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Abstract. In this paper, we present a preliminary approach for automatically dis-
covering the topics of a structured data source with respect to a reference ontol-
ogy. Our technique relies on a signature, i.e., a weighted graph that summarizes
the content of a source. Graph-based approaches have been already used in the lit-
erature for similar purposes. In these proposals, the weights are typically assigned
using traditional information-theoretical quantities such as entropy and mutual in-
formation. Here, we propose a novel data-driven technique based on composite
likelihood to estimate the weights and other main features of the graphs, making
the resulting approach less sensitive to overfitting. By means of a comparison of
signatures, we can easily discover the topic of a target data source with respect to
a reference ontology. This task is provided by a matching algorithm that retrieves
the elements common to both the graphs. To illustrate our approach, we discuss
a preliminary evaluation in the form of running example.

1 Introduction

Data-intensive applications (e.g., e-commerce applications, digital libraries, . . . ), which
rely on the information stored in private databases, are now common over the Internet.
The data behind the application is in general not accessible by external applications and
represents the so-called deep web. The value derived from the re-use of this kind of data
has been considered of paramount importance for both research and business activities.

For this reason, the research community has put a lot of effort in the last years
for searching information in the deep web [13] and extracting knowledge from it [10].
Three key factors have recently affected this well-known architecture for web applica-
tions:

1. The Semantic Web vision is now reality. Research outcomes have provided stan-
dards, techniques and tools enabling the Web to move from a “Web of Documents”,
where the data are typically optimized for the direct human-consumption, to a “Web
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of Data”, where the data is structured thus making it more efficiently and effec-
tively usable by software applications. Moreover, data from different sources can
be linked with each other, thus fostering the interoperability of the information.
This is the Semantic Web vision, which is now becoming reality.

2. A large amount of structured data is available in the web. Public Sector and
Enterprises have started to consider the web as the primary place for publishing
their data with structured and open formats. The EU Commission, for example, is
promoting the publication and the reuse of public sector information as open data,
so that it can be publicly accessible by other Institutions and Enterprises1.

3. Applications for Data Analytics are now handy. Big data has become a hot trend
topic. Data science is now a common term and denotes techniques and applica-
tions for extracting knowledge from data [6]. Several software packages, tools, and
case studies are now available for managing, extracting, transforming and analyz-
ing large amount of data.

These elements have radically changed the ways for accessing structured data: sev-
eral data sources are “emerged” from the deep web and are available as open data. A
direct user consumption of structured data (not mediated by any application) is now
possible. Nevertheless, in this scenario, a new problem arises: how to find the data
sources satisfying specific information needs. The usual paradigm for accessing infor-
mation in the web is based on search engines as the entry points for users looking for
information. Unfortunately, search engines cannot be an actual solution since they are
not conceived for indexing structured data. Consequently, source retrieval can be a criti-
cal task. Some solutions have been proposed to deal with this problem: web portals (see
for example the European Union Open Data Portal2) can support this task. In portals,
the data sources are in general indexed on the basis of some metadata (e.g., title, author,
content description, . . . ) manually provided by the data source owner. This is a tedious
and error prone work that can generate biased results if the metadata have not been
accurately selected. An automatic data-driven approach for extracting metadata from a
target source can help managing this issue.

In this paper, we introduce a preliminary proposal for automatically discovering
the topics of a target data source with respect to a reference ontology. Our approach
relies on three key elements: a reference ontology, an algorithm for computing the “sig-
nature” of a data source, and a graph matching algorithm. We conceive the reference
ontology as a vocabulary of concepts and related properties describing a real world do-
main. The signature is a concise weighted graph-based representation of the data source
topics which is independent of the specific vocabulary adopted in the source (i.e. labels
used to describe schema elements, and domains associated to the attributes). In partic-
ular, nodes represent concepts and attributes. Edges model three kinds of relationships:
relationships between attributes belonging to the same concepts, relationships between
concepts and the respective attributes and relationships between attributes and concepts.
Entropy is used to weight nodes, thus giving an account of their importance in terms of
information power. Mutual information is used to provide weights associated to edges,

1 Digital Agenda for Europe, http://ec.europa.eu/digital-agenda/, Pillar I, Action 3
2 https://open-data.europa.eu/



thus measuring the correlation between the involved nodes. We claim that such a sig-
nature can be used as a semantic identifier of a domain, i.e. two sources representing
the same subject have a similar signature independently of the actual attribute domains
adopted. The technique for extracting the signature is a critical task and represents the
main contribution of the paper. Finally, a graph matching algorithm is used for com-
paring the signatures of the reference ontology and the target data source. The goal is
the identification of possible matches which correspond to concepts in the ontologies
described in the source.

Without loss of generality, in the following, we will focus on RDF data sources.
RDF is becoming a standard way for publishing structured data on the web and sev-
eral sources are available3. Moreover, working with RDF allows us to use DBpedia
as reference ontology4. DBpedia is a large knowledge base derived from Wikipedia,
which currently describes 4.0 million of “things” with 470 million of “facts”. Thus we
can easily evaluate our approach in different domains with different data sets. We will
experiment two ways for computing graph weights: one based on the classical compu-
tation of entropy and mutual information, the second based on composite likelihood to
estimate those values.

The main advantage derived by the estimation of the weights is to reduce the sensi-
tivity to a specific type of estimation error related to underestimation of the probability
of rare labels combinations. The classic mutual information is known to be very sensi-
tive to regions corresponding to small probabilities; thus, when label combinations are
rare, assigning graph weights based on mutual information is expected to produce un-
stable results. This motivates the introduction of a composite divergence measure based
on a linear combination of divergences. Estimation is based on a composite likelihood
methodology, a well-known approach for complex models that has proved useful in
statistics and machine learning; see [12] for an exhaustive overview. Our preliminary
empirical results suggest increased reliability of the new approach based on out-of-
sample performance on real data.

Finally, in this preliminary proposal, we do not investigate any advanced technique
for graph matching. We adopt the distance-measure proposed in [9] for evaluating sig-
nature matches. Summarizing, the main contributions of this paper are: 1) a model for
defining signatures representing topics of RDF sources based on schema information,
entropy and mutual information; 2) a technique for computing the estimation of the sig-
nature weights; and 3) a preliminary evaluation of our proposal by means of a running
example.

The rest of the paper is organized as follow: Section 2 introduces the problem,
Section 3 describes our proposal for estimating the weights and in Section 4 a running
example provides the reader an intuition of our approach. Section 5 describes some
related work and finally in Section 6 we sketch out some conclusion and future work.

3 See for example http://linkeddata.org/data-sets for a list of possible data sets.
4 http://dbpedia.org/



2 Problem statement

Let us consider RDF sources with a RDFS schema as a Knowledge Base. We model the
schema information as a total dependency graph where each node represents either a
concept or a property of the knowledge base, and edges can represent: 1) EPPk , rela-
tionships between properties related to the same concept k (i.e. there is an edge between
two nodes representing properties if the properties have the same concept as domain),
2) ECPk , relationships between concepts and properties (i.e., there is an edge between a
node representing a property and a node of representing concept indicated as domain),
and 3) EPCk relationships between properties and concepts (i.e., there is an edge be-
tween a node representing a property and a node of representing concept indicated as
range, if any). For completeness, in the rest of the section we provide a formal definition
of the signatures5.

Definition (Knowledge base) Let L be the set of literals, U the set of URIs. A knowl-
edge base is a set of triplets KB ⊂ (U × U × (U ∪ L)). We use R = {r ∈
U | ∃(s, p, o) ∈ KB : (r = s ∨ r = o)} to represent the set of resources,
P = {p | ∃s, o : (s, p, o) ∈ KB} to represent the set of properties, and C = {c |
∃s : (s rdf : type c) ∈ KB} to represent the set of concepts.

Definition (Properties of a concept) Given a concept k ∈ C, the set of properties of k,
Pk is defined as Pk = {p | ∃r1, r2 ∈ R, p ∈ P : (r1, p, r2) ∈ KB∧(r1 rdf : type k) ∈
KB} ∪ {p | ∃r1 ∈ R, p ∈ P, l ∈ L : (r1, p, l) ∈ KB ∧ (r1 rdf : type k) ∈ KB}.

The properties of a concept need to be better qualified for the definition of the total
dependency graph. In particular, we define

Definition (Set of Property-to-Property (P-P) relationships) Given a concept k ∈
C, we define its set of Property-to-Property (P-P) relationships EPPk as the set of rela-
tionships existing between properties having the concept k as domain. More formally,
EPPk ≡ (Pk × Pk).

Definition (Set of Concept-to-Property (C-P) relationships) Given a concept k ∈
C, we define its set of Concept-to-Property (C-P) relationships ECPk as ECPk =
{(k, pj) | pj ∈ Pk}. This is the set of relationships holding between a concept k and its
properties Pk.

Definition (Set of Property-to-Concept (P-C) relationships) Given an object prop-
erty, its range concept is defined as Crangep = {k | ∃o ∈ R,∃s : (s, p, o) ∈
KB ∧ (o rdf : type k) ∈ KB}. We define the set of Property-to-Concept (P-C) re-
lationships of a concept k ∈ C, as EPCk = {(pj , c) | pj ∈ Pk ∧ c ∈ Crangepj }. This is
the set of relations between properties and their target concepts.

The Total Dependency Graph summarizes all these kinds of semantics in a unique
graph as follow.

5 We extend the notation used in [16]. In a similar way, we do not model blank nodes to keep
the presentation clear.
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Fig. 1. A simple RDF schema and its TDG.

Definition (Total Dependency Graph - TDG) A Total Dependency Graph - TDG is
the quintuple TDG = (C,P,EPP , ECP , EPC) where: C and P are set of nodes,
representing concepts, and properties respectively, and EPP , ECP , EPC) are sets of
edges denoting:

– EPP =
⋃
k∈C

EPPk , the union of the sets of the P-P relationships built for each

concept in the knowledge base;
– ECP =

⋃
k∈C

ECPk , the union of the sets of C-P relationships built for each concept

in the knowledge base;
– EPC =

⋃
k∈C

EPCk , the union of the sets of P-C relationships built for each concept

in the knowledge base.

Fragments of a Total Dependency Graph concerning only one node associated to a
concept are simply called Dependency Graphs.

Definition (Dependency Graph - DG) The Dependency Graph of a (reference) con-
cept k ∈ C is defined as DGk = (Pk, E

PP
k ).

Example 1. In Figure 1 a small RDF Schema and its corresponding TDG are shown.
Classes and properties of the RDF schema are transformed into nodes in the TDG.
Edges between nodes representing properties (EPP ), connecting the reference class
with its attributes (ECP ), and connecting properties with external classes (EPC) are
shown.

The signature of a structured source is represented as a TDG with weigthed nodes
and EPP and ECP edges. EPC are not weighted since they represent possible connec-
tions between classes in the data source.



3 Composite likelihood estimation of signatures

A characterization of signatures is carried out by determining a weighted graph that
summarizes the topics of a source. The weights in such graphs can be assigned using
two basic information-theoretical quantities: entropy and mutual information [9]. After
defining such quantities, we discuss their estimation based on data samples by compos-
ite likelihood techniques.

Definition (Entropy) Let X be a random variable representing an attribute with al-
phabets X and probability mass function p(x|θ), with unknown parameters θ ∈ Θ ⊆
Rp. The entropy H(X) is defined by H(X) = −EX log p(X|θ), where E(·) denotes
expectation with respect to p(x|θ).

Note that the above definition does not involve realized values for data instances,
thus making the signature independent of the class represented. In particular, entropy
describes the uncertainty of values in an attribute. Thus, one problem is estimation of
H(X) from available data instances by means of some appropriate approximation of
p(x|θ). If n samples of X are available, then an estimate θ̂ can be obtained by some
statistical estimation method, such as maximum likelihood estimation, so that H(X)

could be estimated by using θ = θ̂ in the definition above. To measure the information
shared by two attributes at the time we introduce the concept of mutual information.

Definition (Mutual Information) LetX and Y be two random variables representing
attributes with alphabets X and Y with joint mass function p(x, y|θXY ) and marginal
mass functions p(x|θX) and p(y|θY ). The mutual information of X and Y is:

I(X;Y ) = EXY

[
log

p(X,Y |θXY )
p(X|θX)p(Y |θXY )

]
= H(X) +H(Y )−H(X,Y ) (1)

where H(X) and H(Y ) are marginal entropies for X and Y and H(X,Y ) is the
entropy for the pair (X,Y ).

Firstly, note that I(·; ·) measures different levels of association (or shared infor-
mation) between pairs of nodes. If the association is strong, then the estimated joint
frequency p(x, y|θXY ) is large compared to the estimated frequency of separate nodes,
p(x|θX) and p(y|θY ). Secondly, note that similarly to entropy, also the mutual informa-
tion needs to be estimated from data instances. To estimate I(X;Y ) we need to obtain
parameter estimates θ̂X , θ̂Y , and θ̂XY . In our approach, entropy and mutual information
are computed by means of the cardinality of the URI for nodes representing concepts
and the cardinality of the range for nodes representing properties.

We remark that in the proposed TDG, a node can assume different roles (i.e., it can
be the reference concept in a DG, the range value of several properties according to
the source schema). This means that, depending on the role considered, a concept can
assume different cardinalities: it may vary from its maximum value, when a concept
node is considered as alone in a DG, to a number of other possible values, one for each
property it is involved. As a consequence, its entropy and the mutual information of its
edges may assume different values.



The method for estimating H(X), H(Y ) and H(X,Y ) from data samples is cru-
cial to obtain representative signature. A suitable method should be able to prevent
over-fitting. The estimated signature does not have to perfectly replicate a specific data
source, but rather provide us with a synthetic representation of a reference ontology
which, in turn, should describe a more complex real world. Over-fitting is important
in the presence of very large alphabets for the attributes under exam, with only a few
observed instances. The elements of the alphabets with very low frequency typically
inflate the overall noise thus deteriorating the quality of the available information.

Another issue related to the high dimensionality of the problem is computing. The
high number of instances usually collected in the RDF knowledge bases available online
makes the calculation of the actual values expensive from the computational point of
view. For example, the class Person (one of the 529 classes which form a subsumption
hierarchy) of the DBpedia Ontology (version 3.9) contains 832.000 instances and has
101 properties. This means that the cardinality of the set EPP built considering only
the class Person is 5,050. To address the above issues, we propose an approach for an
approximate computation of entropy and mutual information.

3.1 Parameter estimation

Let Y be an attribute of a binary alphabet y = (y1, . . . , yq) ∈ {0, 1}q . If the discrete
alphabet is not binary we convert it into a binary alphabet. The full dependency of q
labels can be represented by the joint distribution p(y|θ), θ ∈ Θ. We consider a com-
posite likelihood function constructed from marginal models, p(yi|x, θi) (i = 1, . . . , q),
and pairwise models, p(yi, yj |θij) (1 ≤ i < j ≤ q). Here {θi} and {θij} are two sets
of parameters vectors for univariate and bivariate models. The marginal and pairwise
densities are combined to form the composite model

p(y|θ, w) =
q∏
i=1

p(yi|θi)wi

∏
i<j

p(yi, yj |θij)wij , (2)

where w = (wTow, w
T
pw)

T is a vector including nonnegative elements wow = {wi :
i = 1, . . . , q} and wpw = {wij : 1 ≤ i < j ≤ q}. These are importance parameters
determining the contribution of the marginal and pairwise in the composite likelihood
function. Estimation of the joint distribution of two attributes (X,Y ) will be analogous.

Given a set of N training samples D = {yn}Nn=1, we compute the maximum com-
posite likelihood estimator (MCLE), θ̂, defined as the maximizer of the log-composite
likelihood function

`(θ, w) ≡
N∑
n=1

log p(yn|θ, w) =
N∏
n=1

L(θ, w|yn). (3)

Since parameters in different sub-likelihood components are independent, the MCLE
may be computed by maximizing separately marginal and pairwise log-likelihood func-



tions:

θ̂i = argmax
θi

N∑
n=1

log p(yni |θi), 1 ≤ i ≤ q, (4)

θ̂ij = argmax
θij

N∑
n=1

log p(yni , y
n
j |θij), 1 ≤ i < j ≤ q. (5)

Therefore, the problem of maximizing (3) is divided into q + q(q − 1)/2 separate op-
timization tasks involving the estimation of q binary classifiers and q(q − 1)/2 4-class
classifiers. Although the computational complexity of the above task is manageable, the
policy of keeping all available likelihood components is not well justified in terms of
efficiency relative to MLE, since inclusion of redundant factors can deteriorate dramat-
ically the variance of the corresponding composite likelihood estimator [5]. A better
strategy would be to choose a subset of likelihood components which are maximally
informative, and drop noisy or redundant components to the maximum extent.

3.2 Weights selection

The estimated one- and pair-wise models, f(yni |θ̂i) (1 ≤ i ≤ q) and f(yni , y
n
j |θ̂ij) (1 ≤

i < j ≤ q), are combined by composite likelihood decomposition in (2), according to
the vector, w. The importance parameter wj is selected to be small when, for a value of
θ that is appropriate for the majority of the data subsets, the likelihood function for the
jth data subset is relatively large. To this end, we use the importance scheme often used
for model combining (see [4] and references therein). For a given α > 0, we compute

ŵi ∝ exp

{
α

N∑
n=1

log p(yni |θ̂i)

}
, 1 ≤ i ≤ q, (6)

ŵij ∝ exp

{
α

N∑
n=1

log p(yni , y
n
j |θ̂ij)

}
, 1 ≤ i < j ≤ q. (7)

where {θ̂i} and {θ̂ij} are maximum likelihood estimates computed in the previous sec-
tion. The method is a type of regularization approach that favors simpler likelihoods
by producing weights tending to zero as α increases. For sufficiently large α, incom-
patible sub-models are down-weighted to the maximum extent, thus resulting in sparse
composite likelihood objects.

3.3 Estimation of mutual information

The mutual information defined in (1) is estimated by replacing the distributions
p(x, y), p(y) and p(x) by empirical counterparts estimated by the composite likeli-
hood approach described above. Particularly, we propose to approximate the entropy of



attributes X and Y by the fitted composite likelihood functions

Ĥ(X) = `(θ̂X , ŵX) =

N∑
n=1

log pX(xn|θ̂X , ŵX) (8)

Ĥ(Y ) = `(θ̂Y , ŵY ) =

N∑
n=1

log pY (y
n|θ̂Y , ŵY ) (9)

where pX , pY are composite models for X and Y defined as in (2) and {θ̂(X), ŵ(X)}
and {θ̂(Y ), ŵ(Y )} the corresponding sets of parameter estimates. Similarly, the entropy
of the variable pair (X,Y ) is approximated by

Ĥ(X,Y ) = `(θ̂XY , ŵXY ) =

N∑
n=1

log pXY (x
n, yn|θ̂XY , ŵXY ) (10)

where pXY is the composite model for the variable pair (X,Y ) and {θ̂(Y X), ŵ(Y X)}
denote parameter estimates for the joint model. As a measure of mutual information,
we propose to use the following empirical approximation of the mutual information I
based on the fitted likelihood functions:

Î(X;Y ) =

N∑
n=1

log

{
pXY (x

n, yn|θ̂XY , ŵXY )
pX(xn|θ̂X , ŵX)pY (yn|θ̂Y , ŵY )

}
= Ĥ(X,Y )− Ĥ(X)− Ĥ(Y ).

(11)

Note that to avoid taking expectation over alphabets X and Y as in (1), the expectation
is replaced by summation over observations (xn, yn), 1 ≤ n ≤ N , in (11). Hence, the
summands in the right hand side of (11) correspond to the fitted composite likelihood
function as defined in (3). This approach reduces considerably the computational burden
compared to the exact approach.

4 Motivating Example

The DBpedia ontology (version 3.9) conceptualizes the real world through a hierarchy
structure made of 610 classes (see the DBpedia website for more details6). Each class
comprises a rich set of datatype and object properties (e.g., the class Person includes
more than 3k properties), and a large number of instances is provided for most of the
classes (e.g., there are more than 760k instances belonging to the class Person in the
English version, more than 300k belonging to the class Work).

The goal of this preliminary evaluation is to show that signatures can effectively
represent topics. For reaching this purpose, we performed three experiments and we
tested if: 1) Casual partitions of the instances of the same concept provide similar sig-
natures; 2) The signatures of a concept and the one of some superset concept are close;
3) The signatures of two not related concepts are different. We started our evaluation

6 http://wiki.dbpedia.org/Datasets/DatasetStatistics
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Fig. 2. Three TDGs from DBpedia classes. The values in the boxes are estimated with the pro-
posed technique.

by selecting three classes from DBpedia (Writer, Artist, Automobile) and building their
TDGs as shown in Figure 2. The first signature represents a fragment of the DBpedia
Writer class, including only five representative properties for simplicity. The second
TDG describes the Artist class, i.e. a superclass of Writer. Note that both classes share
the same properties. Finally, the third TDG represents five properties of the Automobile
class. In Figure 2, we show also the weights for representing the actual and the esti-
mated values (in the boxes) of Entropy (on the nodes) and Mutual Information (on the
edges).

Since we are interested to evaluate the specific contribution provided by entropy
and mutual information alone, we performed separate evaluations, by considering firstly
only the nodes (thus measuring the contribution of the entropy) and secondly the edges
(thus measuring the contribution of the mutual information). We adopted a Euclidean
distance-based metric as, in [9], defined as follows. Let A and B be two equal size



dependency graphs and ai, bj the entropy of the node i and j in graph A and B, respec-
tively. Let m be an index that maps a node in graph A into the matching node in graph
B (i.e., m(node in A) = matching node in B). The distance metric based on entropy for
graph A and B is:

D =
√∑

i (ai − bm(i))2

An analogous distance measure can be easily defined by considering the mutual
information instead of entropy. The result of our experiments is shown in Table 1, where
Rows 1-3 compare signatures obtained by random equal-size partitions of the instances
of the concepts Writer, Artist and Automobile (actually, the result shown is the mean
of the distance measures obtained evaluating 10 random partition). Rows 4-5 show the
distances between the signature of concept Writer and its superset Artist (with correct
and random matches between the properties). Rows 6-7 show the distances between
the previous concepts (Writer and Artist) and the concept Automobile. The columns of
the Table represent the types of distances between the graphs computed: we considered
nodes and edges with the standard and the estimated measures for entropy and mutual
information.

# Comparison Distance Distance Distance Distance [log]
(H - Nodes) (MI - Edges) (Est. H - Nodes) (Est. MI - Edges)

1 Artist - Artist 0.016 0.327 1.178 6.010
2 Writer - Writer 0.008 0.348 0.292 5.777
3 Automobile - Automobile 0.036 0.845 0.452 4.461
4 Artist - Writer (best matches) 0.205 16.038 26.550 8.879
5 Artist - Writer (random matches) 2.025 20.811 750.570 11.344
6 Artist - Automobile (best matches) 1.825 58.664 903.417 11.169
7 Writer - Automobile (best matches) 1.727 54.719 197.669 11.406

Table 1. Evaluation of the TDGs.

A qualitative evaluation of the preliminary results shows that all the techniques can
detect signatures representing similar or different concepts. Our estimated values pro-
duce more polarized values, thus making the understanding of diverse classes easier.
Moreover, as in [9], our experiments show that the entropy alone provides a good ac-
count of the similarities between the classes. Nevertheless, since we considered only
few properties, we found some results not strictly consistent with the data (e.g., the
value of the distance between Artist and Writer based on mutual information is higher
than the one we were expecting, since the classes represent similar world concepts).
Finally, the evaluation would definitely provide better results by considering a distance
relying on all the weights (nodes and edges).

4.1 Preliminary discussion

The evaluation shown in the previous section permits us to draw some preliminary
conclusions, which will constitute the basis of our future work.



1. The technique proposed and, in particular, the signature based on approximate
weights is promising: it can effectively support the process of identifying the topics
of a data source.

2. Signatures can also be experimented coupled with other techniques for detect-
ing similarities between graphs. In particular, we think to obtain better results
with matching approaches based on the source schema, like for instance names of
classes/properties comparisons. In this way, techniques, relying on different kinds
of information, can complement each other.

3. The definition of an effective and efficient algorithm for comparing signatures is
a critical task. The graph matching algorithm should be able to work with: (1)
graphs of different sizes, making possible to match graphs and subset of graphs; (2)
many-to.one, one-to-many and many-to-many concepts mappings. Our signature
extraction method is applicable for both (1) and (2). The example showed only
signatures representing a single concept in both the reference ontology and in the
target data sources. This because for now the matching algorithm (based on the
Euclidean distance) only works for one-to-one concept match; but it is only a metter
of matching algorithm and goes beyond the scope of this paper, i.e. proving that a
signature based method can be exploited to discover topics of a data source.

5 Related work

To provide users with techniques and tools for automatically understanding the topics of
a data source is a hot and challenging issue. The problem is well known in the IR Com-
munity, where it is applied to unstructured documents with important outcomes [3]. In
the context of structured data sources, the proposed techniques face the issue follow-
ing three main perspectives: providing summaries, exploiting reference ontologies and
supporting users with visual tools.

Summary-based approaches aim to identify and extract a small subset of the infor-
mation which is representative of the entire contents of the data source. In [14] and [15]
two approaches dealing with relational databases and graphs, respectively, have been
proposed. Both the approaches compute the closeness between data structures and the
importance of the data taking into account entropy and mutual information. In [2], the
goal is to summarize an attribute domain. A mix of techniques is applied for cluster-
ing the attribute values and identifying in each cluster a single representative value.
Ontology-based approaches try to match content and data structures into some refer-
ence ontology. Summarized attributes can support the keyword search task as depicted
in [1]. The research community in the Semantic Web is studying for fifteen years this
process and several algorithms based on heuristic, syntactic and semantic rules have
been proposed [7]. Finally, in the data science field, several code libraries and tools
have been proposed for extracting visual summaries from the content of a data source
(see for example Tableau7 or Gephi8).

Our approach mixes some features from both the summary and the ontology-based
approaches. The idea of creating a datasource signature starts from [9] where a depen-

7 http://www.tableausoftware.com/
8 http://www.gephi.org/



dency graph is built for supporting schema matching in a data integration approach. In
this paper we adapted the approach for RDF sources and we extended the technique
with the introduction of different kinds of edges connecting nodes.

Other approaches have applied entropy and mutual information to RDFS graphs
(see for example [8]). Nevertheless, in this paper we adopted a novel technique for
estimating the mutual information based on composite likelihood.

Finally, it is important to observe that Sindice.com [11], an RDF search engine,
could be considered as a possible solution of the problem on hand. Nevertheless,
Sindice focuses on finding triples containing particular keywords and not discovering
data sources topics.

6 Conclusion and future work

In this paper we presented our preliminary proposal for providing users with an insight
of a target data source topic. The approach relies on a reference ontology, a technique
for generating signatures and an algorithm for graph matching. The preliminary results
show that our proposal can really support the user in this task.

Future work will be devoted to three main tasks. Firstly, we will develop and im-
plement a graph matching algorithm able to effectively match signatures from different
data sources. Secondly we will perform a deep evaluation of the proposed approach in
different domains and with data sources having different features in terms of numbers
of attributes and instances. Thirdly, we will improve the technique for estimating en-
tropy and mutual information to weighting the graph. In particular, we will experiment
other statistical measures for evaluating the correlation of the values in order to obtain
more effective signatures.
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