdvancedIncQueryEngine.createUnmanagedEngine (r)
val coupleMatcher = engine.personsToCouple
val commonMoviesMatcher = engine.commonMoviesToCouple
val personNameMatcher = engine.personName

val newCouples = new LinkedList<Couple>
coupleMatcher.forEachMatch [
val couple = createCouple ()
val pl = personNameMatcher.getAllValuesOfp(plname).head
val p2 = personNameMatcher.getAllValuesOfp (p2name).head
couple.setP1(pl)
couple.setP2(p2)
val commonMovies = commonMoviesMatcher.getAllValuesOfm(plname, p2name)
couple.commonMovies.addAll (commonMovies)

newCouples += couple

println("# of couples = " + newCouples.size)
engine.dispose
addElementsToResource (newCouples) ;

}

// calculate the top group by rating
def topGroupByRating(int size) {
println("Top-15 by Average Rating")

printiln (! csssssssscsasssessasss==0)

val n = 15;

val engine = IncQueryEngine.on(r)

val coupleWithRatingMatcher = engine.groupSize

val rankedCouples = coupleWithRatingMatcher.getAllValuesOfgroup(size).sort(
new GroupAVGComparator)

printCouples(n, rankedCouples)
}

// calculate the top group by common movies

def topGroupByCommonMovies (int size) {
println("Top-15 by Number of Common Movies")
println("==s===============================")

val n = 15;

val engine = IncQueryEngine.on(r)
val coupleWithRatingMatcher = engine.groupSize

112

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113
114
115
116

117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

G. Szdrnyas et al.

}

//
de

}

//
de

}
//
de
}
//

protected def calculateAvgRating(Collection<Movie> commonMovies,

}

//

val rankedCouples = coupleWithRatingMatcher.getAllValuesOfgroup(size).sort(

new GroupSizeComparator
)

printCouples (n, rankedCouples)

pretty-print couples
f printCouples(int n, List<Group> rankedCouples) {
(0 .. n - 1).forEach [
if (it < rankedCouples.size) {
val ¢ = rankedCouples.get(it);
println(c.printGroup (it))
}

pretty-print groups
f printGroup(Group group, int lineNumber) {
if (group instanceof Couple) {
val couple = group as Couple
return ’’’«lineNumber>». Couple avgRating «group.avgRating»,
size» movies («couple.pl.name»; <«couple.p2.name»)’’’
}
else {
val clique = group as Clique

return ’’’«lineNumber». «clique.persons.size»-Clique avgRating «group.avgRating»,

group.commonMovies.size» movies («

FOR person : clique.persons SEPARATOR ", "»«person.name»<«ENDFOR»)’’’

}

calculate average ratings
f calculateAvgRatings () {

getElementsFromResource.filter (typeof (Group)) .forEach[x|calculateAvgRating (x.

commonMovies, x)J]

calculate average rating
var sumRating = 0.0

for (m : commonMovies) {

sumRating = sumRating + m.rating
}
val n = commonMovies.size
group.avgRating = sumRating / n

create cliques

public def createCliques(int cliques) {

val engine = AdvancedIncQueryEngine.createUnmanagedEngine (r)
val personMatcher = getPersonName (engine)
var Collection<Clique> newCliques

if (cliques =

= 3) {
val clique3d =

getPersonsTo3Clique (engine)

newCliques = clique3.allMatches.mapl[x|generateClique (
personMatcher.getOneArbitraryMatch (null ,x.pl).p,
personMatcher.getOneArbitraryMatch(null,x.p2).p,
personMatcher.getOneArbitraryMatch (null ,x.p3) .p)].toList;
}
else if (cliques == 4) {
val clique4 = getPersonsTo4Clique (engine)

113

«group.commonMovies.

Group group) {

11

<

153
154
155
156
157
158

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

179
180
181
182

184
185
186
187
188
189
190
191
192
193
194
195
196
197

W00 ~NO U WN -

B e e
> w NN e o

12

newCliques =

Movie Database Case: An EMF-INCQUERY solution

clique4.allMatches .map[x|generateClique (

personMatcher.getOneArbitraryMatch (null ,x.pl).p,
personMatcher.getOneArbitraryMatch (null ,x.p2).p,
personMatcher.getOneArbitraryMatch (null,x.p3).p,
personMatcher.getOneArbitraryMatch (null ,x.p4) .p)].toList;

}
else if(cliques ==
val cliqueb =
newCliques =
personMatcher.
personMatcher.
personMatcher.
personMatcher.
personMatcher.

5) {

}
println("# of "+cliques+"-cliques =

engine.dispose

getPersonsTo5Clique (engine)
cliqueb5.allMatches .map[x|generateClique (
getOneArbitraryMatch (null ,x.pl).p,
getOneArbitraryMatch (null ,x.p2).p,
getOneArbitraryMatch (null,x.p3).p,
getOneArbitraryMatch (null ,x.p4) .p,
getOneArbitraryMatch (null,x.p5)

.p)].toList;

" + newCliques.size)

newCliques.forEach[x|x.commonMovies.addAll(x.collectCommonMovies)]

addElementsToResource (newCliques) ;

}

// generate cliques

protected def generateClique(Person...
val ¢ = createClique
c.persons += persons
return c

}

// collect common movies

persons) {

protected def collectCommonMovies(Clique clique) {

var Set<Movie> commonMovies =
for (personMovies
if (commonMovies ==
commonMovies =
else {

null;

null) {

personMovies.toSet;

clique.persons.map[movies]) {

commonMovies.retainAll (personMovies)

}
}
return commonMovies
¥
}

A.2.3 General Clique Patterns

The resulting expression for condition (ii) is the following: (Ag’) : ((Apo € go):po€&)N(p€g).
This is equivalent to the following EMF-INCQUERY pattern:

/** Group g0 is a subset of Group gx. */
pattern subset0fGroup (g0 Group, gx

neg find notSubset0fGroup(p0, g0, gx);
}

Group) {

/** This pattern returns is a helper for the subsetOfGroup pattern. */

pattern notSubset0fGroup (pO
find memberO0fGroup (p0, g0);
neg find member0fGroup (pO,

Person, g0

gx) ;
}

/** Person p is a member of Group g.
pattern memberO0fGroup(p, g) {
Couple.pl(g, p);

Group, gx Group) {

A Group is either a Couple or a Clique. */

114

15
16
17
18
19

W00 ~NO U WN -

WWWNNNNMNNMNNDNNRERRRPR B B B B2
NP, OOWONOOO D WNEOWOWOWNOO S WNERO

© 0 N T A W N R

=R
= o

12
13
14

16
17

G. Szdrnyas et al. 13

} or {

Couple.p2(g, p);
} or {

Clique.persons(g, p);
}

Based on the subsetOfGroup pattern, we may implement the nextClique pattern like follows:

/** the nextCliques pattern */
pattern nextCliques(g : Group, p : Person) {

neg find alphabeticallyLaterMemberO0fGroup (g, p);

n == count find commonMovieOfGroupAndPerson(g, p, m);

check(n >= 3);

neg find union(g, p);
}
/** p is a member of g for which another alphabetically previous member exists */

pattern alphabeticallylLaterMemberOfGroup(g : Group, p : Person) {
find memberO0OfGroup(m, g);

Person.name (p, pName);
Person.name (m, mName) ;
check (mName >= pName) ;

}

/** m is a common movie of g and p */

pattern commonMovieOfGroupAndPerson(g, p, m) {
find commonMoviesOfGroup(g, m);
Person.movies(p, m);

}

/** m is a common movie of g */
pattern commonMoviesOfGroup (g, m) {
Group.commonMovies (g, m);

}

/** p is in g0 */
pattern union(g0, p) {
find member0fGroup(p, gx);
find subset0fGroup (g0, gx);
}

A.24 Comparator Code for Top-15

class GroupSizeComparator implements Comparator <Group>{

override compare (Group argO, Group argl) {
if (arg0.commonMovies.size < argl.commonMovies.size) {return 1}
else if (arg0.commonMovies.size == argl.commonMovies.size) {return 0}
else return -1;
}
}

class GroupAVGComparator implements Comparator <Group>{
override compare (Group arg0, Group argl) {
if (arg0.avgRating<argl.avgRating) {return 1;}

else if (arg0.avgRating == argl.avgRating) {return 0;}
else return -1;

115

The Movie Database Case: Solutions using Maude and the
Maude-based e-Motions tool

Antonio Moreno-Delgado Francisco Duran

Dpto. Lenguajes y Ciencias de la Computacién
University of Malaga, Spain

{amoreno,duran}@lcc.uma.es

The paper presents solutions for the TTC 2014 Movie Database Case, both in the e-Motions DSML
and in the rewriting-logic formal language Maude. The DSMLs defined in e-Motions are auto-
matically transformed into Maude specifications, which are then used for simulation and analysis
purposes. e-Motions is a general purpose language, in which real-time languages may be modeled,
with full support for OCL and other advanced features. The fact that the solutions given directly in
Maude lack the overhead included by e-Motions to deal with all those extra features not needed in the
current case study, makes these solutions much more efficient, and able to deal with bigger problems.

1 Introduction

Maude [1] is an executable formal specification language based on rewriting logic, which counts with
a rich set of validation and verification tools, increasingly used as support to the development of UML,
MDA, and OCL tools (see, e.g., [5]). Furthermore, Maude has demonstrated to be a good environment
for rapid prototyping, and also for application development (see [1]).

Maude may be seen as a general framework where to develop model transformations. Durén, Valle-
cillo and others have used it to develop e-Motions [4], a tool that supports the definition and simulation
of real-time Domain-Specific Modeling Languages (DSMLs). The e-Motions tool is a DSML and graph-
ical framework developed for Eclipse that supports the specification, simulation, and formal analysis of
real-time systems. It provides a way to graphically specify the dynamic behavior of DSMLs using their
concrete syntax, making this task quite intuitive. Furthermore, e-Motions behavioral specifications are
models too, so that they can be fully integrated in MDE processes.

In e-Motions, MOF metamodels are formalized in rewriting logic, providing a representation of
the structural aspects of any modeling language with a MOF metamodel. Then, the behavior of such
modeling language is specified as in-place transformation rules. Artifacts developed in e-Motions are
automatically translated into Maude. e-Motions provides a very rich set of features, that enables the
formal and precise definition of real-time DSMLs as models in a graphical and intuitive way. It makes
use of an extension of in-place model transformation with a model of timed behavior and a mechanism
to state action properties. The extension is defined in such a way that it avoids artificially modifying the
DSML’s metamodel to include time and action properties. Moreover, it supports attribute computations
and ordered collections, which are specified by means of OCL expressions, thanks to mOdCL.! All these
features make the language very expressive, but directly impacts its performance. To gain an idea of this
impact, we provide below solutions to the proposed problems both in e-Motions and directly in Maude
and compare them.

'mOdCL is available at http: //maude.lcc.uma.es/m0dCL.

116 © A. Moreno-Delgado & F. Durdn
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
Transformation Tool Contest 2014

2 Solutions using Maude and the Maude-based e-Motions tool

The e-Motions system documentation and several examples are available at http://atenea.lcc.
uma.es/e-Motions. The Maude web site is at http://maude.cs.uiuc.edu. The solution sources
are at http://github.com/antmordel/TTC14eMotions.

e-Motions

The definition of a DSML typically comprises three tasks: (i) the definition of its abstract syntax, (ii)
the definition of its concrete syntax and (iii) the specification of its behavior. In e-Motions the abstract
syntax is defined by means of an Ecore metamodel, in which all the language concepts and the relations
between them are specified. The concrete syntax is provided by defining the so-called Graphical Concrete
Syntax (GCS). A GCS is a model (conforms the GCS metamodel) where an image is attached to each
concept defined in the abstract syntax. Then, the behavior of a DSML is specified using visual graph-
transformation rules. An e-Motions rule consists of a Left-Hand Side (LHS), a Right-Hand Side (RHS)
and zero or more Negative Application Conditions (NACs). The LHS defines a (sub)-graph matching,
optionally conditional. The RHS specifies a (sub)-graph replacement, which if the rule is applied, every
object in the LHS that is not in the RHS is deleted, new objects in the RHS that are not in the LHS are
created, and those objects whose attributes (or links) are changed are updated. NACs specify conditions
or (sub)-graphs such that if there is a matching, the rule cannot be fired.

Rewriting Logic and Maude

Rewriting logic (RL) [3] is a logic of change that can naturally deal with state and with highly
nondeterministic concurrent computations. In RL, the state space of a distributed system is specified as
an algebraic data type in terms of an equational specification (X, E), where X is a signature of sorts (types)
and operations, and E is a set of equational axioms. The dynamics of a system in RL is then specified by
rewrite rules of the form r — ¢/, where ¢ and ¢’ are X-terms. This rewriting happens modulo the equations
E, describing in fact local transitions [t]g — [t']g. These rules describe the local, concurrent transitions
possible in the system, i.e. when a part of the system state fits the pattern ¢ (modulo the equations E)
then it can change to a new local state fitting pattern #’. Notice the potential of this type of rewriting, and
the very high-level of abstraction at which systems may be specified, to perform, e.g., rewriting modulo
associativity or associativity-commutativity.

Maude [1] is a wide spectrum programming language directly based on RL. Thus, Maude integrates
an equational style of functional programming with RL computation. Maude also supports the modeling
of object-based systems by providing sorts representing the essential concepts of object, message, and
configuration. A configuration is a multiset of objects and messages (with the empty-syntax, associative-
commutative, union operator __) that represents a possible system state.

Maude provides a whole formal environment where we can perform proofs of correctness of our so-
lutions. Specifically, we have use the reachability analysis tool for performing checks on the correctness
of our specification.

2 Solutions

We present two solutions for the different tasks, one graphical solution using e-Motions, and another one
using directly Maude. Each task is solved by defining respective DSMLs, which share their abstract and
concrete syntaxes. The abstract syntax used is the one provided in [2] — we will see below that some
of the tasks have required extensions of this common syntax. The main differences between the DSMLs

117

A. Moreno-Delgado & F. Durdn 3

defined for the different tasks is in their concrete behaviors describing what need to be done in each case,
that is, the rewrite rules defining the behavior depends on the concrete task and its solution.

Although the expressiveness of e-Motions is very welcome in complex problems, thanks to its capa-
bilities to express problems visually, very intuitively, and in a language very close to the problem domain,
the overhead to be paid in cases like the ones at hand is too high. Specifically, the generality provided
by its support for OCL expressions and time requirements, makes that the Maude code generated by
the e-Motions tool is not as time performant as we would like. However, the general purpose rewrite-
modulo engine at the core of Maude may also be used as a transformation language. Thus, together with
the e-Motions solution we present an optimized Maude solution for each task.

As we will see below, the Maude version of the transformation closely follows the transformations
provided in e-Motions, were all rewrite rules are instantaneous and expressions are solved directly by
Maude built-in types instead of by the OCL interpreter. Indeed, for problems as simple as the ones at
hand, we will see that the representation distance between Maude and e-Motions to the problem domain
would be very small, making both solutions very appropriate. Although a more in depth analysis of the
problem at hand would most probably have allowed us to even improve the numbers obtained, we have
preferred to keep the specification clear and intuitive.

Task 1

Task 1 comprises the generation of synthetic models (conforming the movie database metamodel [2])
from an input parameter N > 0. We first present an e-Motions solution and then a Maude solution.

Firstly, following an e-Motions based approach, we define the abstract and concrete syntax and the
behavior of our so-called Task I DSML. Taking a parameter N as input model, Task I DSML generates a
model containing synthetic data. As it has been introduced in Sect. 1, the abstract syntax of a DSML is
given in e-Motions by means of an Ecore metamodel. Since we model the solution of the task as a model
that evolves until reaching its final solution, we take as metamodel the one provided in [2], which we
call Movies MM, extended with a Parameter concept. The class Parameter has two integer attributes,
which represent positive graphs and negative graphs, respectively, for the generation following Henshin
graphs [2]. For the concrete syntax, Fig. 4 in Appendix A shows how an image has been attached to each
concept modeled in the Movies MM.

The behavior of this Task 1 DSML is then given by means of two in-place transformation rules:
createPositive and createNegative. Fig. 1(a) shows the createPositive rule, which takes an
object p of type Parameter, with nP attribute greater or equal than 0, and produces synthetic data con-
forming to the Henshin rules. Fig. 1(b) shows the createNegative rule, which is analogously defined.

Note that this solution is really close to the problem specification in [2]. Fig. 1, and Fig. 2 in the case
description [2], specifying the data generation, are almost the same. This demonstrates how close the
solution by e-Motions is to the problem domain, and how convenient its graphical facilities are.

Our Maude-based solution for Task 1 consists of an object-based Maude specification, which matches
very closely the e-Motions solution. See Appendix B) for the Maude specification of rule createPositive
and for a comparison of the number of rewrites and execution times for both solutions.

Task 2

Task 2 consists in finding all ‘couples’ from a given model, given that two persons are a ‘couple’ if
they played together in at least three movies [2]. Couples are to be obtained from the model obtained in
Task 1.

118

Solutions using Maude and the Maude-based e-Motions tool

LHS

[T RHS
0
E 3 ml m2 m3 md ms
Wi p.nP >= 0 nP = P -1 rating = 10 * p.nk rating = 10* pinP +] rating = 10 pnP = & rating = 10 * punP = 2 rating = 10 * pnP + £
a b c d e
- & & > >~
name = 'z'.concat{(107p.nP).toStringl) name = 'a.concat((10p.nP + 1).toStringliname = 'a' concat((10%p.nP = 2).toStringQ) name = 'a'.concat((10%p.nP = 3).toStringl) name = 'a’.concat((107p.nP +4).toStringl)
(a) The createPositive rule.
LHS GIRHS
P] ml m2 m3 md mS
nN = p.nN -1 rating = 10 *p.nN + £ rating = 10*pnN + € rating = 10*p.nN+7 _rating = 10*pnN + £ “rating = 10 *pinN + ¢
i p.al »= 0
El b 3 d e
P P & & &
name = 'a'.concat((10%p.nN = 5).toStringl)) name = '@ .concat((10%p.aN +6).toString0) name = ‘a.concat((10%p.aN + 7).toString() name = 'a.concat((10*p.nl « 8).toString() name = 'a.cencat((10"p.nN + 9).toString()

(b) The createNegative rule.

Figure 1: Task 1 rules.

The e-Motions-based solution for this task is implemented with one single rule, createCouple,
shown in Fig. 2. Person objects are shown using square shapes because Person is an abstract class and
it does not have attached image. The createCouple rule models the creation of a couple by taking two
persons and generating a couple with them. The rule has two conditions: a positive condition stating that
“the number of movies in the intersection between the movies of per1 and per2is greater or equal than
3”; and a negative condition, coupleHasNotBeenCreated, requiring that the couple does not exists yet.

See Appendix C for an alternative specification of the e-Motions solution, in which we reduce the
number of candidate matchings, Maude specifications of the solution, and a comparison of the results.

Task 3

Given a model with couples already created, Task 3 consists in calculating the average rating of

W LAS Iz] RHS
perl : Person per2 : Person perl : Person perd : Person
Wit perl.movies- »intersection(per2.movies)- »size() »= 3 c pl p2
~
coupleHasMotBeenCreated T
commonMovies = perl.movies- »intersection(per2.movies)
perl : Perscn aCouple per2 : Person

T2

Figure 2: e-Motions rule createCouple.

119

A. Moreno-Delgado & F. Duran 5

LHS T RHS NoCalculated

couple | F& noCal : ComputingAvg
couple

~ < realized >
«id X
< couple

avgRating = 0.0

avgRating = accumulator / [couple.commonMovies- »size() * 1.0)

Y accumulator: Real = couple.commaonMovies- »asSequence()- »iterate(c: res : Real = 0.0 | res + c.ratinqj

Figure 3: computingAvgRating rule.

shared movies for each of these couples.

The e-Motions-based solution consists in one single rule, shown in Fig. 3, in which the average is
calculated only once for each couple. Notice the use of an action in the NAC of the rule to state that the
value has not already been calculated.

See Appendix D for the Maude counterpart, and a comparison of the number of rewrites and execu-
tion times for the solutions.

3 Conclusions

We have presented solutions for the TTC 2014 Movie Database Case both in the e-Motions DSML and
in the rewriting-logic formal language Maude.

e-Motions provides a very rich set of features, that enables the formal and precise definition of
real-time DSMLs as models in a graphical and intuitive way. It makes use of an extension of in-place
model transformation with a model of timed behavior and a mechanism to state action properties. The
extension is defined in such a way that it avoids artificially modifying the DSML’s metamodel to include
time and action properties. Moreover, it supports attribute computations and ordered collections, which
are specified by means of OCL expressions. All these features makes the language very expressive, but
directly impact on performance.

The Maude solutions presented are also very intuitive and simple. The fact that the solutions given
directly in Maude lack the overhead included by e-Motions to deal with all those features it provides that
are not needed in the current case study, makes the solutions given much more efficient, and able to deal
with bigger problems.

Acknowledgments. This work is partially funded by Projects TIN2012-35669 and TIN2011-23795.

References

[1] M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer & C. Talcott (2007): All About Maude
- A High-Performance Logical Framework LNCS 4350, Springer.

[2] T.Horn, C. Krause & M. Ticky: The TTC 2014 Movie Database Case. Available at TTC14 web site.
[3] J. Meseguer (1992): Conditioned Rewriting Logic as a Unifed Model of Concurrency. TCS 96(1): 73—-155.

[4] J. E. Rivera, F. Duran & A. Vallecillo (2010): On the Behavioral Semantics of Real-Time Domain Specific
Visual Languages. In: WRLA: 174-190.

[5] J. R. Romero, J. E. Rivera, F. Durdn & A. Vallecillo (2007): Formal and Tool Support for Model Driven
Engineering with Maude. Journal of Object Technology 6(9): 187-207.

120

6 Solutions using Maude and the Maude-based e-Motions tool

A Figures

FLY - e
- g i i @
(a) Actor. (b) Actress. (c) Movie. (d) Couple. (e) Parameter.

Figure 4: Concrete syntax for Movies* MM.

B Maude listings and results for Task 1

As in the e-Motions solution for Task 1, the Maude solution has two rewrite rules: createPositive
and createNegative. Listing 1 shows the createPositive Maude rule, which takes the message
createPositive(s(N:Nat)) and returns a configuration conforming the Henshin specification [2]. A
similar rule generates the negative cases. Notice that the Maude solution is very much like the e-Motions
solution. In fact, the former could be seen as the textual version of the latter.

The execution performance for both solutions is shown in Table 1, which shows the number of
rewrites and execution times for both solutions. As explained above, the execution times for the Maude
specification obtained from the e-Motions definition grows very quickly. Notice that, although the num-
ber of rewrites grows linearly with respect to N, the time is exponential due to the infrastructure to deal
with all the extra features in e-Motions. However, notice how the number of rewrites for the Maude so-
lution grows linearly as well, but in this case the execution times grow more slowly, being able to handle
problems of much bigger sizes.

Listing 1: createPositive Maude rule.

rl [createPositivel]
createPositive (s(N))
fresh0id (N’)

=>
createPositive (N)
< N : Movie | rating: (10.0 * float(N)) >
<N’ + 1 Movie | rating: (10.0 * float(N) + 1.0) >
< N’ + 2 Movie | rating: (10.0 * float(N) + 2.0) >
< N’ + 3 Movie | rating: (10.0 * float(N) + 3.0) >
< N’ + 4 Movie | rating: (10.0 * float(N) + 4.0) >

< N’ + 5 : Actor | name: ("a" + string(10 * N, 10)),
movies: (N’, N’ + 1, N’ + 2, N’ + 3) >

< N’ + 6 : Actor | name: ("a" + string(10 * N + 1, 10)),
movies: (N’, N’ + 1, N’ + 2) >

< N’ + 7 : Actor | name: ("a" + string(10 * N + 2, 10)),
movies: (N’ + 1, N’ + 2, N’ + 3) >

< N’ + 8 : Actress | name: ("a" + string(10 * N + 3, 10)),
movies: (N’ + 1, N’ + 2, N’ + 3, N’ + 4) >

< N> + 9 : Actress | name: ("a" + string(10 * N + 4, 10)),
movies: (N’ + 1, N’ + 2, N’ + 3, N’ + 4) >

fresh0id (N’ + 10)

121

A. Moreno-Delgado & F. Durdn 7

e-Motions Maude
N | Time (s) | # Rewrites | Time (s) | # Rewrites
1 0.0 67
2 0.0 4910 0.0 133
10 0.0 24,334 0.0 661
20 0.0 48,614 0.0 1321
100 0.6 242,854 0.0 6601
1000 55.7 | 2,428,054 1.7 66,001
2000 395.0 | 4,856,054 11.8 132,001
3000 31.5 198,001
4000 40.8 264,001
5000 65.8 330,001
6000 96.8 396,001
7000 133.4 462,001
8000 175.8 528,001
9000 224.5 594,001
10000 227.9 660,001
11000 337.4 726,001

Table 1: Times for the e-Motions and Maude solutions to Task 1.

C Maude listings and results for Task 2

Although very intuitive and simple, the e-Motions solution presented in Section 2 for Task 2, is compu-
tationally very expensive. Notice that the number of matchings in the LHS of the rule is quadratic on the
input size, leaving all the task to the evaluation of the conditions to accept or discard the couples. We
have implemented another solution in which we limit (although we do not reduce the problem complex-
ity) the number of matchings using a very simple algorithm: For each person, we iterate on the rest of
persons looking for couples. With this algorithm, the number of persons to match as candidate couples
decreases significantly.

As for the Maude-based solution, we have specified both solutions. Both solutions match very closely
their e-Motions counterparts. The Maude specification of the first alternative solution to Task 1 is shown
in Listing 2. The rules takes two persons and creates a new couple if they share three movies and such
couple has not been previously created. Some numbers for its execution are shown in Table 2.

However, while for the Maude-based solution we get better results with the enhanced solution, for
the e-Motions one we get even worse time executions. This is due to the high overhead included in
e-Motions by each additional rule, since the enhanced solution has more rules that the naive one.

122

8 Solutions using Maude and the Maude-based e-Motions tool

Listing 2: createCouples Maude rule.

crl [findCouples]

{ fresh0id(N) findCouples
< 01 : Vi:Person | movies : MS1, Attsi
< 02 : V2:Person | movies : MS2, Atts2 >
Conf }

\4

-~ Vv

fresh0id(s(N)) findCouples
< 01 : Vi:Person | movies : MS1, Attsi
< 02 : V2:Person | movies : MS2, Atts2 >
< N : Couple |
commonMovies : (intersection((MS1), (MS2))),
pl : 01, p2 : 02 >

\4

Conf }
if | intersection((MS1), (MS2)) | >= 3
/\ not coupleInConf (C, Conf)

N Time (s) # Rewrites

1 0.0 8,680
5 0.5 1,343,000
10 5.0 11,020,000

20 66.3 89,276,000
30 314.0 302,568,000

Table 2: Maude times for Task 2 First Version.

N Time (s) # Rewrites

1 0.0 831
10 0.1 82,983
100 8.9 8,299,803
200 68.3 33,199,603

300 2429 74,699,403
400 640.1 132,799,203

Table 3: Maude times for Task 2 Second Version.

D Maude listings and results for Task 3

The Maude rule specifying the solution of this task is shown in Listing 3. The number of rewrites and
execution times of the e-Motions solution for Task 3 in Section 2 for N = 2, 10 are shown in Table 4.

123

A. Moreno-Delgado & F. Durdn 9

Listing 3: Maude rule for Task 3 solution.

crl [avgRating]

{ <M : Couple | commonMovies : MovieSet,
avgRating : 0.0,
Attsl >
couplesCalculated(Couples)
C
}
=>
{ <M : Couple | commonMovies : MovieSet,

avgRating : sumAllRatings (MovieSet, C)
/ float (| MovieSet |),
Attsl >
couplesCalculated ((M, Couples))
C
}
if not(M in Couples)

Table 5 shows the number of rewrites and execution times for the Maude solution for problems of
sizes 100, 200, 300, and 400.

N Time (s) # Rewrites
2 0.0 4,527
10 2.1 891,432

Table 4: e-Motions times for Task 3.

N Time (s) # Rewrites

100 1.5 21,800
200 6.3 43,600
300 14.9 65,400
400 29.7 87,200

Table 5: Maude times for Task 3.

124

Solving the TTC 2014 Movie Database Case with GrGen.NET

Edgar Jakumeit

eja@ipd.info.uni-karlsruhe.de

The task of the Movie Database Case [2] is to identify all couples of actors who performed together
in at least three movies. The challenge of the task is to do this fast on a large database. We employ
the general purpose graph rewrite system GRGEN.NET in developing and optimizing a solution.

1 Whatis GrGen.NET?

GRGEN.NET (www.grgen.net) is a programming language and development tool for graph structured
data with pattern matching and rewriting at its core, which furthermore supports imperative and object-
oriented programming, and features some traits of database-like query-result processing.

Founded on a rich data modeling language with multiple inheritance on node and edge types, it offers
pattern-based rewrite rules of very high expressiveness, with subpatterns and nested alternative, iterated,
negative, and independent patterns, as well as preset input parameters and output def variables yielded to.
The rules are orchestrated with a concise control language, which offers constructs that are simplifying
backtracking searches and state space enumerations.

Development is supported by graphical and stepwise debugging, as well as search plan explanation
and profiling instrumentation for graph search steps — the former helps in first getting the programs
correct, the latter in getting them fast thereafter. The tool was built for performance and scalability: its
model data structures are designed for fast processing of typed graphs at modest memory consumption,
while its optimizing compiler adapts the search process to the characteristics of the host graph at hand
and removes overhead where it is not needed.

GRGEN.NET lifts the abstraction level of graph-representation based tasks to declarative and elegant
pattern-based rules, that allow to program with structural recursion and structure directed transformation
[3]. The mission of GRGEN.NET is to offer the highest combined speed of development and execution
available for graph-based tasks.

2 Getting it right

As always, the first step is to get a correct solution specified in the cleanest way possible, and only later
on to optimize it for performance as needed.

Task 1: Generating Test Data

The synthetic test set of task 1 is generated with the rules in MovieDatabaseCreation.grg, with
the iteration for{i:int in [0:n-1]; createPositive(i) ;> createNegative(i)} in the se-
quence definition createExample, applying the rules createPositive and createNegative in suc-
cession.The rules are a direct encoding of the patterns in the specification, just in textual GRGEN syntax
(as explained with the next task).

125
To appear in EPTCS. © Edgar Jakumeit

2 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

Task 2: Finding Couples

The workhorse rule for finding all pairs of persons which played together in at least three movies is
findCouples.

rule findCouples

{
pnl:Person; pn2:Person;
independent {

pnl -:personToMovie-> ml:Movie <-:personToMovie- pn2;
pnl -:personToMovie-> m2:Movie <-:personToMovie- pn2;
pnl -:personToMovie-> m3:Movie <-:personToMovie- pn2;
}
modify {
c:Couple;
c -:pl-> pnil;
c -:p2-> pn2;
ezec(addCommonMoviesAndComputeAverageRanking(c, pnl, pn2));
}
} \ auto

Figure 1: findCouples rule

It specifies a pattern of two nodes pnl and pn2 of type Person, and an independent pattern which
asks for 3 nodes m1, m2, m3 of type Movie, each being the target of an edge of type personToMovie
starting at pn1, and each being also the target of an edge starting at pn2. (Types are given after a colon,
the optional name of the entity may be given before the colon, for edges they are inscribed into the edge
notation ——>).

An independent pattern means for one that its content only needs to be searched and is not available
for rewriting, and for the other that for each pnl and pn2 in the graph, it is sufficient to find a single
instance of the independent, even if the rule is requested to be executed on all available matches —
without the independent we would get all the permutations of m1, m2, and m3 as different matches.

The rewriting is specified as nested pattern in modify mode, which means that newly declared enti-
ties will be created, and all entities from the matched pattern kept unless they are explicitly requested to
be deleted. Here we create a new node c of type Couple, link it with edges of the types p1 and p2 to the
nodes pnl and pn2, and then execute the helper rule addCommonMoviesAndComputeAverageRanking
on c, pnl, and pn2. The helper rule is used to create the commonMovies edges to all the movies both
played in (you find it in Figure 3 in A.1).

The auto keyword after the rule requests GRGEN.NET to generate a symmetry filter for matches
from automorphic patterns. The pattern is automorphic (isomorphic to itself) because it may be matched
with pn2 for pnl and pn1 for pn2.

To get all pairs of persons which played together in at least three movies we execute the rule with all-
bracketing from a graph rewrite sequence in the GRSHELL script MovieDatabase.grs, filtering away
automorphic matches, with the syntax: exec [findCouples\auto].

The language constructs are explained in more detail in the extensive GRGEN.NET user manual [1].

126

Edgar Jakumeit 3

iesé g | BB MovieDatabaseCliaues5 ara | 3 terated_repl_2ara

%] yComp Version 1314
View Navigate Layout Help

DaEa 9e XhE QA

palbly
sl
POV /&/)

onToMovie

PN
[SR
e\

$1DC1B:Couple
avgRating = 0.660869565217331

A~/

A
= -
[$DAdE:Actor

y
[} $15B49:Movies Guy

[) $161ED:Movie3 Sor Movie:type : MovieType VIDEO

) 16561 Hovie2e Ho Woviestte: 10 Wan Gurn Siam 10
D) stesEBmovie238d o
[s1e843onezs Cy

|

0] IDEE K

Figure 2: Debugging the top match from the 10000 movies file

Task 3: Computing Average Rankings

The helper rule addCommonMoviesAndComputeAverageRanking that was already used for creating the
common movies edges is also used for computing the average rankings, you find it in Figure 3 in A.1.

Extension Task 1: Compute Top-15 Couples

The extension task 1 requires to compute the top couples according to the average rating of their common
movies, and according to the number of common movies. It is solved with the rule couplesWithRating
that you find in Figure 4 in A.1. We use the rule twice, ordering the matches differently. The sequence
[couplesWithRating\orderDescendingBy<avgRating>\keepFirst(15)] executed from the GR-
SHELL asks for all matches of the rule couplesWithRating, then sorts them descendingly by the av-
gRating pattern variable, then throws away all but the first top 15 matches. The other value of interest
is handled in exactly the same way.

You can inspect the found results with the debugger of GRGEN.NET, see Figure 2. There, a
visualization of the match with most connections is displayed, in layout Circular; take a look at
MovieDatabaseLayout.grs to find out about the visualization configuration applied to reach this.
Notably we configured it so it shows only the matched entities plus the one-step connected elements
as context, as large graphs are costly (often too costly) to visualize.

127

4 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

Extension Tasks 2, 3, 4

The other extension tasks asking to find cliques of actors are solved with manually coded rules for the
sizes 3, 4, and 5 as a straightforward generalization of the couples-based task; higher-order or meta-
programming is not supported (and won’t be, you have to employ an external code generator if needed).

3 Getting it fast

The clean pattern-based solution presented in the previous chapter unfortunately scales badly with in-
creasing model sizes. Utilizing the built-in search plan explanation and profiling instrumentation, we
were able to find out that the most expensive part is the check that there are at least 3 common movies
existing, for two persons that are already connected by a common movie. So we replaced it with an
imperatively formulated helper function, utilizing hash sets — they scale considerably better for connect-
edness checking of a large number of adjacent(/incident) elements (O(n) instead of O(n *n)).

In addition to the built-in optimizations of independent inlining to ensure that pattern matching fol-
lows connectedness, and search planning, adapting the pattern matching process to the characteristics of
the host graph at hand, did we apply some further optimizations of the code.

e We used imperatively formulated hash-set lookup instead of the nested-loops implementation of
the pattern matcher for the at-least-3-common-movies-check, to cope well with actors with high
numbers of movies.

e We even inspect the number of incident edges in this check (yielding an adaptive algorithm), so
the smaller hash set is built; in addition, we utilize an incident edges count index maintained by
the engine that gives us direct access to the number of incident edges without having to iterate and
count them.

e We applied some search space pruning by early filtering during the matching based on the unique
id order of the actors, instead of filtering of permuted matches of automorphic patterns afterwards;
and by checking for actors with fewer than 3 movies early on, to remove the "long tail” (of actors
performing in few movies).

e We separated the computation of the average ranking from the addition of the common movies,
this allowed us a reformulation with an all-bracketed rule instead of an iterated pattern, saving us
the overhead of the graph parser employed in matching iterated, alternative, and subpatterns.

o We parallelized the pattern matcher with a parallelize annotation. This does not minimize the
amount of work to be carried out for the specification as the other optimizations did, but maximizes
the amount of workers thrown on the work. A task with an expensive search like ours — as revealed
by profiling — benefits considerably from it.

The final optimized rule is shown in Figure 5, and its helper functions in Figure 6 and Figure 7
(the optimization increased the LOC from about 30 for the original version of task 2 to about 90). The
optimization process is described in more detail in [4].

4 Calling from API and Performance Results

The task description asks for a standalone command line version for benchmarking. We supply a C#-
Program that employs the GRGEN.NET API towards this end, which can be found in MovieDatabase-
Benchmarker. cs (everything else was coded entirely in the GRGEN-languages, and is based on actual

128

Edgar Jakumeit 5

GRGEN.NET-features). It expects as first parameter the name of the rule to apply (findCouplesOpt,
findCliques0£f30pt, £indClique0£f40pt, £indClique0f50pt), and as second parameter either the
graph to import (e.g. imdb-0005000-50176.movies.xmi.grs), or the number of iterations to use in
generating the synthetic test graph. An additional sequence may be given in quotes, intended for emitting
the sorted results.

The standalone version contains a further optimization that can be only applied on API level. After
importing the IMDB graphs, it reduces the named graphs to unnamed graphs, throwing away the name
information, which saves us a considerable amount of memory (and cache).

On a Core 17 920 with 24GiB, running Windows with MS .NET, the largest synthetic benchmark
graph was processed in about 65sec for the couples, the 3 cliques in about 40sec, the 4 cliques in about
36sec, and the 5 cliques in about 20sec '. The entire IMDB was processed on average in about 500sec
(searching for all couples performing in at least three movies, linking them to all of their common
movies). The cliques (which were outside of the main focus of our optimization work) show a stun-
ning computation time explosion, from 5 secs for cliques of 3, over something less than 2 minutes for
cliques of 4, to more than 2 hours for cliques of 5, already on the smallest IMDB graph.

The official results (in seconds) measured on an Opteron 8387 with 32GiB, running LINUX with
mono are given in Table 1, for the time needed to synthesize the models and the time needed for process-
ing the couples on the synthesized models, and in Table 2, for the time needed for processing the couples
and 3-cliques on the IMDB models.

5 Conclusion

We first specified a clean and simple solution of the movie database task in the GRGEN languages, then
we optimized it for performance. The tool supported us in validating the solution with its graphical
debugger, and in optimizing it with its search plan explanation and profiling instrumentation for search
step counting.

GRGEN.NET search planning can be compared to searching straw stars on a freshly harvested field,
by looking at the places where the ground is only slightly covered, only reaching into the haystacks when
they can’t be circumvented at all. A pattern matcher is generated based on the assumption that search
planning worked well in circumventing those haystacks. Here the task consists solely of diving within
a hay stack, a particularly large and interwoven one. So we had to supplement the declarative patterns
(implemented with loop-nesting behind the scenes, which is optimal for sparse graphs) by imperative
hash set based helper functions — at least this highlights that for about any task built on a graph-based
representation there are the language constructs available that are needed for solving it.

Once again, GRGEN.NET is among the top performing tools.

References

[1] Jakob Blomer, Rubino Geif3 & Edgar Jakumeit (2014): The GrGen.NET User Manual. http://wuw.grgen.
net/GrGenNET-Manual . pdf.

[2] Tassilo Horn, Christian Krause & Matthias Tichy (2014): The TTC 2014 Movie Database Case.

[3] Edgar Jakumeit (2011): EBNF and SDT for GrGen.NET. Technical Report. Available at http://www. info.
uni-karlsruhe.de/software/grgen/EBNFandSDT.pdf. Presented at AGTIVE 2011.

I picking the fastest of 3 runs, with considerable variations in between

129

6 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

rule addCommonMoviesAndComputeAverageRanking(c:Couple, pnl:Person, pn2:Person)

{
iterated it {

pnl -:personToMovie-> m:Movie <-:personToMovie- pn2;
modify {
c -:commonMovies-> m;
eval { yield sum = sum + m.rating; 1}
}
}
modify {

def var sum:double
eval { c.avgRating

}

0.0;
sum / count(it); 1}

Figure 3: addCommonMoviesAndComputeAverageRanking rule

[4] Edgar Jakumeit (2014): Optimizing a Solution for the TTC 2014 Movie Database Case. Technical Report.
Available at http://www. info.uni-karlsruhe.de/software/grgen/OptimizingMovie.pdf.

[5] Edgar Jakumeit (2014): SHARE demo related to the paper Solving the TTC 2014 Movie Database Case with
GrGen.NET. http://is.ieis.tue.nl/staff/pvgorp/share/7page=ConfigureNewSession&vdi=
Ubuntul2LTS_TTC14_64bit_grgen_v2.vdi.

A Appendix

A.1 Getting it right
Task 2 and 3

The helper rule addCommonMoviesAndComputeAverageRanking shown in Figure 3 eats all common
movies with an iterated pattern which is matched as often as possible; in the rewrite part it links
the Couple node to each such movie with a commonMovies edge. In the eval part used for attribute
evaluation, the avgRating is computed as the sum of the ratings of the movies munched, divided by the
count of the iterateds matched. The def var is used to define a variable whose content is computed
after matching from the matched entities, the yield is used to assign to such variables, from nested
patterns up to their containing patterns (normally variables are passed the other way round, from nesting
to nested patterns, following the flow of matching).

Extension Task 1: Compute Top-15 Couples

The rule couplesWithRating in Figure 4 matches a Couple and its linked Persons. Two def variables
avgRating and numMovies for the values of interest are created and filled with the average rating stored
in the couple nodes, and the number of movies as computed from the size of the set of commonMovies
edges outgoing from the couple node. We employ a yield block to assign the variables (bottom-up)

130

Edgar Jakumeit 7

rule couplesWithRating
{
c:Couple;
c -:pl-> pnl:Person;
c -:p2-> pn2:Person;

def var avgRating:double;
def var numMovies:int;

yield {

yteld avgRating = c.avgRating;

yield numMovies = outgoing(c, commonMovies).size();
}
modify {

emit("avgRating: " + avgRating + " numMovies:_ " + numMovies
+ "_Uby," + pnl.name + "_and," + pn2.name + "\n");
}

} \ orderDescendingBy<avgRating>, orderDescendingBy<numMovies>

Figure 4: couplesWithRating rule

after the (top-down) pattern matching completed. In the rewrite part specified in modify mode we just
emit the values of interest. Furthermore, we request GRGEN to generate sorting code for the def pattern
entities avgRating and numMovies with the declaration of the auto-generated matches accumulation
filters orderDescendingBy<avgRating> and orderDescendingBy<numMovies>.

A.2 Getting it fast

Figure 5 shows the rule findCouplesOpt we get after the final optimization step. Figure 6 shows the
helper function atLeastThreeCommonMovies we employ to find out if there are 3 common movies,
and Figure 7 shows the helper function getCommonMovies we employ to compute the common movies.
Note that the ad jacentOutgoing function is built-in.

A.3 Calling from API and Performance Results

In Table 1 and Table 2 you find the official measurements.

131

8 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

rule findCouplesOpt[parallelize=16]
{
pnl:Person; pn2:Person;
hom(pnl,pn2);
independent {
pnl -p2ml:personToMovie-> ml:Movie <-p2m2:personToMovie- pn2;
hom(pnl,pn2); hom(p2ml,p2m2);
if{ atlLeastThreeCommonMovies (pnl, pn2); }
}
if{ uniqueof (pnl) < uniqueof (pn2); }
if{ countPersonToMovie[pnl] >= 3; 1}
if{ countPersonToMovie [pn2] >= 3; 1}

def ref common:set<Node>;
yield {
yield common = getCommonMovies(pnl, pn2);

}

modify {
c:Couple;
¢ -:pl-> pnil;
c -:p2-> pn2;

eval {
for(movie:Node 4n common) {
add (commonMovies, ¢, movie);

}
}
}
X
Figure 5: findCouplesOpt rule
function atLeastThreeCommonMovies (pnl:Person, pn2:Person) : boolean
{
if(countPersonToMovie[pnl] <= countPersonToMovie [pn2]) {
def var common:int = O0;
def ref movies:set<Node> = adjacentOutgoing(pnl, personToMovie);
for(movie:Node in adjacentOutgoing(pn2, personToMovie))
{

if(movie <n movies) {
common = common + 1;
if(common >= 3) {
return(true);
}
}
}
} else { /* pnl and pn2 reversed */ }
return(false);

}

Figure 6: atLLeastThreeCommonMovies helper function

132

Edgar Jakumeit

function getCommonMovies (pnl:Person, pn2:Person)

{

def ref common:set<Node> =

set<Node>{};

: set<Node>

if(countPersonToMovie [pnl] >= countPersonToMovie[pn2]) {
def ref movies:set<Node> = adjacentOutgoing(pn2, personToMovie);
for(movie:Node in adjacentOutgoing(pnl, personToMovie))

{

if(movie <n movies) {
common . add (movie) ;

}
}

} else { /* pnl and pn2 reversed */ }

return(common) ;

Figure 7: getCommonMovies helper function

Table 1: Synthetic model generation and matching couples

N | synthesizing matching couples

1000 0.13 0.25
2000 0.21 0.42
3000 0.30 0.59
4000 0.55 0.58
5000 0.62 0.96
10000 1.22 1.82
50000 7.29 9.58
100000 15.88 22.09
200000 34.20 51.13

Table 2: Matching couples and 3-cliques

nodes | matching couples matching 3-cliques
49930 0.52 5.011
98168 0.99 13.634
207420 1.47 22.794
299504 4.14 33.480
404920 3.51 53.659
499995 9.27 69.194
709551 11.10 129.696
1004463 22.45 222.112
1505143 62.68 797.266
2000900 190.83 1930.327
2501893 318.72 4480.044
3257145 683.66 15616.83

133

AToMPM Solution for the IMDB Case Study

Huseyin Ergin Eugene Syriani
University of Alabama, Tuscaloosa AL, U.S.A. Université de Montreal, Montreal, QC, Canada
her gi n@ri nson. ua. edu syriani @ro. unontreal . ca

In this paper, we present an AToMPM solution for the IMDB ca&ly of TTC 2014.

1 Introduction

AToMPM [3] (A Tool for Multi-Paradigm Modeling) allows one to model ankeeute model transfor-
mations. It provides a graphical user interface to define the metamodels ofptht and output lan-
guages, define the transformation rules and their scheduling, andi@xmeudinuously or step-by-step
transformations on given models.

The model transformation language of AToOMPM is MoTif [2]. In MoTif, raleonsist of a pre- and
a post-condition. The pre-condition pattern determines the applicability ofithand is usually defined
with a left-hand side (LHS) and optional negative application conditionsQNAhe post-condition
determines the result of the rule and is defined by a right-hand side (REi&) wiust be satisfied after
the rule is applied. Furthermore, any element in a rule in the LHS or RHS massizmad to a pivot. It
acts as a variable that can be referred to by other rules. To use agrive@lement from the LHS or NAC
can be bound to that pivot. The rule in Fig. 1 is a MoTif rule with a NAC, LH&] &HS (from left to
right). For the remaining of the paper, we have used a more concise ndtatiame space and annotate
the rules as needed.

The scheduling, or the control flow, describes the order in which the arkeexecuted. Each rule is
represented by a rule block having three ports. Conceptually, a rid&esamodels via the input port
at the top. If the rule is successfully applied, the resulting model is outpnt the success port at the
bottom left. Otherwise, the model does not satisfy the pre-condition andritliead model is output
from the fail port at the bottom right. Fig. 2 depicts an example of contral 8tructure to schedule
MoTif rules.

Some rule blocks are annotated in the scheduling, denoting a speciaildrefiie meaning of these
rules are: (1)ARule: is a regular “Atomic Rule” that is executed once on a single match. It has no
annotation. €.g., resetlterator in Fig. 2) (2)FRule: stands for “For all Rule”. All matches are found first
and then the rule is applied on all the matches. It is annotated with a lettee.@:,.domputeAverage
in Fig. 4) (3) SRule: stands for “Star Rule”. It is a rule that is recursively applied on eacttimas
long as matches are found. Therefore, the result of this rule is the atationwf each application. It

Figure 1: MoTif rule as it appears in ATOMPM .

© H. Ergin & E. Syriani
This work is licensed under the
Creative Commons Attribution License.

Submitted to: 134
TTC 2014

2 AToMPM Solution for the IMDB Case Study

createPositive

@

"[Movie] 2[Movie] 3[Movie] *[Movie]>[Movie
0 0

6ﬂ 7(1 8“ 9\] 103

current[0]<limit[0] ~ rating[1]=10*n, rating[2]=10*n+1, rating[3]=10*n+2, rating[4]=10*n+3, rating[5]=10*n+4 *
name[6]=10*n, name[7]=10*n+1, name([8]=10*n+2, name[9]=10*n+3, name[10]=10*n+4 . et
current(0}++ :createPositive

:resetlterator

(0

(

"[Movie] 2[Movie] 3[Movie] *[Movie]*[Movie
:resetlterator
0 0

1{0>n] WARI0>n] 6 7(1 8“ 94 1014
current[0]<limit[0] rating[1]=10"n+5, rating[2]=10*n+6, rating[3]=10*n+7, rating[4]=10"n+8, rating[5]=10*n+9
name[6]=10*n+5, name(7]=10"n+6, name(8]=10"n+7, name[9]=10*n+8, name[10]=10"n+9
current[0]++
resetlterator
0 0
1{0>n] 1{0>n]

current[0]=0

(K

:createNegative

Oa\
®x

Figure 2: Task 1 rules and scheduling.

is annotated with an asterisk *'e(g., createPositive in Fig. 2) (4)QRule: stands for “Query Rule”. It
is anARule with no side effect since it does not have a RHS, but may still assign pitassannotated
with a question mark *?’. €g., findCouple in Fig. 4) (5)CQRule: stands for “Complex Query Rule”. It
is a nestedRule where a second query filters the result of the first one. It is annotatedwo question
marks ‘??’. £.9., getOneCouple andnotHighestRatingCouple in Fig. 5)

This paper provides a solution to the IMDB model transformation case sttnge full description
can be found at [1]. In Section 2, we provide the details about the solutiddection 3, we summarize
the results and conclude.

2 Solution

We have solved every task and extension of the case study in ATOMPMis¥d¢ethe same metamodel as
given in the briefing document [1] with slight modifications. An intefieg variable is added tGroup
class to mark already processed groups while computing the top coupléspaditjues. Also for the
sake of simplicity, we have addedr@vieNumber attribute toGroup class to hold the number of movies
that group has. AToMPM does not have an iterator as a schedulingusgu€-or this reason, we have
added an explicilteration class both to iterate on a rule and pass the value of the iterator to the rules to
be used within. In the rule#teration class has a concrete syntax of a black rectangle and a text starting
with “I” and having the current value and the limit of the iteration.

Each solution shows the rules on the left of the figure and the schedulthgs# rules on the right.

2.1 Task 1. Generating Test Data

The first task is to generate the test data for the case. The rules anchétulaeg of these rules are
depicted in Fig. 2. The rules help to create a seriegdfies, Actors andActresses with the necessary
relationships among each other. The rules mostly look like the original rules ihatument, only with
the addition of theteration class. The iterator makes the transformationMuimes. This parameter can
be set within the input model. We have an extra rule to reset the iteratoet®fery use.

135

H. Ergin & E. Syriani 3

reateCouple I
;)
E‘ ’Ei T
4 5 Ha 2| 3[Movi 1- 2“ 3- 1 H 1” 1
al [Movie] *[Movie] *[Movie] [Movie] : [Movie] [Movie]
6 @upd i <
P g [ofg |
i [
I 4 Cowd

~, ®
| :referenceToCoupleMovies I

I G

Figure 3: Task 2 rules and scheduling.

findCouple computeAverage
[igie] [y —
1 i ?
:findCouple
4
avgRating[1]==0 1 @ 1 @ >\(9
T F
avghating= oRatingl] T]+rating[2]) :computeAverage

(movieNumber{11+1) r
movieNumber[1]++ é

Figure 4: Task 3 rules and scheduling.

2.2 Task 2: Finding Couples

This task aims to find two people who played in at least three movies togettate ef@uple for them
and reference to each movie they played in together. The rules and #edusol of these rules are
depicted in Fig. 3. ThéindStarsAndCreateCouple rule checks for two people that played in the same
three movies. The rule will find the match if they have more than three movies then daCouple
class is created with a relation to each person. The NACs prevent to eopsiople already in couples.
Since they can be either the or the p2 of a couple, there are two NACs for each case. Piyats
andp2 are assigned to these people, so we can refer to these two personsafidhe§ rule. The
referenceToCoupleMovies rule creates aommonMovies relation from the newly created couple to each
movie they played together, if not already referenced.

2.3 Task 3: Computing Average Rankings

This task is to compute the average rankings of each couple by usingrtineonMovies relation of the
couples. The rules and the scheduling of these rules are depicted in HigefindCouple rule finds a
couple withavgRating zero, which means its average rating is not computed yet. It sets a pivbigo
couple to be used in the next rule. Then, toenputeAverage rule traverses all movies of this couple
and computes moving average with increasing the movie number of the couphelsach time. The
computation of the average is done in an intuitive way. First, the currenadgeeaating is multiplied
by the current number of movies. Then, the rating of the current moviediscatb this multiplication.
Finally, the last number is divided by one more than the current movie nunmb®e oouple.

2.4 Extension Task 1: Compute Top-15 Couples

This task computes the top 15 couples and prints relevant information. Teseand the scheduling of
these rules are depicted in Fig. 5. We use the iterator to compute ti: ¢opples. This gives us the
flexibility of setting the number of couples we want, directly within the model. Esetlterator rule
resets the iterator before use. Titegator rule counts how many couples we want and it stops when we
reach that number. Also we use therent attribute of this iterator to print the sequence number while

136

4 AToMPM Solution for the IMDB Case Study

iterator getOneCouple
0 Vv
1[0>n] !
C :resetlterator
curtent(0]<limit(0) pr—
notHighestRatingCouple 7
® o

T % —@
avgRatingl2]>avgRating[1], flagl2}==0
printC i :getOneCouple
:notHighestRatingCouple
2 3 2 3
—
@) @ :
=
0 ¢ 0 :printCouplelnformation
1[0>n] 1[0>n] r —Q

current[0]++, flag[4]=1, print(4)

Figure 5: Extension task 1 rules and scheduling.

findClique0f3 " : t
T T
i
i

:findCliqueOf3

:
1
i
ai
!
1
.
i

A A A A A A . I I iFATA Pa)a A A
A s ol 4& 5& 6!1; A6 SO ofld HELSEL I Ry T PRl 8] *
pl p2 p: i
1D 1D L) @D

Figure 6: Extension task 2 rules and scheduling.

printing information of a couple. In the scheduling, thetOneCouple and notHighestRatingCouple
rules are put together inside a single CQRule (described in Section 1)uldnislock finds a couple and
eliminates it if it does not have the highest rating. It ends up with the hightisg reouple at the end
and sets a pivot to it. Thigag attribute is used to mark the processed highest rating couple after printing
the information. Then, therintCouplelnformation prints the necessary information to developer console,
increases the current attribute of the iterator by one and sets the flagprbttessed couple to 1.

The rules in the figure shows the solution for the top couples according avéinage rating of their
common movies. Solving the problem for the top couples according to the niwhbemmon movies
is pretty easy. We add another rutetHighestMovieNumber, which looks exactly like th@otHighes-
tRatingCouple rule, but it has a condition afommonMovies[2] > commonMovies[1]. The rest of the
transformation is the same.

2.5 Extension Task 2: Finding Cliques

This task aims at finding the cliques between people. A clique is a generaliocouple with more
than two people. The rules and the scheduling of these rules are depi€tigd &1 They are exactly the
same as in task 2, but we changed @oeiple to aClique and added one more person.

The figure has the rules to find the cliques of three people. We did not gfevest of the rules
for cliques of four and five, since they are exactly same copies with otdévam more people added
respectively.

2.6 Extension Task 3: Compute Aver age Rankingsfor Cliques

This task is to compute average ratings of each clique created in the prextensien task. The rules
and the scheduling of these rules are depicted in Fig. 7. They are mostlgrtteeas in task 3, which
computes the average ratings for each couple. We just replaced tHe wgthpa clique.

137

H. Ergin & E. Syriani

findClique

computeAverage

1 G
=

avgRating[1]==0

Movie

1 @igue

2[Movie

1 @

. 2
:findClique

-
C F
(avgRating[1]*movieNumber(1]+rating[2]) ‘computeAverage
avgRating[1]=

(movieNumber{1]+1) r é

Figure 7: Extension task 3 rules and scheduling.

movieNumber[1]++

getOneClique i ingClique 3
A"A
[’ > (— 2 > :resetlterator I:iterator
C C
flag[1)==0 avgRating[2]>avgRating[1], flag[2]==0 x| x :
printCli i
iterator :getOneClique
2tE 3’114 ZIE 33]’4 0 :notHighestRatingClique
1[0>n]
4 4
crent(o]<limit(o] -
4
0- 0- :printCliquelnformation
1[0>n] 1[0>n] .
crrent(0}++, flagl4]=1, print(4) {

Figure 8: Extension task 4 rules and scheduling.

2.7 Extension Task 4: Compute Top-15 Cliques

This tasks computes the top 15 cliques and prints information about them. [€keana the scheduling
of these rules are depicted in Fig. 8. They are mostly like extension taskidh wbmputes the top
couples. We have changed couple to clique to solve this task.

The rules solve this task by using the average rating of each clique. Adadbé&mproblem to use the
number of common movies is easy and just needs another rule as in extenkibn tas

3 Conclusion

In this paper, we described the our solution of the IMDB case study udioy]RM . AToOMPM heavily
depends on graphical user interface and the handling of really largelsisdot possible in the current
status. However, we are working on a headless environment and eengiarnvof ATOMPM to overcome
these issues. Hence this solution focuses on the expressivenessasildyupower of modeling and
transforming in AToOMPM , rather than its performance. In the SHARE maghimeput an appendix
version of this paper to describe the steps to reproduce the test cases.

References

[1] Tassilo Horn, Christian Krause & Matthias Tichyfhe TTC 2014 Movie Database Case. Available at
htt ps://github. conf ckrause/ttc2014-i mdb/ raw naster/case_descri pti on. pdf.

[2] Eugene Syriani & Hans Vangheluwe (201BModular Timed Model Transformation Language. Journal on
Software and Systems ModeliAg, pp. 1-28.

[3] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiatn€oHansen, Simon Van Mierlo & Huseyin Ergin
(2013): Atompm: A web-based modeling environment. In: MODELS’13: Invited Talks, Demos, Posters, and
ACM SRC. CEUR-WS.org

138

Solving the TTC Movie Database Case with FunnyQT

Tassilo Horn
Institute for Software Technology, University Koblenz-Landau, Germany

horn@Quni-koblenz.de

FunnyQT is a model querying and model transformation library for the functional Lisp-dialect Clo-
jure providing a rich and efficient querying and transformation API. This paper describes the Fun-
nyQT solution to the TTC 2014 Movie Database transformation case. All core tasks and all extension
tasks have been solved.

1 Introduction

This paper describes a solution of the TTC 2014 Movie Database Case [3]. All core and extension tasks
have been solved. The solution project is available on Github', and it is set up for easy reproduction on
the SHARE? image.

The solution is implemented using FunnyQT [2] which is a model querying and transformation li-
brary for the functional Lisp dialect Clojure®. Queries and transformations are plain Clojure programs
using the features provided by the FunnyQT API. This API is structured into several task-specific sub-
APIs/namespaces, e.g., there is a namespace funnyqt.in-place containing constructs for writing in-place
transformations, a namespace funnyqt.model2model containing constructs for model-to-model transfor-
mations, a namespace funnyqt.bidi containing constructs for bidirectional transformations, and so forth.

As a Lisp, Clojure provides strong metaprogramming capabilities that are exploited by FunnyQT in
order to define several embedded domain-specific languages (DSL, [1]) for different tasks. For example,
the pattern matching constructs used in this solution is provided in terms of a task-oriented DSL.

2 Solution Description

In this section, the transformation and query specification for all core and extension tasks are going to
be explained. In the listings given in the following, all function calls are shown in a namespace-qualified
form to make it explicit in which Clojure or FunnyQT namespace those functions are defined. Clojure
allows to define short aliases for used namespaces in order to allow qualification while still being concise,
e.g., (emf/eget o :prop) where emf is an alias for the namespace funnyqt.emf and eget is the function
name. All functions with namespace aliases emf, ip, poly, and u are FunnyQT functions, all others
are either core Clojure or Clojure standard library functions, or functions defined in the transformation
namespace itself.

'https://github.com/tsdh/ttcl4-movie-couples

*http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntul2LTS_TTC14_
64bit_FunnyQT4.vdi

3http://clojure.org

Submitted to: 139
TTC 2014

2 Solving the TTC Movie Database Case with FunnyQT

2.1 Task 1: Generating Test Data

The first task is generating test data. The case description [3] illustrates the task with Henshin rules.
Since the rules actually don’t match anything but simply create new elements in the model, we have
implemented them as plain functions receiving the model and an integer parameter i from which the
movie ratings and actor names are derived. The function create-positive! creates 5 movies, 3 actors,
and 2 actresses, sets their attributes, and links them as requested.

| (defn ~:private create-positive! [model i]

(let [ml1 (emf/ecreate! model ’Movie {:rating (+ 0.0 (* 10 i))})
m2 (emf/ecreate! model ’Movie {:rating (+ 1.0 (* 10 i))})
m3 (emf/ecreate! model ’Movie {:rating (+ 2.0 (* 10 i))1})
m4 (emf/ecreate! model ’Movie {:rating (+ 3.0 (x 10 i))})
m5 (emf/ecreate! model ’Movie {:rating (+ 4.0 (* 10 i))})]

(emf/ecreate! model ’Actor {:name (str "a" (* 10 i)) :movies [ml1 m2 m3 m4l})
(emf/ecreate! model ’Actor {:name (str "a" (+ 1 (x 10 i))) :movies [ml m2 m3 m4]})
(emf/ecreate! model ’Actor {:name (str "a" (+ 2 (* 10 i))) :movies [m2 m3 m4]})
(emf/ecreate! model ’Actress {:name (str "a" (+ 3 (* 10 i))) :movies [m2 m3 m4 m5]})
(emf/ecreate! model ’Actress {:name (str "a" (+ 4 (x 10 i))) :movies [m2 m3 m4 m5]})))

— S VN R W

The create-negative! function is defined similarly, so it is skipped here for brevity.

2.2 Task 2/3 and Extension Task 2/3: Finding Couples/Cliques and Compute Average
Rankings

For finding cliques of arbitrary sizes n > 3, a higher-order transformation should be defined that generates
a transformation rule for that n. The FunnyQT solution also allows for n = 2 and deals with the fact that
in this case, Couple elements should be created rather than Clique elements. Also, the computation of the
average rankings of a couple’s or clique’s common movies is done while creating the Couple or Clique
element instead of doing it separately in a further step.

Before discussing this higher-order transformation, a few helper functions are going to be intro-
duced which will be used as constraints in the patterns of the generated rules. First, there’s a function
movie-count that gets some person and returns the number of movies that this person has acted in. Sec-
ondly, the person-count function returns the number of persons that acted in a given movie. Thirdly,
movie-set gets a person element and returns the movies that person acted in as a set. And lastly, a
function avg-rating gets a collection of movies and returns their average rating.

The function n-common-movies? printed in the next listing gets an integer n, a person element p, and
a sequence of more person elements *. 1oop and recur implement a local tail-recursion. Initially, the set
of common movies common is bound to the set of p’s movies, and the remaining persons are bound to
more shadowing the function’s parameter of the same name. If there are more persons, the recur in line 5
jumps back to the 1oop in line 2 where common is rebound to the intersection of common and the movies of
the first person in more. Likewise, mode is rebound to the remainder of more. Thus, if all given persons act
together in at least n movies, the set of common movies is returned. Otherwise, nil is returned. Since
in Clojure the values nil and false are falsy while every other value is truthy, this function can act as a
predicate and still return more information, i.e., the common movies, in the positive case.

1 (defn n-common-movies? [n p & more]

2 (loop [common (movie-set p), more more]

3 (when (>= (count common) n)

4 (if (seq more)
5
6

(recur (set/intersection common (movie-set (first more))) (rest more))
common))))

4The Clojure varargs syntax & els is similar to Java’s Type. .. els syntax.

140

1
2
3
4

T. Horn

The higher-order transformation generating a FunnyQT in-place transformation rule for a given n > 2
is a Clojure macro. A macro is a function which is executed at compile-time by the Clojure compiler.
It receives code passed to it as arguments, processes it, and returns new code that takes the place of
it’s call. This new code is called the macro’s expansion. Because like all Lisps, Clojure is homoiconic,
i.e., Clojure code is represented using Clojure datastructures (literals, symbols, lists, vectors), a macro is
essentially a transformation on the abstract syntax tree of the Clojure code that’s passed to the macro.

Listing 1 in the appendix on page 6 shows the define-groups-rule macro which is the higher-order
transformation solving the tasks. It receives an parameter n and, as its name suggests, expands into a rule
for finding couples if n equals 2 or cliques of size n for larger values of n.

We’re not going to discuss the macro in details, however the central idea of the Clojure (or Lisp)
macrosystem is that one defines the basic structure of the macro’s expansion using a quasi-quoted (back-
ticked) form as a kind of template. In this quasi-quoted form, values computed at compile-time can be
inserted using the unquote (~) and unquote-splicing (~@) operators to fill in the template’s variable parts.

The last part of the implementation of the tasks 2 and 3 and the extension tasks 2 and 3 is to actually
invoke the macro to create the transformation rules for couples and cliques of 3, 4, and 5 persons.

(define-group-rule 2)
(define-group-rule 3)
(define-group-rule 4)
(define-group-rule 5) ;;

;; make-groups-of-2!: The Couples rule

;; make-groups-of-3!: The Cliques of Three rule
;; make-groups-of-4!: The Cliques of Four rule
make-groups-of-5!: The Cliques of Five rule

Instead of discussing the rule generation macro in details, it makes more sense to have an in-depth
look at one of its expansion like the one for n being 3 shown below. A FunnyQT in-place transformation
rule is defined whose name is make-groups-of-3!, and it gets as arguments the model on which it should
be applied, and an integer ¢ which determines how many common movies a clique of three persons needs
to have. The case description fixes c to 3, but with this parameter, we allow for a bit more generality.

1 (ip/defrule make-groups-of-3!

{:forall true}
[model c]
[m<Movie>

m -<persons>-> p0
m -<persons>-> pl

m -<persons>-> p2

:when (>= (person-count m) 3)

:when (>= (movie-count p0) c)

:when (>= (movie-count pl) c)

:when (neg? (compare (emf/eget-raw pO :name) (emf/eget-raw pl :name)))
:when (n-common-movies? ¢ pO pl)

:when (>= (movie-count p2) c)

:when (neg? (compare (emf/eget-raw pl :name) (emf/eget-raw p2 :name)))

:when-let [cms (n-common-movies? c¢ pO pl p2)]

:as [cms pO pl p2]

:distinct]

(emf/ecreate! model ’Clique {:avgRating (avg-rating cms), :persons [pO pl p2], :commonMovies cms}))

Lines 4 to 12 define the rule’s pattern. The structural part defines that it matches a Movie element m
which references three Person elements po, p1, and p2 using its persons reference.

Additionally, the pattern defines several constraints using the :when keyword. The movie n needs to
have at least three acting persons (line 4), and all persons need to act in at least ¢ movies (lines 5, 6, and
9). To avoid duplicate matches where only the order of the three person elements differs, the constraints
in line 7 and 10 enforce a lexicographical order of the names of the persons po, p1, and p2.

Line 8 ensures that po and p1 have at least c common movies. The same for the complete clique of
three persons is also asserted in line 11, where the common movies are also bound to the variable cms.
The first constraint is there only for performance reasons. Clearly, if po and p1 already have less than
c common movies, then po, p1, and p2 cannot have more. This test ensures that the pattern matching
process stops for the combination of po and pt as soon as possible.

The last line of the pattern, line 12, defines that each match should be represented as a vector con-
taining the set of common movies cms and the three persons. The keyword :distinct specifies that only
distinct matches should be found. The reason is that if some clique of three acts in x common movies,

141

4 Solving the TTC Movie Database Case with FunnyQT

there are exactly x matches that differ only in the movie m. By omitting the movie from the match repre-
sentation and specifying that we are only interested in distinct matches, those duplicates are suppressed.
The last two lines define the action that should be applied on matches. A new Clique element is
created that gets assigned the found persons with their common movies and average rating.
What has been skipped from explanation until now is the rule’s :forall option. It specifies that
calling the rule finds all matches at once and then applys the action to each of them. FunnyQT performs
the pattern matching process in parallel for such :forall-rules.

2.3 Extension Task 1/4: Compute Top-15 Couples/Cliques

The case description demands for the Extension Tasks 1 and 4 the computation of the top-15 groups
according to the criteria (a) average rating of common movies, and (b) number of common movies. If
there’s a tie between two groups for the current criterium, the respective other criterium is used to cut
it. If that doesn’t suffice, i.e., both groups have the same average rating and number of common movies,
the names of the group’s members are compared as a fallback. Since the person names are unique in the
models, there is no chance that no distinction can be made.

The implementation is simple in that the sequence of all couples (or cliques of a given size) are sorted
using a comparator. Like in Java, a Clojure comparator is a function that receives two objects and returns
a negative integer if the first object should be sorted before the second, a positive integer if the first object
should be sorted after the second item, and zero if both objects are equal with respect to order.

The comparators for the average rating, number of common movies, and the group’s member names
are shown in the next listing.

1 (defn rating-comparator [a Db]

2 (compare (emf/eget b :avgRating) (emf/eget a :avgRating)))

3 (defn common-movies-comparator [a b]

4 (compare (.size ~java.util.Collection (emf/eget-raw b :commonMovies))

5 (.size ~java.util.Collection (emf/eget-raw a :commonMovies))))
6 (defn names-comparator [a b]

7 (compare (str/join ";" (map #(emf/eget 7, :name) (actors a)))

8 (str/join ";" (map #(emf/eget % :name) (actors b)))))

They get two objects a and b (two couples or cliques) and compare them using Clojure’s standard
compare function which works for objects of any class implementing the java.lang.Comparable interface.

Until now, there are only three individual comparators, but sorting is always done with one single
comparator. So the following listing defines a higher-order comparator, e.g., a function that receives
arbitrary many comparators and returns a new comparator which compares using the given ones.

(defn comparator-combinator [& comparators]
(fn [a D]
(loop [cs comparators]
(if (seq cs)
(let [r ((first cs) a b)]
(if (zero? r) (recur (rest cs)) r))
(u/errorf "Js and %s are incomparable!" a b)))))

B N N

The function comparator-combinator returns an anonymous function with two arguments a and v. This
function recurses’ over the given comparators applying one after the other until one returns a non-zero
result. So finally, here are the two top-15 groups functions.

1 (defn groups-by-avg-rating [groups]

2 (sort (comparator-combinator rating-comparator common-movies-comparator names-comparator) groups))
3 (defn groups-by-common-movies [groups]

4 (sort (comparator-combinator common-movies-comparator rating-comparator names-comparator) groups))

SClojure’s (loop [<bindings>] ... (recur <newvals>)) isalocal tail-recursion. loop establishes bindings just like
let, and recur jumps back to the loop providing new values for the variables.

142

T. Horn 5

groups-by-avg-rating gets a collection of groups groups and then sorts them by the combined com-
parator first taking the average rating into account, then the number of common movies, and eventually
the names of the groups’ actors if neither of the two former comparators could decide on the two groups
order. group-by-common-movies is defined analoguously with the common-movies-comparator taking prece-
dence over the rating-comparator.

3 Evaluation and Conclusion

With respect to correctness, the FunnyQT solution computes the same numbers of couples and cliques
of various sizes as printed in the case description. Also, the top-15 lists are identical for all models.

The table below shows the execution times for the IMDb models. They include the pattern matching
time, the time needed for creating the Couple and Clique elements, and the time needed for setting their
attributes and references including the computation of the average ratings. The benchmarks were run on
a GNU/Linux machine with eight 2.8GHz cores with 30GB of RAM dedicated to the JVM process.

Model

Couples (secs)

3-Cliques (secs)

imdb-0005000-49930.movies.bin
imdb-0010000-98168.movies.bin
imdb-0045000-299504.movies.bin
imdb-0085000-499995.movies.bin
imdb-0200000-1004463.movies.bin
imdb-0495000-2000900.movies.bin
imdb-all-3257145.movies.bin

1.677278992
1.702668160
3.947932624
9.012942560
35.409998560
159.973018224
619.160156640

6.957570992
11.333623024
15.714349728
26.388751712

117.833811360
757.280006768
4295.030516512

The main bottleneck of the FunnyQT transformation is the required memory. The generated rules
for finding groups of a given size first compute all matches and then generate one new couple or clique
element for each match. This means that the original model, all matches, and also all new elements reside
in memory at the same time.

Another strong point of the solution is its conciseness. All in all, it consists of 152 lines of code
(including boilerplace code like namespace definitions) in three source files, one for the generation of
the synthetic test models (30 LOC), one for the couple and cliques rules (52 LOC), and one for the
queries (70 LOC, most of which are concerned with pretty-printing the results into files).

References

[1] Martin Fowler (2010): Domain-Specific Languages. Addison-Wesley Professional.

[2] Tassilo Horn (2013): Model Querying with FunnyQT - (Extended Abstract). In Keith Duddy & Gerti Kappel,
editors: ICMT, Lecture Notes in Computer Science 7909, Springer, pp. 56-57.

[3] Christian Krause, Tassilo Horn & Matthias Tichy (2014): The TTC 2014 Movie Database Case. In: Transfor-
mation Tool Contest 2014.

143

Solving the TTC Movie Database Case with FunnyQT

(defmacro define-group-rule [n]
(let [psyms (map #(symbol (str "p" %)) (range n))]
‘(ip/defrule ~(symbol (str "make-groups-of-" n "!"))

{:forall true}
["’model ~’c]

["’m<Movie> :when (>= (person-count ~’m) “n)

~@(mapcat (fn [i]

(let [ps (nth psyms 1i)]
‘[“’m -<persons>-> “ps
:when (>= (movie-count “ps) ~’c)
~“@(when-not (zero? i)

‘[:when (neg? (compare (emf/eget-raw ~(nth psyms (dec i)) :name)
(emf/eget-raw “ps :name)))])

~“@(when-not (or (zero? i) (= i (dec n)))

‘[:when (n-common-movies? ~’c ~@(take (inc i) psyms))]1)1))

(range n))
:when-let [“’cms (n-common-movies? ~’c ~Gpsyms)]
ras [“’cms ~Opsyms]

:distinct]

(emf/ecreate! "’model “(if (= n 2) ‘’Couple ‘’Clique)
“(if (= n 2)
‘{:commonMovies “’cms :avgRating (avg-rating ~’cms)

:pl “(first psyms) :p2 ~(second psyms)}

‘{:commonMovies ~’cms :avgRating (avg-rating ~’cms)

:persons [~@psyms]})))))

Listing 1: The higher-order transformation generating couple and cliques rules

144

The SDMLib solution to the MovieDB case for TTC2014

Christoph Eickhoff, Tobias George, Stefan Lindel, Albert Ziindorf

Kassel University, Software Engineering Research Group,
Wilhelmshoher Allee 73, 34121 Kassel, Germany

ceiltgelslin|zuendorf@cs.uni-kassel.de

This paper describes the SDMLib solution to the MovieDB case for the TTC2014 [4]. We explain a
model transformation based solution and a plain Java solution based on a set-based model layer gen-
erated by SDMLIib. In addition we discuss several refactorings we have used to improve the runtime
performance of our solutions.

1 Introduction

SDMLIb [3] is a light-weight model transformation approach based on graph grammar theory. SDMLib
provides a Java API that allows to build a class model and to generate an SDMLIib specific Java implemen-
tation for it. The generated model classes provide bidirectional association implementations, a reflection
layer, and XML and JSON serialization mechanisms. In addition, SDMLib generates a set based layer for
the model, where each method provided for a single model object is also provided for a set of such model
objects. This is frequently used for model navigation e.g in actorl.getMovies().getPersons(). Here we ask
an actor for the set of movies the actor has done and on this set we ask for the set of persons that participated
in (at least one of) these movies. Finally, SDMLib generates a pattern matching layer for the model that
provides classes to build model specific object patterns and model transformations.

To solve the MovieDB case, we mainly use the set based layer. This enables a very efficient implemen-
tation of the clique detection task. However, for completeness, we also provide a solution using SDMLib
model transformations.

2 The solution

SDMLib is able to load an Ecore file and to translate the EMF class model into an SDMLIib class model and
to generate an efficient Java implementation. We have extended the original class model with class Ranking
used to store the 15 best cliques with respect to average ranking and number of movies.

Figure 1 shows the SDMLib model transformation used to find cliques of two. The search starts with
pattern object p1 that matches to any Person in our database. Via Movie m2 we look for any Person p3
that has collaborated with p1. The first constraint on the right of Figure 1 requires that the name of p3 is
alphabetically later than the name of pl. This avoids mirrored couples. Next, the subpattern o6 searches
for all movies m7 done by both persons. Each such movie is added to a new Clique object c4. The second
constraint of Figure 1 ensures that at least three movies have been added to our new clique. If this is the
case, action 1: of Figure 1 calls method addToCliques that stores the clique and maintains ranking tables.
Finally, the last action 2: calls another model transformation 1lookForCliques that looks for larger cliques.
(Note, the graphical representation of our model transformation does not show all details of the execution
order. Such details are revealed by the Java code that build up the model transformation. This Java code is
omitted for lack of space.) 145

© Albert Ziindorf
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
TTC 2014

2 The SDMLib solution to the FIXML case for TTC2014

The lookForCliques model trans-
formation shown in Figure 2 takes a

allMatches Clique cl and searches through the

common movies m2 for a new Person

p3. An additional constraint ensures

porons that the name of the last person (which

- {p1.name < p3.name} is computed separately) in the clique

. is alphabetically lower than the name

l : of the new person p3. Then the sub-

mqvies : pattern o6 searches for all movies m7

: that belong to the clique cl1 and to

- {c4.commonMovies.size() >= 3} the new person p3. The second con-

. straint of Figure 2 ensures that at least

\ ; three common movies are found. For
PeRSONSersons

each match, a new Clique object c4

- is created and each common movie m7
1: addToCli c4. Movies, c4. . . .
addToCliques(c4.commonMovies, c4.persons) is attached to it. Finally, subpattern
I .

: 09 attaches all persons p10 to the new
ymlo ?ll 06 : clique and the new person p3 is at-
AMoyies : tached, too. Through additional con-

myviesm Vies
2: lookForCliques(c4.commonMovies, 3, c4.persons) straints each new clique is added to the
rankings (method call addToCliques)

and we call method lookForCliques
recursively to find larger cliques. (An
additional condition (not shown) termi-
nates this recursion e.g. as soon as
cliques of size 5 are reached.)

allMatches

To be honest, the initial versions of
our clique finding methods have been
built using the set based model layer gen-
erated by SDMLib. In Listing 1 line 3 we
first check whether the wanted clique size is already reached. Method lookForCliques gets a set of com-
mon movies and a set of persons from the previous clique as parameter.

Figure 1: Look for Couples Model Transformation

1 private void lookForCliques (MovieSet commonMovies, int wantedSize,

2 PersonSet persons) {

3 if (wantedSize <= maxCliqueSize) {

4 PersonSet newClique = (PersonSet) persons.clone ();

5 newClique . add (dummyPerson);

6 for (Person p : commonMovies. getPersons ()) {

7 if (persons.get(persons.size()—1).getName ().compareTo(p.getName())<0){
8 MovieSet intersection = commonMovies. intersection (p.getMovies ());
9 if (intersection.size() >= 3) {

10 newClique . set (wantedSize —1, p);

11 addToCliques(intersectigél, newClique);

12 // look for larger cliques

13
14

Albert Ziindorf 3

lookForCliques (commonMovies, wantedSize + 1, newClique);

Foror o

Listing 1: Set Base Model Transformation lookForCliques

Line 6 loops through the set of all persons that participate in one of the common movies passed as pa-
rameter. Note the call to commonMovies.getPersons (). Parameter commonMovies is of type MovieSet.
This class is generated by SDMLib as an addition to the model class Movie. Class MovieSet provides
all methods provided by class Movie and extends these methods to work on sets of objects. Thus method
MovieSet: :getPersons() calls methods Movie: :getPersons() on each element of commonMovies.
Method Movie: :getPersons () has return type PersonSet, i.e. the set of persons working on a given
movie. Method MovieSet: :getPersons () collects these PersonSets within a (flat) result set using a
result.union(newSet) operation. In our method lookForCliques this set based getPersons opera-
tion saves us an explicit outer loop through the commonMovies set and we do not need an extra data structure
to keep track of already handled persons. Similarly, line 8 uses the set based method intersection to com-
pute the set of common movies from the parameter commonMovies and the movies of the current person
p- The if statement in line 7 ensures that we consider only persons with a name later than the name of the
last person in newClique. This avoids multiple cliques of the same persons that differ only in the ordering.
The if statement in line 9 ensures that the intersection of movies has at least 3 entries. Thus, when we
reach line 10 we have found a new clique and line 11 adds this new clique to the rankings and line 13 tries
to extend the new clique recursively.

3 Performance

The first version of our solution used the SDMLib generated model implementation, the set based model
layer, and plain Java code as outlined in listing 1. In that version we did not create all found cliques
explicitly but we only collected the 15 best cliques for each ranking. Without further optimizations the
20,000 synthetic MovieDB case needed about 50 seconds on a 2.67 GHz Intel i7 dual core (M60) 64 bit
CPU (with hyper threading) and 8 GB main memory running windows 7. We call this our reference laptop
from now on. Actually, first measurements with different case sizes for the synthetic MovieDB produced
strange results where e.g the 10,000 case was much slower then the 20,000 case. We figured out that the
Java virtual machine hot compile has a strong influence on our measurements. Hot compile causes up to 10
times speed-ups. Thus we added a warm up phase to our benchmark where we run a large synthetic case
just to trigger the hot compile.

Then we replaced the java.util.LinkedHashSet implementation used for Cliques to store sets of
common movies and sets of persons by an java.util.ArrayList based implementation. Our ArrayList
based implementation still ensured set semantics, i.e. before adding e.g. a new Person object, it checks
whether this object is already contained. As this benchmark uses many small sets of objects, using Ar-
rayLists resulted in a speed-up of factor 5.

Next, the call for solutions states that the benchmark shall be done on workstation with an 8 core CPU.
Thus we redesigned our solution to run in multiple threads. On our dual core reference laptop this created a
speed-up of roughly factor 2. We have also tested it on a 12 core workstation where we achieved a speed-up
of factor 10. With the parallelization we achieved an execution time of 12,263 seconds for the N=200,000
synthetic case using only one core and 5,695 seconds using both cores of our reference laptop, cf. row one
of table 1.

In the synthetic case movies are generated with afﬁending rankings. Thus looping through the persons in
order of their creation results in cliques with an ascending order of average ranking. Thus, when we maintain

4 The SDMLib solution to the FIXML case for TTC2014

- -

comma@nMovies
AN .
\ggtiorjal 09 :
efsons PEXSO! SoNs
P persons pe {c4.commonMovies.size() >= 3}
| .
optiotay
cammienM HETighMovies

allMatches

lastName < p3.name

1: addToCliques(c4.commonMovies, c4.persons)
allMatches

2: lookForCliques(c4.commonMovies, wantedSize + 1, c4.persons)

Figure 2: Look for Cliques Model Transformation

the list of the 15 best ranked cliques, we constantly replace old entries with higher ranked new entries. To
avoid this, we just visit the persons in reverse order. This saves again 2.4 seconds on our reference laptop.
Well, to some extend this is cheating as this trick will not show an improvement on the real data.

Next we learned from a conversation with the organizer that the call for solutions requires to create
all cliques explicitly. Actually, explicit clique creation needs about 0.5 seconds for two threads and thus
probably about 1 second on a single thread. Finally, we need about 5 seconds to detect all couples and all
cliques in a single thread for the N=200,000 synthetic case.

‘ solution feature ‘ trafo (sec) ‘ manual (sec) ‘ parallel (sec) ‘ no create (sec) ‘
Introduced ArrayList for cliques 12.263 5.695 -
Changed PersonSet to ArrayList<Person> 8.897 4.641 -
Looping through persons in reverse order 6.461 3.043 -
Changed MovieSet to Array List 4.740 2.379 1.919
Added trafo, improved it by factor 5 213.250 5.723 2.795 2.330
Caching trafos 74.596 4.697 2.247 1.858

148
Table 1: Evaluation results

Albert Ziindorf 5

At this point in time, we added the model transformation based solution to the clique detection mecha-
nism as discussed in section 2. Initially, the trafo solution already took some 200 seconds for the N=20,000
case. We identified that the SDMLib model transformation mechanism did a lot of copying of candidate sets
during search. By removing many of these copies and by using ArrayList where possible we achieved a
speed-up of about factor 6 resulting in the times reported in row 5 of table 1. Thus, the improved model
transformation used 213 seconds for the N=200,000 synthetic case. Unhappy with this execution time, we
identified that the 1lookForCliques transformation is called recursively some million times and that we
construct the object structure that represents the model transformation each time anew. Thus, we added a
cache for the object structure that represents the model transformation and just reinitialized it to start the
pattern matching from a new clique each time. This reduced the execution time to some 75 seconds, cf. last
row of table 1. Overall, the transformation based solution is still 15 times slower than the set based solution.
Actually, we have already spotted some other inefficient heap operations within our interpreter. We work on
more improvements on that.

4 Conclusions

Our first approach to attack the MovieDB case was a manually written Java method exploiting the model
implementation generated by SDMLib and especially exploiting the generated set-based model layer as
shown in listing 1. Coming up with this solution was quite straight forward and we think it is reasonably
concise and it seems to be reasonably efficient.

For comparison, we also developed a model transformation based approach. While the graphical repre-
sentation of the model transformations in figure 1 and figure 2 is reasonably understandable (at least if you
have developed them yourself :), the Java code that creates the object structure that represents the model
transformations is about double the size of the set-based solution. In addition, the Java code is not as com-
prehensible as the set-based code. And finally, the model transformation based solution is slower by a factor
of 15. Note, the set-based model layer generated by SDMLib compares to simple OCL expressions [1].
Thus, a comparable solution might have been created using EMF and OCL. Next, before this benchmark
the model layer generated by SDMLib relied on LinkedHashSets for the implementation of to-many asso-
ciations. This especially was a distinction from EMF based models that use ELists to implement to-many
associations which finally compares to an ArrayList. In this benchmark we followed the advice of EMF
and used an ArrayList based solution, too. Actually, this is more efficient as long as the sets are rea-
sonable small (some hundred to some 1000 elements). When we used an ArrayList based PersonSet
(guaranteeing the uniqueness of contained elements) for the root clique of the MovieDB case that contains
all movies and all persons, the ArrayList performance caved in. Actually, the check for containment is not
necessary while creating the synthetic cases or reading the real case files. Thus, the choice of the right data
structure heavily depends on the situation and it may even change during execution time (initially a lot of
add operations, then only reads). For SDMLib we will soon provide an option to enable the user to choose
the data structure that fits the user’s purposes most.

References

[1] O. M. G. (OMG). Object constraint language (ocl). version 2.3.1, 2012.

[2] Eclipse Modeling Framework. http://sdmlib.org/, 2014.

[3] Story Driven Modeling Library. https://www.eclipseﬁfé/modeling/emf/, 2014.

[4] Movie Database Case for the TTC 2014. https://github.com/ckrause/ttc2014-imdb, 2014.

Solving the TTC 2014 Movie Database Case with UML-RSDS

K. Lano, S. Yassipour-Tehrani
Dept of Informatics, King’s College London

This paper describes a solution to the Movie Database case using UML-RSDS. The solution specifi-
cation is declarative and logically clear, whilst the implementation (in Java) is of practical efficiency.

1 Solution definition as a UML-RSDS specification

UML-RSDS [1] is a hybrid MT language which uses UML notations to specify transformations: source
and target metamodels of a transformation are defined as UML class diagrams, transformations are ex-
pressed as use cases, whose effect is specified by a sequence of postconditions written in OCL. This
provides an expressiveness similar to other hybrid languages such as GrGen or ETL. The UML-RSDS
tools automatically synthesise executable implementations of transformations from the UML specifica-
tions.

For the case study specification, we define separate use cases for each task of the case study. Each
use case defines a sub-transformation of the problem.

Task 1: Create synthetic datasets We implement this task by a use case faskl which has parameter
n : Integer and a single postcondition

Integer.subrange(0,n-1)->forAl1(x | Movie.createPositive(x) & Movie.createNegative(x))

where createPositive is a static operation of Movie which creates the 5 movies, 3 actors and 2 actresses
of each positive case, and createNegative is a static operation of Movie which creates the 5 movies, 2

actors and 3 actresses of each negative case.
createPositive is:

createPositive(n : Integer)
pre: n >= 0
post:
Movie->exists(ml | ml.rating = 10*n &
Movie->exists(m2 | m2.rating = 10*n + 1 &
Movie->exists(m3 | m3.rating = 10*n + 2 &
Movie->exists(m4 | mé.rating = 10*n + 3 &
Movie->exists(m56 | mb.rating = 10*n + 4 &
Movie.createPositiveActors(n,ml,m2,m3,m4,m5) &
Movie.createPositiveActresses(n,ml,m2,m3,m4,m5))))))

where createPositiveActors creates the actors a, b and ¢ and links them to the movies as required, and
likewise for createPositiveActresses. The definition of createNegative is similar.

Task 2: Find couples We implement this task by a use case fask2 which has a single postcondition:

p : Person & q : p.movies.persons & p.name < g.name &

comm = p.movies /\ q.movies & comm.size > 2 =>
Couple->exists(¢ | p : c.pl & q : c.p2 & c.commonMovies = comm)
150

To appear in EPTCS.

2 Movie Database Case with UML-RSDS

This constraint is implicitly V-quantified over persons p and g. It creates a couple ¢ for each distinct pair
p and g of persons whose set of common movies comm has size at least 3. /\ denotes intersection, also
written as M. Only one couple is created for each pair because of the restriction that p1 always holds the
person with the lexicographically smallest name.

The quantifier g : Person can be restricted to g : p.movies.persons because the conditions comm =
p.movies N g.movies & comm.size > 2 imply that g € p.movies.persons (a case of the Restricting Input
Ranges transformation design pattern [2]).

The implementation is a linear iteration through Person and its execution time should therefore be of
order Person.size x C where C is the maximum size of movies.persons. However, efficient computation
of set intersections is needed for situations where the sets of common movies become large.

Task 3: Calculate average scores for couples This is implemented by a use case task3 with a single
postcondition operating on context Couple:

avgRating = (commonMovies->collect(rating)->sum()) / commonMovies.size

This iterates over objects self of Couple, and sets the average rating of each couple equal to the average
of the rating of each of their common movies (if two or more movies have the same rating, these ratings
are all counted separately in the sum).

Extension task 1: List best 15 couples The set of existing couples can be sorted in different orders
using the sortedBy operator. For example:

Couple—sortedBy(—avgRating)

is the sequence of couples in order of decreasing avgRating.

However this would be very inefficient in this situation, where only the best 15 elements with respect
to a given measure are needed, out of possibly millions of elements.

In UML-RSDS it is possible to extend the system library with new functions, which are provided
with an implementation by the developer. Here we need a version of sortedBy which takes a bound on
the number of elements to return: SortLib.sortByN (s,s—collect(e),n) returns the best n elements of s ac-
cording to e, sorted in ascending e-value order. Semantically it is the same as s—sortedBy(e).subrange(1,n).

We define an external module SortLib with sortByN as a static operation, and provide (hand-written)
Java code for this operation, making use of the existing UML-RSDS merge sort algorithm. The use case
then has the postcondition:

bestcouples = SortLib.sortByN(Couple.allIlnstances,
Couple->collect(-avgRating), 15) =>
bestcouples->forAll(c | c->display())

A toString() : String operation is added to Couple which returns a display string consisting of the average

score, number of movies and persons of each couple. This string is printed to the console by c—display().
An example of the output is:

Couple avgRating 9992.5, 4 movies (a9993; a9994)
Couple avgRating 9992.0 movies (a9990; a9992)
Couple avgRating 9992.0 movies (a9990; a9993)
Couple avgRating 9992.0, 3 movies (a9990; a9994)
Couple avgRating 9992.0 movies (a9991; a9992)
Couple avgRating 9992.0 movies (a9991; a9993)

W wwww

151

K. Lano, S. Yassipour-Tehrani 3

movies (a9991; a9994)
movies (a9992; a9993)
movies (a9992; a9994)
movies (a9990; a9991)
movies (a9983; a9984)
movies (a9980; a9982)
movies (a9980; a9983)
movies (a9980; a9984)
movies (a9981; a9982)

Couple avgRating 9992.0,
Couple avgRating 9992.0,
Couple avgRating 9992.0,
Couple avgRating 9991.5,
Couple avgRating 9982.5,
Couple avgRating 9982.0,
Couple avgRating 9982.0,
Couple avgRating 9982.0,
Couple avgRating 9982.0,

W wWwwwdrbdowwow

for the test case with N = 1000.
Similarly, couples can be displayed in decreasing order of the number of common movies:

bestcouples2 = SortLib.sortByN(Couple.alllnstances,
Couple->collect (-commonMovies.size), 15) =>
bestcouples2->forAll(c | c->display())

Extension task 2: Generate cliques This use case assumes that task 2 has been completed. A use case
couples2cliques creates a 2-clique for each couple:

Clique—>exists(¢ | c.persons = pl \/ p2 & c.commonMovies = commonMovies)

This constraint has context Couple and is applied to each instance self of Couple.
A use case nextcliques generates cliques of size n+ 1 from those of size n:

persons@pre.size = n & p : commonMovies@pre.persons &
p.name > persons@pre.name->max() &
comm = p.movies /\ commonMovies@pre & comm.size > 2 =>
Clique->exists(¢ | c.persons = cl.persons@pre->including(p) &
c.commonMovies = comm)

This iterates over Cliqgue @pre, so that only pre-existing cliques are considered as input to the rule, not
cliques generated by the rule. The nextcliques implementation is therefore a linear iteration over Clique,
rather than a fixed-point iteration.

Extension task 3: Calculate average score for cliques This task is implemented by a use case
exttask3 with a single postcondition operating on context Cligue:

avgRating = (commonMovies->collect(rating)->sum()) / commonMovies.size

Extension Task 4: List best 15 cliques As with extension task 1, this task can be achieved using a
specialised sorting operator that returns the best 15 cliques according to a valuation expression. Only
cliques of a given size n are of interest:

ncliques = Clique->select(persons.size =n) &
bestcliques = SortLib.sortByN(ncliques, ncliques->collect(-avgRating), 15) =>
bestcliques->forAll(c | c->display())

Similarly for the display of cliques by the number of common movies:

ncliques2 = Clique->select(persons.size = n) &
bestcliques2 = SortLib.sortByN(ncliques2, ncliques2->collect(-commonMovies.size), 15) =>
bestcliques2->forAl1(¢ | c->display())

152

4 Movie Database Case with UML-RSDS

2 Results

To run the use cases for couples from the command line, type
java Controller couples N

where N is the synthetic data set required (1000, 2000, etc).
Table 1 shows the execution times of the tasks on SHARE for the synthesised data sets, using an
unoptimised Java 4 implementation (in which sets are represented as Vectors).

N task2

1000 110ms
2000 162ms
3000 | 262ms
5000 | 602ms
10000 | 670ms

Table 1: Execution times for synthetic data sets (Java 4)

Using the filter architectural pattern we could pre-filter the data to reduce input model size by remov-
ing all movies with fewer than 2 (fewer than M for M-cliques) cast members, and all people with fewer
than 3 movies [2]. This reduces the execution time for task2 and extension task 2.

To run the use cases for cliques from the command line, type

java Controller cliques N

where N is the synthetic data set required (1000, 2000, etc).
Table 2 shows the execution time for extension task 2 for clique sizes from 3 to 5.

N exttask2 (3) | exttask2 (4) | exttask2 (5)
1000 115ms 114ms 75ms

2000 | 202ms 261ms 128ms
3000 | 271ms 274ms 192ms
5000 | 438ms 423ms 301ms
10000 | 824ms 996ms 606ms

Table 2: Execution times for clique generation for synthetic data sets, Java 4

The transformation has also been applied to the three IMDb models imdb-0005000-49930, imdb-
0010000-98168, imdb-0030000-207420. To apply the transformation to these, invoke it as:

java Controller mcouples inl.txt

and likewise for in2.txt, in3.txt. Table 3 shows the results.

Data set | task2

inl.txt 1864ms

in2.txt 5816ms

in3.txt More than 120s

Table 3: Execution times for IMDD data sets (Java 4)

To run the use cases for cliques for the IMDb files from the command line, type

153

K. Lano, S. Yassipour-Tehrani 5

java Controller mcliques inl.txt

This runs task2, couples2cliques, nextcliques (for parameter 2 to generate the cliques of size 3), extension
task 3 and extension task 4 (for cliques of size 3). Table 4 shows the results for clique generation.

Model | exttask2 (3)
inl.txt | 6973ms
in2.txt | 11860ms

Table 4: Execution times for 3-clique generation for IMDD data sets, Java 4

The implemented transformation may be obtained at:
http://www.dcs.kcl.ac.uk/staff/kcl/movies.zip

It has also been uploaded to the umlrsds TTC14 workspace on SHARE, in the Public/rsync direc-
tory (remoteUbuntul2LTS_TTC14_umlrsds_new). The execution times in the SHARE environment are
slightly lower than those given above. A version using a pre-filter can also be executed, using FController
instead of Controller in the above commands. The filter can substantially reduce the size of the input
models by discarding people and movies which cannot contribute to the sets of couples or cliques. This
makes the computation of couples for the dataset in3.txt feasible (execution time 4296ms) although the
filter takes 45 seconds to execute. Similarly for clique calculation for in3.txt.

References

[1] K. Lano, The UML-RSDS manual, www.dcs.kcl.ac.uk/staff/kcl/umlrsds.pdf, 2014.

[2] K. Lano, S. Kolahdouz-Rahimi, Model transformation design patterns, IEEE Transactions in Software Engi-
neering, vol. 40, 2014.

[3] T. Horn, C. Krause, M. Tichy, The TTC 2014 Movie Database Case, TTC 2014.

154

The TTC 2014 Movie Database Case: Rascal Solution*

Pablo Inostroza Tijs van der Storm
Centrum Wiskunde & Informatica (CWI) Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands Amsterdam, The Netherlands
pvaldera@cwi.nl storm@cwi.nl

Rascal is a meta-programming language for processing source code in the broad sense (models, doc-
uments, formats, languages, etc.). In this short note we discuss the implementation of the “TTC’ 14
Movie Database Case” in Rascal. In particular we will highlight the challenges and benefits of using
a functional programming language for transforming graph-based models.

1 Introduction

Rascal is a meta-programming language for source code analysis and transformation [2, 3]. Concretely,
it is targeted at analyzing and processing any kind of “source code in the broad sense”; this includes
importing, analyzing, transforming, visualizing and generating, models, data files, program code, docu-
mentation, etc.

Rascal is a functional programming language in that all data is immutable (implemented using per-
sistent data structures), and functional programming concepts are used throughout: algebraic data types,
pattern matching, higher-order functions, comprehensions, etc.

Specifically for the domain of source code manipulation, Rascal features powerful primitives for
parsing (context-free grammars), traversal (visit statement), relational analysis (transitive closure, image
etc.), and code generation (string templates). The standard library includes programming language gram-
mars (e.g., Java), IDE integration with Eclipse, numerous importers (e.g. XML, CSV, YAML, JSON etc.)
and a rich visualization framework.

In the following sections we discuss the realization of the TTC’ 14 Movie Database case study [1] in
Rascal. We conclude the paper with some observations and concluding remarks. All code examples can
be found online at:

https://github.com/cwi-swat/ttc2014-movie-database-case

2 Description of the solution

Representing IMDB in Rascal

As Rascal is a functional programming language, where all data is immutable, the IMDB models have
to be represented as trees instead of graphs. If there are cross references in the model, these have to be
represented using (symbolic or opaque) identifiers which can be used to look up referenced elements.
We use an algebraic data type to model IMDB models:

*This research was supported by the Netherlands Organisation for Scientific Research (NWO) Jacquard Grant “Next Gen-
eration Auditing: Data-Assurance as a service” (638.001.214).

© Inostroza and Van der Storm
This work is licensed under the
Creative Commons Attribution License.

Submitted to: 155
TTC 2014

2 TTC’14: Rascal

data IMDB = imdb(map[Id, Movie] movies, map[Id, Person] persons,
set[Group] groups, rel[Id movie, Id person] stars);
data Movie = movie(str title, real rating, int year);

data Person = actor(str name) | actress(str name);

data Group = couple(real avgRating, Id pl, Id p2, set[Id] movies);

An IMDB model is constructed using the imdb constructor. It contains the set of movies, persons,
groups and a relation stars encoding which movie stars which persons. Both movies and persons are
identified using the opaque Id type. To model this identification, the movies and persons field of an IMDB
model are maps from such identifiers to the actual movie resp. person. Movies and persons are simple
values containing the various fields that pertain to them. The Group type captures couples as required in
Task 2. A couple references two persons and a set of movies using the opaque identifiers Id.

Task 1: Synthesizing Test Data

Synthesizing test data creates values of the type IMDB as declared in the previous section. The process
starts with an empty model (imdb((), (), {}, 1), and then consecutively merges it with test models
for a value in the range 1, ...,n. Each test model in turn consists of merging the negative and positive test
model as discussed in the assignment. As an example, we list the creation of the positive test model:

IMDB createPositive(int i) = imdb(movies, people, {}, stars)
when movies := (j: movie("m<j>", toReal(j), 2013) | j <- [10%i..10xi+5]),
people := (10*i: actor("a<lOxi>"), 10xi+1l: actor("a<lOxi+1>"),
10%i+2: actor("a<lO*xi+2>"), 10*i+3: actress("a<lO*i+3>"),
10xi+4: actress("a<lO*xi+4>")),
stars := {<10xi, 10xi>, <10xi, 10*i+1>, <10xi, 10*i+2>, <10*xi, 10xi+3>,
<10%i+1, 10%i>, <10%i+1, 10%i+1>, <10xi+1l, 10%i+2>, <10*i+1, 10%i+3>,
<10*i+2, 10*i+1>, <10*xi+2, 10xi+2>, <10*i+2, 10*xi+3>,
<10%i+3, 10*i+1>, <10%i+3, 10*i+2>, <10*i+3, 10xi+3>, <10*i+3, 10xi+4>,
<10*i+4, 10*i+1>, <10xi+4, 10*i+2>, <10xi+4, 10%i+3>, <10xi+4, 10xi+4>};

The function uses map comprehensions to create the movies and people fields, and a binary relation
literal to create the stars relation. It then simply returns a value containing all those fields.

Task 2: Adding Couples

Task 2 consists of enriching IMDB models with couples: pairs of persons that performed in the same
movie, once or more often. This transformation is expressed by updating the couples field with the result
of the function makeCouples:

public map[int, set[int]] computeCostars(rel[Id movie, Id person] stars, int n){

map[int star, set[int] movies] moviesPerStar = toMap(invert(stars));

map[int movie, set[int] stars] personsPerMovie = toMap(stars);

return toMap({<m, p> |<m, p> <- stars, size(moviesPerStar[p])>=3, size(personsPerMovie[m])>=n});
}
set[Group] makeCouples(model:imdb(movies, persons, groups,stars)){

map[int movie, set[int] stars] costars = computeCostars(stars, n);

I'The syntax () indicates an empty map, whereas (1:"a", 2:"b") represents a map with keys 1,2 and values "a","b".

156

Inostroza and Van der Storm 3

map[tuple[int starl, int star2] couple, set[int] movies] couples = ();
for (int movie <- costars, int sl <- costars[movie], int s2 <- costars[movie], sl < s2) {
couples[<sl, s2>1?{} += {movie}; }

return { couple(0.0, x, y, ms) | <x, y> <- couples, ms := couples[<x, y>], size(ms) >=3 };

The makeCouples function first converts the binary relation stars to a map (costars) from movie Id
to set of person Ids, filtering out some irrelevant elements by calling the computecoStars function. The
central for loop iterates over all movies and all combinations of two actors and adds the movie to a table
maintaining the set of movies for all couples (a map taking tuples of person Ids to sets of movie Ids). The
side condition s1 < s2 ensures we don’t visit duplicate or self combinations. The question mark notation
initializes a map entry with a default value, if the entry did not yet exist. In the final statement, a set of
Groups is returned containing all couples which performed in 3 or more movies.

Task 3: Computing Average Ratings for Couples

As can be seen in the previous section, the average rating field of couples is initialized to 0.0. In this
task we again transform an IMDB model, this time enriching each couple with its average rating of the
movies the couple co-starred in. The following function performs this transformation:

IMDB addGroupRatings(IMDB m) = m[groups=gs]

when gs := { g[avgRating = mean([m.movies[x].rating | x <- g.movies 1)] | g <- m.groups };

The groups field of the model m is updated with a new set of groups, as created in the when-clause
of the function. The new set of groups is created using a comprehension, updating the avgrating field of
each group. The average is computed based on the list of ratings obtained from the movies contained in
m that are referenced in the group g.

Extension Task 1: Top 15 Rankings

The object of the extension Task 1 is to compute top 15 rankings based on the average ratings or number
of movies a couple participated in. To represent rankings, we first introduce the following type alias:

alias Ranking = lrel[set[Person] persons, real avgRating, int numOfMovies];

A ranking is an ordered relation (lrel) containing the co-stars, the average rating and the number of
movies of a couple. To generate rankings in this type, we create a generic function that takes the number
of entries (e.g., 15), an IMDB model, and a predicate function to determine ordering of groups. This last
argument allows to abstract over what the ranking is based (e.g., average rating or number of movies).

Ranking rank(int n, IMDB m, bool(Group, Group) gt) =
take(n, [<{m.persons[x] | x <- getPersons(g)}, g.avgRating, size(g.movies)>

| Group g <- sort(m.groups, gt)l);

Again, this function employs a comprehension to create a ranking, iterating over the groups in
the IMDB model, sorted according to the predicate gt. For each person in the group (extracted using
getPersons), the actual person value is looked up in the model (m.person[x]). The take, size and sort
functions are in the standard library of Rascal.

The actual top 15 rankings are then obtained as follows:

157

4 TTC’14: Rascal

Ranking topl5avgRating(IMDB m)
Ranking topl5commonMovies(IMDB m) = rank(15, m, greaterThan(getNumOfMovies));

rank(15, m, greaterThan(getRating));

The last argument to rank is constructed using a higher-order function, greaterThan, which constructs
comparison functions on groups based on the argument getter function (i.e. getRating and getNumOfMovies).
So in the first case, rank is called with a comparison predicate based on average ratings of groups, whereas
in the second case, groups are ordered based on the number of shared movies in a group.

Extension Task 2: Generalizing groups to cliques

The extension task 2 consists of generalizing couples to arbitrarily sized cliques of people who co-starred
in the same set of movies. A couple is a special case where the clique size is 2. To represent arbitrary
cliques in the model, we modularly extended the Group data type (see Section 1.1) as follows:

data Group = clique(real avgRating, set[Id] persons, set[Id] movies);

This declaration states that the clique constructor is now a valid group value, in addition to couple.

Enriching an IMDB model with cliques follows the same pattern as enriching a model with couples.
In fact the following function follows almost exactly the same structure as the function makeCouples
described earlier:

set[Group] makeCliques(model:imdb(movies, persons, groups,stars), int n) {
map[int movie, set[int] stars] costars = computeCostars(stars, n);
map[set[int] clique, set[int] movies] cliques = ();
for (Id movie <- costars, set[Id] s <- combinations(costars[movie], n)) {
cliques[s]?{} += {movie}; }

return {clique(0.0, s, ms) | s <- cliques, ms := cliques[s], size(ms) >= 3 };

Instead of iterating over pairs of actors explicitly, we now iterate over all combinations of size n using
the helper function combinations, which generates all combinations of size n taking elements from the set
costars[movie].

Extension Task 3 & 4 These are the same as Task 3 and Extension Task 1, respectively, but intended
for cliques instead of couples. It is not necessary to address these new cases in particular, because the
code is polymorphic over groups. Only in the case of Extension Task 4, the getPersons accessor has to
be extended to accommodate the new clique constructor defined in Extension Task 2:

set[Id] getPersons(clique(_, set[Id] ps, _)) = ps;

3 Observations and Concluding Remarks
Rascal can be seen as a model-transformation system, but it has to be acknowledged that its functional
nature poses certain challenges when compared to traditional model-transformation platforms:

e Since Rascal is based on immutable data, models have to be represented as (containment) trees
with explicit cross-references. As a result, all model elements need to have an identifier and some
transformations have to explicitly look up model elements, given their identity.

158

Inostroza and Van der Storm 5

e For the same reason, model transformations feature non-destructive rewriting. That is, it is not
possible to perform in-place updates. This has benefits for reasoning (locality), but might affect
performance. In other words, in order to benefit from equational reasoning, there will be a com-
promise in terms of performance. To improve this situation, active research is being conducted
with the aim of optimizing the implementation of immutable data structures in Rascal [4].

Looking back at the effort implementing the TTC’14 tasks we can observe that Rascal posed no
problems for solving the tasks. The solutions are small and declarative. The size of the implementation
is around 130 SLOC, including some helper functions, but excluding loading the model from XML
which is another 38 SLOC. Although Rascal allows side-effects in (local) variables, with the exception
of makeCouples and makeCliques none of the function use side-effects of any kind.

Another observation is that the tasks mostly involved querying the models and aggregating new
results to enrich the model. In such cases, comprehensions are valuable features to create sets, maps, or
relations of model elements. Rascal’s built-in features for traversal and powerful pattern matching (e.g.,
deep pattern matching), were not (even) needed to perform most of the tasks in an adequate way.

Related to the nature of the tasks, the fact that cross references had to be represented and managed
explicitly posed no problem. In all cases the top-level IMDB model was always available to perform the
necessary reference lookups in the movies and persons tables. It is, however, conceivable that in the case
of more complex transformations (in which the referential structure of a model needs to be changed),
more administration would be required in order to keep referential integrity intact.

In terms of performance, and in absence of suitable benchmarks to compare, we can at this point
only report on the observed behavior of our solution. As an example, we observed that extracting cliques
of size 3 takes more than 1 hour on a 3.3Mb IMDB file?. As it was shown in the code for computing
couples and cliques, we improved the performance by filtering out some model elements before the actual
couple/clique computation (e.g. removing actors who performed in less than 3 movies). By doing so we
could process the same file in 3 minutes.

Finally, we would like to emphasize that Rascal’s module system proved its value. Some tasks could
be implemented as modular extensions of earlier tasks, combining extension of data types (Extension
Task 2) and extension of functions (Extension Tasks 3 and 4). In that way, it was possible to define
generic behavior for the Group ADT which initially considered just couples, but was later on modularly
extended to consider cliques too. Few additions to the original code were necessary, as the functionality
was defined in a generic way so that new variants could be naturally handled via polymorphism.

References

[1] Tassilo Horn, Christian Krause & Matthias Tichy (2014): The TTC 2014 Movie Database Case. In: 7th
Transformation Tool Contest (TTC 2014), EPTCS.

[2] Paul Klint, Tijs van der Storm & Jurgen Vinju (2009): Rascal: A domain-specific language for source code
analysis and manipulation. In: SCAM, pp. 168—-177.

[3] Paul Klint, Tijs van der Storm & Jurgen Vinju (2011): EASY Meta-programming with Rascal. In: Generative
and Transformational Techniques in Software Engineering I1I, Lecture Notes in Computer Science, Springer.

[4] Michael Steindorfer & Jurgen Vinju (2014): Code Specialization for Memory Efficient Hash Tries (Short
Paper). In: Generative Programming and Component Engineering GPCE 2014, Proceedings.

2We ran our experiments on a laptop Apple MacBook Pro with Intel i7 CPU running at 2.9 GHz and 8GB memory.

159

	The FIXML Case
	The Movie Database Case

