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Abstract 

Underwater stereo-video technology systems are used widely for measurement of fish. However the 
effectiveness of the stereo-video measurement has been limited because most operational systems still rely on a 
human operator. In this paper, an automated approach for fish detection using a shape-based level sets 
framework is presented. Shape knowledge of fish is modelled by Principal Component Analysis (PCA). The 
Haar classifier is used for precise position of the fish head and snout in the image, which is vital information for 
close proximity initialisation of the shape model. The approach has been tested on under-water images 
representing a variety of challenging situations typical of the underwater environment, such as background 
interference and poor contrast boundaries. The results obtained demonstrate that the approach is capable of 
overcoming these limitations and capturing the fish outline at sub-pixel accuracy. 

Keywords: image segmentation, fish detection, under-water image, level sets, prior shape knowledge, 
registration 

Introduction 

The monitoring of fish for stock assessment in aquaculture, commercial fisheries and in the assessment of the 
effectiveness of biodiversity management strategies such as Marine Protected Areas and closed area 
management is essential for the economic and environmental management of fish populations. Video based 
techniques for fishery independent and non-destructive sampling are now widely accepted. The advantages of 
using stereo-video for counting the numbers of fish, measuring their lengths and defining the sample area have 
been well demonstrated (Shortis et al., 2009). However the effectiveness of the stereo-video measurement has 
been limited because most operational systems still rely on a human operator to identify and measure the snout 
and tail of the fish in order to determine the length by intersection. Whilst automation of identification of objects 
and image measurement processes have been demonstrated in many other contexts, due to the uncontrolled 
underwater environment combined with the loss of contrast because of attenuation through the water, an 
automated solution for fish sizing has been elusive. Whilst automation of some aspects of the process has been 
established for at least 15 years (Lines et al., 2001), only recently have fully operation systems that identify, 
delineate, track and measure fish in an uncontrolled environment been reported (Shortis et al., 2013). 

The ultimate aim of this research is to develop a general approach to the automatic measurement of fish in 
underwater environments. The focus of this work will be on identification and delineation of Southern Bluefin 
Tuna (SBT).  In context of this research, automated detection methodologies comprise two steps: identification 
and subsequent delineation of the fish outline. The existing literature on fish detection has mainly focused on the 
identification step where the presence of fish is recognised in the scene followed by the estimation of the fish 
location (Palazzo et al., 2013; Spampinato et al., 2008; Walther et al., 2004; Zhou and Clark, 2006; Morais et al., 
2005; Evans et al., 2003).  In contrast, relatively few approaches have been reported that deal with both 
identification and the following delineation of the fish silhouette (Khanfar et al., 2010; Lines et al., 2001; 
Hariharakrishnan & Schonfeld, 2005). Most of these approaches use low-level image features such as colour, 
texture, intensity and motion to detect fish. However, in a real life, the uncontrolled underwater environment 



 

 

produces images that are characterised by low contrast, background clutter and interference, partial occlusion 
caused by adjacent or foreground objects, varied illumination conditions and shadows.  The aforementioned 
research works fail to produce high quality results mainly due to misleading low-level features resulting from 
image noise and occlusion, or lack of sufficient low-level features necessary for object modelling. High-level 
knowledge of the shape of the fish can significantly aid in providing an efficient solution to these problems. 

In this paper, an automated approach for fish detection using a shape-based level sets framework is presented. 
An example of under-water stereo images used is shown in Figure 1. The prior knowledge of the shape of the 
fish is modelled using Principal Component Analysis (PCA) (Leventon et al., 2000) and this knowledge is used 
to guide the level set curves. PCA enables the representation of global shape variation of the object of interest 
through a training set of shape templates. The global shape information is incorporated into the Mumford-Shah 
functional, as reported by Chan and Vese (2001), which can detect objects in strongly cluttered scenes. A Haar-
like detector method (Lienhart and Maydt, 2002) is used to identify the existence of fish and determine their 
locations in the image. This information is vital to place the initial shape in close proximity to the object to be 
segmented, which increases the success rate and requires less iteration for convergence. Once the fish are 
independently identified on the left and right images, stereo intersections for the snout and tail is computed 
based on the well-established approach of a geometrically constrained epipolar search and template match 
between the two images. 

 

 
Figure 1: Typical stereo image pair captured during a transfer from the purse-seine net to the grow-out 
cage.  The water surface is to the right of the images and the apparent vertical orientation of the fish is 

caused by the mounting of the stereo-video system on the side of the transfer gate. 

The outline of the paper is as follows. In the following section, a short review of level sets is given followed by 
the description of the individual steps of the proposed detection strategy along with mathematical equations in 
the subsequent section. Then, experimental results using underwater sample image sequences recorded in cages 
are presented and evaluated. The paper concludes with a discussion of the progress and results achieved, and an 
outlook for future work. 

Level Set Representation 

The core idea of level sets is to implicitly represent a contour C as the zero level curve of a function   of higher 
dimension (Figs. 2-a & 2-b).  An initialisation of  can be constructed in the following way: Let C be a closed 
curve representing the boundary between two regions, one region inside the curve and another region outside the 
curve. φ is then defined as the signed distance ±d(x) to the curve, negative inside and positive outside. The 
definition is illustrated:  

 

                                                       (1) 

 
 

 
(a)                                           (b) 

Figure 2: Illustrating level sets. (a) The curve C (red) is used to construct the level set function  such that 
 is negative inside and positive outside the curve. Distance values d are grey value coded. (b) A plane at 

zero level (Z=0) intersects the level set function , and thus the zero level curve C is obtained. 



 

 

While the use of the distance d(x) is not mandatory when using level sets, it assures that  does not become too 
flat or too steep near C and subsequently can be differentiated across the zero level curve without running into 
numerical problems. 
 
In order to combine the characteristics of the level set function, image information and shape knowledge of the 
known object, an energy functional can be set up and consequently minimised using the calculus of variations. 
Minimising the energy functional is performed in an iterative process moving the initial curve towards the object 
boundaries. 

 
Detection Strategy 

The fish detection strategy comprises three primary steps (Figure 3). First, the presence of fish is recognised and 
the initial locations are determined using segmentation of a frame difference from an averaged background 
image. A Haar like detector is then employed to estimate the snout and tail locations, from which the initial 
position and orientation of each fish in the image can be derived.  Subsequently, a shape prior model is 
constructed by PCA using a set of training samples. The level sets curve is then initialised and evolved to locate 
the fish boundary. The result consists of the detected fish. 

 

 
             Figure 3: Workflow of fish detection 

Identification 

In this stage, the location of fish snout and tail in the image are determined. Precise localisation of the snout and 
tail leads to the estimation of pose parameters in 2D space, these being two rotations, two translations and one 
scale parameter.  

In this research, the Haar classifier is used to locate the fish snout and tail. To train the classifier, 200 manually 
cropped images of the target object (snout or tail) are used so that the classifier can learn which features (among 
a set of possibly thousands of features) can locate the target with high accuracy.  These features, once learned, 
are then used to construct the object classifier that can locate the presence of the object in cluttered scenes.  Due 
to their high detection speed and ability to perform a scale-space search, Haar classifiers are employed in this 
research for locating snout and tail of fish in underwater image sequences. The results of independent detection 
of the snout and tail using Haar detectors are further improved by using the expected distance and angle 
relationships between the detected snouts and tails.  The search space for tail detection is based on the results of 
the snout detection and vice versa.  Figure 4 shows an example of a the result from the Haar classifier used to 
identify the snouts and tails and of Southern Bluefin Tuna (SBT) during a transfer. 

Precise localisation of the tip of the snout and the valley point of the tail, used as reference points, are used to 
estimate the rigid transformation parameters. These transformation parameters are then used to first generate the 
reference shape and subsequently initialise the shape model, two crucial steps in accurate and correct delineation 
of fish.  

 



 

 

 
Figure 4: Shows the identification of SBT snouts and tails marked by circles using Haar classifier. 

Shape Prior Generation 

The generation of initial shape, also called shape prior, comprises two steps: first, the training samples need to 
be geometrically aligned, and subsequently, the shape model is constructed from the aligned shapes. The 
alignment involves matching shapes of training samples that differ in size, orientation and translation. In the 
literature, a large number of shape matching methods have been reported. A complete review of those methods is 
given in Veltkamp and Hagedoorn (1999).  
 
In this paper, the alignment of training samples is realised using the method introduced in Chen et al. (2002). 
Suppose that the training set contains n given curves C1, ..., Cn with their corresponding interior regions   A1, ..., 
An. The shape similarity measure of the shapes C1 and C2 is defined as: 

  

a (C1, C2) = area of (A1 ⋃  A2 −  A1 ∩ A2)                  (2) 

 
In the alignment process, the pose parameter of C1 is considered to be fixed, and the rest of samples (C2,..., Cn) 
are jointly aligned to C1 through the solution of the rigid transformation Cj

new = sj Rj Cj + Tj (j=2, ..., n) such that 
the area a(C1, Cj

new) is minimised. These values are obtained by a global optimisation algorithm called the 
genetic algorithm (Davis, 1991), which makes it less likely for the underlying function to be trapped in 
suboptimal local minimum compared with purely local methods such as gradient descent.  

The shapes are encoded in binary images to simplify the alignment task. Figure 5 shows a set of 20 training 
samples manually digitised and the result of their alignment. The first sample (bottom-row, left-most), which is 
the scaled, shifted and rotated version of the corresponding sample manually digitised (top-row, left-most), is 
adopted as the reference.  It has fixed pose parameters estimated in the identification process and to which the 
rest of samples are registered. Figure 6-a & 6-b show the amount of shape variability depicted in the overlap 
images before and after the alignment. It can be seen that even large shape discrepancies can often exist in real 
fish images.  These shape differences can be removed successfully which demonstrates the effectiveness of the 
alignment method. Furthermore, model variability is represented in Figure 6-c showing that the areas around the 
boundaries of the fish fin and tail experience the largest deformations in the fish body outline.  It is interesting to 
note that key regions that could be used for species identification, such as the dorsal and anal fins and the tail, 
are the profile sections which show the greatest variability. 

 

 
 

 
Figure 5: Top-row shows binary representation of training samples of fish shapes. Bottom-row presents 

the training samples after geometric alignment. 



 

 

    
                                                (a)                  (b)                 (c)                (d) 

Figure 6: (a) Overlaid training samples with varying degrees of overlap before alignment; (b) Aligned 
samples; (c) Average of aligned shapes; (d) Showing model variability which are gray-value coded with 

white and black representing highest and lowest variability respectively. 

In the next step, a shape model is constructed using the aligned shapes. The PCA method is selected to construct 
the shape model due to its efficiency at capturing the main variations of a training set while removing redundant 
information. Similar to Leventon et al. (2000), the boundaries of each of the training shapes are represented in 
the training dataset as the zero level set of n Signed Distance Functions (SDFs) {ϕ1... ϕn} with negative distances 
assigned to the inside and positive distances assigned to the outside of the shape boundary. 
  
Suppose M is a matrix whose column vectors are the n aligned training SDFs {ϕi}, PCA is then applied to these 
SDFs to compute eigenvalues and eigenvectors of the covariance matrix: 

 
                                                          (3) 

 
and the mean level set function of the training set 
  

                                                     (4) 

 
The eigenvectors are called principal components or eigenshapes. In practice, the first k principal components (k 
≤ i) are sufficient to model the major shape variations in the training samples. In Milka et al. (1999), a method is 
proposed for determining the value of k by examining the eigenvalues of the corresponding eigenvectors. This 
approach however cannot be adopted here as the value of k varies in different applications (Tsai et al., 2003). In 
this work, the value of k was set empirically. Then, shape can represented as zero level set of the following 
function  

 
                                     (5) 

 
where w = {w1... wk} denote the weights for the k eigenshapes with the variances of these weights { σ

2
1... σ

2
k} 

given by the eigenvalues. In the equation (5), the shape variability is restricted to the variability given by the 
eigenshapes. To accommodate wider range of shape variability, pose parameters p, these being translation, scale, 
orientation, are incorporated to the level set function of (5). With the addition of p, the implicit description of 
shape is given by the zero level set of the following function  

 
                                    (6) 

 
where  and each  are now a function of p. 
 
Once the shape model is generated, an initial level set function is constructed using a rectangle curve around the 
detected fish. Then, the zero level set of the level set function is evolved towards the fish boundary according to 
the energy functional. The energy functional is described in the following section. 

Shape-Based Level Sets Energy Functional  

The energy functional is based on the segmentation model proposed by Chan and Vese (2001) in an effort to 
overcome limitations found with the previous edge-based strategies. Unlike edge-based methods where the 
provision of close initialisation to the object of interest and good contrast boundaries are necessary to locate 
those boundaries, region-based methods used in this work are independent of image gradients and less likely to 
converge to local minima if an undesirable feature or image noise is present.  



 

 

Let I  be a given image and C the evolving curve defined as C = {(x,y)  R2: }, with u and v denoting 
two constants representing the averages of I inside and outside the curve C. Assume that the image I is formed by 
two regions of approximately piecewise-constant intensities with distinct values of I0

i and I0
o, and that the object 

to be detected is represented by the region with value I0
i and boundary C. Then, I0 ≈ I0

i inside the object (inside 
C) and I0 ≈ I0

o outside the object (outside C). By minimizing the following energy equation, the boundary of the 
object of interest C is obtained (Chan and Vese, 2001) 

 

               (7) 

 
which is equivalent to the energy functional below (Tsai et al., 2001) 

 

                                    (8) 

 
where Au and Av denote areas, and Su and Sv represent the sum intensity of areas inside and outside C. Then, the 
gradient descent is employed to search for the parameters w and p that minimise Ecv to implicitly determine the 
segmenting curve C. The parameters Au, Av, Su and Sv can be expressed in terms of  

 

;                      (9) 
 

and 
 

;              (10) 
 

where  defines a bounded and open subset of R2 and H denotes the Heaviside function 
 

                                          (11) 

 
The energy function (8) is minimised with respect to w and p using gradient descent optimisation 

 
            (12) 

 
              (13) 

 
where the gradient parameters are given as 
 

                       (14) 
 

                      (15) 
 

                 (16) 
 

                (17) 
 

where the segmenting curve C is given by the zero level set of , and  is the gradient of 

 taken with respect to the ith component of the transformation matrix p that includes translation, rotation 
and scale. The gradient descent optimisation of the equations (12&13) leads to the parameters w and p. The 
updated w and p parameters, which are iteratively computed during the optimisation, are then used to implicitly 
determine the location of the segmenting curve C.  
The curve evolution is terminated when the overall change in the evolving curve positions per iteration is less 
than 0.1 pixels. A smaller threshold considerably increases the computation cost, although the quality of the final 
result is the same. 
 
Experimental Evaluation 

Underwater image sequences recorded at the transfer gate between two cages have been used to test the fish 
detection algorithm. From the large number of video samples recorded for 8 transfers, 35 sample images have 
been chosen to represent the variable and uncontrolled nature of the marine environment. These images include a 



 

 

varying number of SBT with a range of illumination changes, background interference and occlusions caused by 
adjacent fishes. Moreover, SBT appear in the image sequences with missing or poor contrast boundaries which 
further exacerbates the challenging conditions. 

In Fig 7, an example of results is shown where the initial curve is placed as a rectangle around the fish of interest 
and subsequently converged to the fish boundary by minimising the energy functional presented in the previous 
section. Further example results are shown in Figure 7 where, in the four right-most samples, SBT are partially 
occluded by other neighbouring fishes in foreground and background. Almost in all samples, fish boundaries are 
of low contrast especially in areas around the tail and fin. The detection results shown in Fig.7 demonstrate that 
the approach is capable of overcoming those limitations typical of the underwater environment and capturing the 
fish outline accurately. 

 

           
        (a)              (b) n=3          (c) n= 10        (d) n=13         (e) n=54       (f) n= 32  (g) n=126   (h) n=154  (i) n= 71    (j) n= 91 

Figure 7: Fish detection result. (a) Initial curve; (b), (c) and (d) show the intermediate curves and (e) 
represents the final detection result. (f), (g), (h), (i) and (j) show the detection results of different fish in the 

presence of a range of background interference and foreground occlusions by other fish (two rightmost 
samples). n denotes the number of iterations in the intermediate and the final results. 

In order to quantitatively evaluate the performance of the approach, the detection results were compared to 
manually plotted fish used as reference data. The comparison was carried out by matching the detection results 
to the reference data using the so-called buffer method (Heipke et al., 1998). A detected object is assumed to be 
correct if the maximum distance between the detected object and its corresponding reference does not exceed the 
buffer width. Furthermore, a reference object is assumed to be matched if the maximum deviation from the 
detected object is within the buffer width. Based on these assumptions the following quality measures were used 
in our work: 

• Completeness: is the ratio of the number of matched reference objects to the whole number of objects. 
• Correctness: is the ratio of the number of correctly detected objects to the number of detected objects. 
• Geometric accuracy: is the average distance between the correctly detected objects and its 

corresponding reference expressed as root mean square (RMS) value. 
 

Table 1 shows the evaluation result of the fish detection. The buffer width can be defined according to the 
required detection accuracy for a specific application. In our tests, the buffer was set to 3, 5 and 8 pixels 
according to the range of accuracy achievable at the identification step. Furthermore, this selection allows 
assessment of the relevance of the approach for applications that demand varying degrees of accuracy. From the 
buffer width value 3 pixels to 8 pixels, both the completeness and correctness have increased implying that the 
results are more complete and correct for higher buffer width values. The geometrical accuracy increases in 
inverse proportion to the buffer width value, so that results obtained with a value of 3 pixels are more accurate 
than those obtained with a larger buffer width value. 

 
Buffer width (pixel) Correctness (%) Completeness (%) Geometric accuracy (pixel) 

3 89.6 91.4 0.7 

5 94.3 94.3 0.8 

8 100 100 0.9 

Table I: Evaluation results for fish detection applied on 35 samples 

 
As expected, the results are encouraging, but whilst sub-pixel geometric accuracy has been achieved in all 
experiments with high rates of completeness and correctness, severe deformation taking place around the fins 
and the tail of the fish cannot be absorbed with the current approach. The table nevertheless shows that the 
developed approach is in principle capable of extracting fish accurately under occlusion and within variable 
underwater environments.   

Accurate extraction of the shape is important for fish biomass estimation, length measurement and species 
recognition (Shortis et al., 2013).  In each case an accuracy of one pixel would be sufficient to establish the 



 

 

initial conditions, so even the least favourable accuracy result in the table above would still be acceptable and 
simultaneously provide a high level of correctness and completeness. 

Conclusion and Outlook 

In this paper, an automated approach for the detection of fish from under-water images has been proposed, 
developed and tested. It comprises a region-based level set method that enables the delineation of the fish 
outline. The shape information of fish is incorporated into the level sets formulation through the PCA method to 
overcome such limitations as poor contrast boundaries, background clutter and occlusions caused by 
neighbouring fish. To provide a close initialisation for the shape model, the pose of fish in the image is 
determined using the Haar classifier. The results of the developed approach have been applied to 35 samples of 
varying quality and occlusion level and presented a quantitative evaluation of the results using three buffer width 
values.  

The presented results show that level sets can be used to delineate fish outlines from under-water images if the 
shape information of the fish species is incorporated into the level sets energy functional. Furthermore, it was 
found that an energy function that is independent of image gradients and includes the shape model is able to 
overcome various kinds of disturbances and the problems related to low quality images recorded in the 
underwater environment, such as poor contrast and uneven illumination. 

The current approach has been developed to detect SBT in an aquaculture environment. The techniques 
developed here have clear potential to be extended to wild habitats provided that the perspective deformation of 
the fish body and movement information derived from image sequences are taken into account.  In wild habitats, 
fish can move in any direction with large deformations occurring in the image of the body, causing this fish 
detection approach to break down. 

For the technique to be successful in wild habitats, varying rates of deformation and fish orientation need to be 
modelled. The detection of different fish species in addition to SBT is another goal that will be pursued in future 
research, as in reef and other underwater habitats many fish species are present. Furthermore, investigation into 
the possibility of using colour information in the level sets formulation will be carried out.  
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