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Abstract

Underwater stereo-video technology systems are uselbly for measurement of fish. However the
effectiveness of the stereo-video measurement éas limited because most operational systemgetjllon a
human operator. In this paper, an automated apprdac fish detection using a shape-based level sets
framework is presented. Shape knowledge of fismasglelled by Principal Component Analysis (PCA). The
Haar classifier is used for precise position offise head and snout in the image, which is vit&imation for
close proximity initialisation of the shape moddlhe approach has been tested on under-water images
representing a variety of challenging situationgidgl of the underwater environment, such as backuyt
interference and poor contrast boundaries. Theltsesbtained demonstrate that the approach is ¢apztb
overcoming these limitations and capturing the éatline at sub-pixel accuracy.

Keywords: image segmentation, fish detection, under-wategenkevel sets, prior shape knowledge,
registration

I ntroduction

The monitoring of fish for stock assessment in aqltare, commercial fisheries and in the assessioktite
effectiveness of biodiversity management strateggesh as Marine Protected Areas and closed area
management is essential for the economic and emmieotal management of fish populations. Video based
techniques for fishery independent and non-destictampling are now widely accepted. The advamstade
using stereo-video for counting the numbers of, fisleasuring their lengths and defining the sampda have
been well demonstrated (Shortis et al., 2009). Hewehe effectiveness of the stereo-video measuremaes
been limited because most operational systemseaiyllon a human operator to identify and measheeshout
and tail of the fish in order to determine the lgnigy intersection. Whilst automation of identifiice of objects
and image measurement processes have been dertemhstranany other contexts, due to the uncontrolled
underwater environment combined with the loss aofitast because of attenuation through the water, an
automated solution for fish sizing has been elusiVailst automation of some aspects of the probessbeen
established for at least 15 years (Lines et al0120only recently have fully operation systemst tid@ntify,
delineate, track and measure fish in an uncontt@levzironment been reported (Shortis et al., 2013).

The ultimate aim of this research is to developeaegal approach to the automatic measurement lofitis
underwater environments. The focus of this work s on identification and delineation of South&lmefin
Tuna (SBT). In context of this research, automatetction methodologies comprise two steps: ifleation
and subsequent delineation of the fish outline. &kisting literature on fish detection has mairdgused on the
identification step where the presence of fisheisognised in the scene followed by the estimatiothe fish
location (Palazzo et al., 2013; Spampinato eR808; Walther et al., 2004; Zhou and Clark, 2000rais et al.,
2005; Evans et al., 2003). In contrast, relatividw approaches have been reported that deal vith b
identification and the following delineation of thHish silhouette (Khanfar et al., 2010; Lines et &001;
Hariharakrishnan & Schonfeld, 2005). Most of thepproaches use low-level image features such asircol
texture, intensity and motion to detect fish. Hoagun a real life, the uncontrolled underwater ismvment



produces images that are characterised by low astntbackground clutter and interference, partizlusion

caused by adjacent or foreground objects, variedhihation conditions and shadows. The aforemestio
research works fail to produce high quality resuti@inly due to misleading low-level features rasgltfrom

image noise and occlusion, or lack of sufficientHevel features necessary for object modellinggHHievel

knowledge of the shape of the fish can significaattl in providing an efficient solution to thesmplems.

In this paper, an automated approach for fish deteaising a shape-based level sets frameworkasegmted.
An example of under-water stereo images used is/shio Figure 1. The prior knowledge of the shapehef
fish is modelled using Principal Component Analy§i€A) (Leventon et al., 2000) and this knowledgesed
to guide the level set curves. PCA enables theesgmitation of global shape variation of the obgddnhterest
through a training set of shape templates. Theaglshape information is incorporated into the Murd{€hah
functional, as reported by Chan and Vese (2001ictwban detect objects in strongly cluttered sceAddaar-
like detector method (Lienhart and Maydt, 2002u$ed to identify the existence of fish and deteentimeir
locations in the image. This information is vital jlace the initial shape in close proximity to tigect to be
segmented, which increases the success rate andesedess iteration for convergence. Once the figh
independently identified on the left and right iraagstereo intersections for the snout and tadoimputed

based on the well-established approach of a gemalkyjr constrained epipolar search and templatecmat
between the two images.

Figure 1: Typical stereo image pair captured during atransfer from the purse-seine net to the grow-out

cage. Thewater surfaceisto theright of theimages and the apparent vertical orientation of thefish is
caused by the mounting of the ster eo-video system on the side of the transfer gate.

The outline of the paper is as follows. In theduling section, a short review of level sets is git@lowed by
the description of the individual steps of the mregd detection strategy along with mathematicabgus in
the subsequent section. Then, experimental regsiltg) underwater sample image sequences recordmsés
are presented and evaluated. The paper concludeswliscussion of the progress and results acthieusl an
outlook for future work.

Level Set Representation

The core idea of level sets is to implicitly remesa contou€ as the zero level curve of a functignof higher
dimension (Figs. 2-a & 2-b). An initialisation ¢fcan be constructed in the following way: I@&be a closed
curve representing the boundary between two regmmes region inside the curve and another regidsiael the

curve. gis then defined as the signed distarcix) to the curve, negative inside and positive outsitiee
definition is illustrated:

_ [(—dlx} if xis inside C
pk) = {+d{x] if xis outside C (1)

(b)

Figure 2: lllustrating level sets. (a) Thecurve C (red) isused to construct the level set function # such that
¢ isnegative inside and positive outside the curve. Distance values d are grey value coded. (b) A plane at
zero level (Z=0) intersectsthelevel set function ¢, and thusthe zero level curve C isobtained.



While the use of the distandéx) is not mandatory when using level sets, it assthatg does not become too
flat or too steep ned® and subsequently can be differentiated acrosgele level curve without running into
numerical problems.

In order to combine the characteristics of the llese¢ function image information and shape knowledge of the
known object, an energy functional can be set ub@msequently minimised using the calculus ofatams.
Minimising the energy functional is performed inigarative process moving the initial curve towatigis object
boundaries.

Detection Strategy

The fish detection strategy comprises three prinséeps (Figure 3). First, the presence of fiske@gnised and
the initial locations are determined using segntentaof a frame difference from an averaged backgdo
image. A Haar like detector is then employed toneste the snout and tail locations, from which thigial
position and orientation of each fish in the imaga be derived. Subsequently, a shape prior misdel
constructed by PCA using a set of training samplés. level sets curve is then initialised and eedlto locate
the fish boundary. The result consists of the detkfish.
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Figure 3: Workflow of fish detection

Identification

In this stage, the location of fish snout anditaithe image are determined. Precise localisatidhesnout and
tail leads to the estimation of pose paramete@Drspace, these being two rotations, two transiatend one
scale parameter.

In this research, the Haar classifier is used tatl the fish snout and tail. To train the classif200 manually
cropped images of the target object (snout or tad)used so that the classifier can learn whiatufes (among

a set of possibly thousands of features) can latetaarget with high accuracy. These featurese dearned,
are then used to construct the object classifigr ¢an locate the presence of the object in ckidtscenes. Due
to their high detection speed and ability to perfa scale-space search, Haar classifiers are eatploythis
research for locating snout and tail of fish in emwiater image sequences. The results of indepedgssttion

of the snout and tail using Haar detectors arehé&urimproved by using the expected distance andeang
relationships between the detected snouts and taile search space for tail detection is basetth®mesults of
the snout detection and vice versa. Figure 4 steawexample of a the result from the Haar clagsifged to
identify the snouts and tails and of Southern Biugéfina (SBT) during a transfer.

Precise localisation of the tip of the snout arg vhlley point of the tail, used as reference [®iate used to
estimate the rigid transformation parameters. Thesesformation parameters are then used to faserte the
reference shape and subsequently initialise theesheodel, two crucial steps in accurate and codeliheation
of fish.



Figure 4: Showstheidentification of SBT snoutsand tails mar ked by circlesusing Haar classifier.

ShapePrior Generation

The generation of initial shape, also calfadpe prior, comprises two steps: first, the training samplesd to

be geometrically aligned, and subsequently, thepeshaodel is constructed from the aligned shapes Th
alignment involves matching shapes of training dasphat differ in size, orientation and translatidn the
literature, a large number of shape matching metimade been reported. A complete review of thoshads is
given in Veltkamp and Hagedoorn (1999).

In this paper, the alignment of training sampleseislised using the method introduced in Chen .e28102).
Suppose that the training set contairgiven curves ¢ ..., G, with their corresponding interior regions ;,A.,
A.. The shape similarity measure of the shapemn@ G is defined as:

a(Cy, G) =areaof (AU A— AL1NAY) 2)

In the alignment process, the pose parameter, @ €onsidered to be fixed, and the rest of samfiles.., G)
are jointly aligned to Cthrough the solution of the rigid transformatiofi*€= §R; C; + T, (=2, ...,n) such that
the areaa(C;, G™") is minimised. These values are obtained by aajloptimisation algorithm called the
genetic algorithm (Davis, 1991), which makes itsldi&ely for the underlying function to be trappéd
suboptimal local minimum compared with purely looadthods such as gradient descent.

The shapes are encoded in binary images to simgiidyalignment task. Figure 5 shows a set of 2idibg
samples manually digitised and the result of taBgnment. The first sample (bottom-row, left-mosthich is
the scaled, shifted and rotated version of theespwnding sample manually digitised (top-row, tafist), is
adopted as the reference. It has fixed pose paeasnestimated in the identification process and/téach the
rest of samples are registered. Figure 6-a & 6dwsthe amount of shape variability depicted in tverlap
images before and after the alignment. It can le@ sieat even large shape discrepancies can oftshiexeal
fish images. These shape differences can be rafrsecessfully which demonstrates the effectivenéske
alignment method. Furthermore, model variabilityapresented in Figure 6-c showing that the aremsnd the
boundaries of the fish fin and tail experienceltrgest deformations in the fish body outlineislinteresting to
note that key regions that could be used for speadientification, such as the dorsal and anal dind the tail,
are the profile sections which show the greatesabiity.

VAT A g i

Figure 5: Top-row shows binary representation of training samples of fish shapes. Bottom-row presents
the training samples after geometric alignment.



@) (b) (©) (d)
Figure 6: (a) Overlaid training samples with varying degrees of overlap before alignment; (b) Aligned
samples; (c) Average of aligned shapes; (d) Showing model variability which are gray-value coded with
white and black representing highest and lowest variability respectively.

In the next step, a shape model is constructedyubmaligned shapes. The PCA method is selectedristruct

the shape model due to its efficiency at captutirgmain variations of a training set while remaviedundant
information. Similar to Leventon et al. (2000), theundaries of each of the training shapes aresepted in

the training dataset as the zero level set 8fgned Distance Functions (SDF#) {. ¢} with negative distances
assigned to the inside and positive distancesmaditp the outside of the shape boundary.

SupposeM is a matrix whose column vectors are thaligned training SDFsd{}, PCA is then applied to these
SDFs to compute eigenvalues and eigenvectors afab@iance matrix:

T= f.v.r_wf ©)
and the mean level set function of the training set
=Tk ¢ (4)

The eigenvectors are called principal componentigenshapes. In practice, the fikgtrincipal componentsk(
<) are sufficient to model the major shape variationthe training samples. In Milka et al. (1999)nethod is
proposed for determining the value loby examining the eigenvalues of the correspondiggnvectors. This
approach however cannot be adopted here as the ebtwaries in different applications (Tsai et al., 3Rdn
this work, the value ok was set empirically. Then, shape can represergext level set of the following
function

plw) = o+ T, widy (5)

wherew = {w,... w} denote the weights for thieeigenshapes with the variances of these weighfs.{ o%}
given by the eigenvalues. In the equation (5),dhape variability is restricted to the variabilgiwven by the
eigenshapes. To accommodate wider range of shajabiity, pose parameters these being translation, scale,
orientation, are incorporated to the level set fiomcof (5). With the addition op, the implicit description of
shape is given by the zero level set of the follapfiunction

olw,p) = ¢+ T widy 6)
whered and eachp; are now a function gf.

Once the shape model is generated, an initial lesefunction is constructed using a rectangle €around the
detected fish. Then, the zero level set of thellsgefunction is evolved towards the fish boundacgording to
the energy functional. The energy functional iscdiéed in the following section.

Shape-Based L evel Sets Energy Functional

The energy functional is based on the segmentatiodel proposed by Chan and Vese (2001) in an etffort
overcome limitations found with the previous edgesdd strategies. Unlike edge-based methods where th
provision of close initialisation to the object ioterest and good contrast boundaries are necessdogate
those boundaries, region-based methods used imvtirls are independent of image gradients and lkskyIto
converge to local minima if an undesirable featuramage noise is present.



Letl be a given image ar@the evolving curve defined &= {(x,y) € R* ¢{x,¥) = 0}, with u andvdenoting
two constants representing the averagdsnside and outside the cur@ Assume that the imadés formed by
two regions of approximately piecewise-constargristties with distinct values & andly’, and that the object
to be detected is represented by the region willeud and boundarg. Then,ly= Iy inside the object (inside
C) andly = I° outside the object (outsidg). By minimizing the following energy equation, theundary of the
object of interes€ is obtained (Chan and Vese, 2001)

Ep= -rir!s[de Cl‘r —u|:d_rdy+ -rours[declr - vl:drd}‘ (7)
which is equivalent to the energy functional bel@wai et al., 2001)
_ 2 24 Y= _(Sh, S
Ep= —P4, + v'4,) = + -‘t.,-) (8)

whereA, andA, denote areas, arl andS, represent the sum intensity of areas inside atsid®C. Then, the
gradient descent is employed to search for thenpebexrsw andp that minimisek,, to implicitly determine the
segmenting curv€. The parameterd,, A,, S, andS, can be expressed in termsdifiw, p)

Sy= I, 1 H(plw, p))d4; A, = [, H(e(w,p))dA (9)

and

5, = [, 1H(—plw, p))d4; 4, = [, H(—¢lw,p)) da (10)
wheref2 defines a bounded and open subsé&’afndH denotes the Heaviside function

if ¢plw.p) <0

1
H[!P{Wa F:]} = IU if gplw,p) =0

(11)

The energy function (8) is minimised with resp@civtandp using gradient descent optimisation
VEer = —20uViesy + vWei,) + (w?Vdy + v VA,) (12)
VpEep = —2(uVp5, + vV,5,) + (2*V,4, + vV, 4,) (13)

where the gradient parameters are given as

Ve Ay = —Viodp = — [ @:(p) ds (14)
VieSu= —Vu,So= — [o 1 ¢:(p) ds (15)
Vpdy = —Vpd, = — [ V. 0lw.plds (16)
VpSu = —V,.5,= — [, IV, ¢lw.plds (17)

where the segmenting cun@ is given by the zero level set gf{w.p), and V, ¢(w.p) is the gradient of

¢{w, p) taken with respect to thith component of the transformation mafpixhat includes translation, rotation
and scale. The gradient descent optimisation ofetheations (12&13) leads to the parametgrandp. The
updatedw andp parameters, which are iteratively computed dutirggoptimisation, are then used to implicitly
determine the location of the segmenting ci@ve

The curve evolution is terminated when the overhlinge in the evolving curve positions per iterai® less
than 0.1 pixels. A smaller threshold considerabbréases the computation cost, although the qualitiye final
result is the same.

Experimental Evaluation

Underwater image sequences recorded at the tragaferbetween two cages have been used to tefislthe
detection algorithm. From the large number of vidamples recorded for 8 transfers, 35 sample imhges
been chosen to represent the variable and unclautnohture of the marine environment. These imaggsde a



varying number of SBT with a range of illuminatiohanges, background interference and occlusiorsedany
adjacent fishes. Moreover, SBT appear in the ingEgpiences with missing or poor contrast boundariésh
further exacerbates the challenging conditions.

In Fig 7, an example of results is shown wherehi@l curve is placed as a rectangle around iste ¢f interest
and subsequently converged to the fish boundampibymising the energy functional presented in thevipus
section. Further example results are shown in Eiguwhere, in the four right-most samples, SBTpaially
occluded by other neighbouring fishes in foregroand background. Almost in all samples, fish bouiedsare
of low contrast especially in areas around theaad fin. The detection results shown in Fig.7 destiate that
the approach is capable of overcoming those limitattypical of the underwater environment and eapg the

fish outline accurately.

(d)113 (en=54 (f)n 32 (g)n=126 (h)n=154 (i)n=71 (j)n=91

(m 3 (cn=10
Figure 7: Fish detection result. (a) Initial curve; (b), (c) and (d) show the intermediate curves and (€)
representsthe final detection result. (f), (g), (h), (i) and (j) show the detection results of different fish in the
presence of a range of background interference and foreground occlusions by other fish (two rightmost
samples). n denotes the number of iterationsin the intermediate and thefinal results.

In order to quantitatively evaluate the performanéehe approach, the detection results were coethbéw
manually plotted fish used as reference data. Dingparison was carried out by matching the deteatisnlts
to the reference data using the so-calieffer method (Heipkeet al.,1998) A detected object is assumed to be
correct if the maximum distance between the detieabgect and its corresponding reference doesxusesl the
buffer width. Furthermore, a reference object isuazed to be matched if the maximum deviation frown t
detected object is within the buffer width. Basedtloese assumptions the following quality measwe® used
in our work:

e Completeness: is the ratio of the number of matched referergedis to the whole number of objects.

« Correctness: is the ratio of the number of correctly deteadbjects to the number of detected objects.

e Geometric accuracy: is the average distance between the correcthected objects and its

corresponding reference expressed as root meanes(RidS) value.

Table 1 shows the evaluation result of the fisrectn. The buffer width can be defined accordioghe
required detection accuracy for a specific applicatin our tests, the buffer was set to 3, 5 anfixels
according to the range of accuracy achievable atidentification step. Furthermore, this selectallows
assessment of the relevance of the approach fdicatipns that demand varying degrees of accurBoym the
buffer width value 3 pixels to 8 pixels, both thempleteness and correctness have increased implyinighe
results are more complete and correct for highdfebwidth values. The geometrical accuracy incesai
inverse proportion to the buffer width value, satthesults obtained with a value of 3 pixels argeraccurate
than those obtained with a larger buffer width ealu

Buffer width (pixel) Correctness (%) Completeness (%) Geometric accuracy (pixel)

3 89.6 91.4 0.7
5 94.3 94.3 0.8
8 100 100 0.9

Table I: Evaluation results for fish detection apglon 35 samples

As expected, the results are encouraging, but whilb-pixel geometric accuracy has been achievedllin
experiments with high rates of completeness andecthess, severe deformation taking place arouediris
and the tail of the fish cannot be absorbed with ¢hrrent approach. The table nevertheless shoaisthk
developed approach is in principle capable of eximg fish accurately under occlusion and withirriable
underwater environments.

Accurate extraction of the shape is important fish fhiomass estimation, length measurement andiespec
recognition (Shortis et al., 2013). In each caseaecuracy of one pixel would be sufficient to bl&h the



initial conditions, so even the least favourableuaacy result in the table above would still beegtable and
simultaneously provide a high level of correctnasd completeness.

Conclusion and Outlook

In this paper, an automated approach for the detectf fish from under-water images has been pregps
developed and tested. It comprises a region-bamesl ket method that enables the delineation offigie
outline. The shape information of fish is incorgedinto the level sets formulation through the P@éthod to
overcome such limitations as poor contrast bouedarbackground clutter and occlusions caused by
neighbouring fish. To provide a close initialisatifor the shape model, the pose of fish in the inag
determined using the Haar classifier. The resulth® developed approach have been applied to 13plsa of
varying quality and occlusion level and presentegdiantitative evaluation of the results using tHyeffer width
values.

The presented results show that level sets carsé to delineate fish outlines from under-watergesaif the
shape information of the fish species is incorpaanto the level sets energy functional. Furtheend was
found that an energy function that is independérimage gradients and includes the shape moddblés ta
overcome various kinds of disturbances and the lpnob related to low quality images recorded in the
underwater environment, such as poor contrast aadan illumination.

The current approach has been developed to de®€t i an aquaculture environment. The techniques
developed here have clear potential to be extetwledld habitats provided that the perspective defition of

the fish body and movement information derived fiamge sequences are taken into account. In \aitdtdus,
fish can move in any direction with large deformat occurring in the image of the body, causing flsh
detection approach to break down.

For the technique to be successful in wild hahitedsying rates of deformation and fish orientatimed to be
modelled. The detection of different fish specieaddition to SBT is another goal that will be puad in future
research, as in reef and other underwater halitatsy fish species are present. Furthermore, igagin into
the possibility of using colour information in thevel sets formulation will be carried out.
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