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Abstract. The reasoning should tackle big data issues like other domains as the 

size of ontology grows bigger and bigger. Especially, rule-based reasoning 

should overcome the following challenges: duplicate elimination and rule 

matching efficiency. To deal with these challenges, we introduce a new rule-

based reasoning method which materializes each generic instance rule into sev-

eral schema-specific instance rules and combines with Hadoop framework to 

deal with billions of triples. The experiment shows the materialization remarka-

bly improves the efficiency of rule-based reasoning by reducing the amount of 

required memory and making it linear to the data size. 
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1 Introduction 

Rule-based reasoning is a process that derives new knowledge – it is represented in 

triples composed of subject, predicate and object in ontology reasoning – from given 

set of knowledge by matching more than one rules. However, the reasoning process is 

also suffering from big data issues like other domains as the size of ontology has be-

come bigger and bigger. To achieve efficient reasoning with overcoming big data 

issues, we have several challenges and two of them are follows: duplicate elimination 

and rule matching efficiency.  

First, separate input sets of triples may derive same – i.e., duplicate – triples by one 

rule. Even different rules may derive duplicate triples. Urbani et al.[1] pointed out that 

reasoning might derive 50 times more duplicates than unique derived triples in their 

preliminary simulation. So, we need an efficient mechanism for eliminating dupli-

cates and this challenge should be overcome by all means to achieve the scalability of 

reasoning process. Second, some parts of reasoning rules are often so generic to cause 

too many matches of triples. Rules are generally defined from the semantics of vo-

cabularies of ontology description languages such as RDF (Resource Description 

Framework), RDFS (RDF Schema) and OWL (Web Ontology Language). Therefore, 

these rules are always valid independently of any specific ontology and have generic 

triple patterns in their condition. These rules often cause inefficiency in matching 

them to given set of triples because the generic patterns could be matched to too many 

given triples, most of which are eventually filtered out when joining with triples 
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matched to remaining patterns. So, we need an efficient mechanism for reducing such 

unnecessary triple matches. 

In this paper, we present a method that removes unnecessary pattern matches, 

eventually reduces join operations in rule-based reasoning selectively fetches input 

triples, and efficiently eliminates duplicates derived by reasoning rules. 

The remaining part of this paper is as follows: in section 2, some related works are 

explored and in section 3, our main approaches are described. Some experiments 

justifying our approaches are given in section 4, which is followed by conclusion in 

section 5. 

2 Related Work 

Rule-based reasoning is implemented widely based on rete algorithm[2][3] due to its 

efficiency in pattern matching. This algorithm achieves efficiency of pattern matching 

by enabling more than one rule to share triples matched to their common triple pat-

terns. Most time-consuming operation in rete occurs when joining triples from more 

than one pattern because join operation causes repeated search and comparison of 

corresponding values to common variables. To perform this efficiently, indexing 

mechanisms such as hashing or Pyramid technique are usually adopted[3][4]. Rete 

has a big advantage in efficiency but also has a severe disadvantage in scalability. It 

requires quite large memory spaces because it maintains all triples matched to each 

pattern and joined by more than one pattern in main memory. This makes it impossi-

ble for rete-based reasoning to process billions of triples.  

To achieve scalability of rule-based reasoning, recent research such as WebPIE[1] 

utilized Hadoop, a distributed and parallelized computing framework. It showed that 

the performance of Hadoop-based reasoning is highly dependent on how to design 

mappers and reducers for each rule. So, it designed rule-specific mappers and reduc-

ers and succeeded to achieve web-scale reasoning. To eliminate duplicate derivation 

in early stage, it tried to get mappers to group input triples by considering the output 

of the rule, not joining key. It, in addition, maintained schema triples in main memory 

to improve load balances between parallelized computing nodes. 

In this paper, we describe a new approach that first removes unnecessary pattern 

matches in rete framework by materializing rules based on given ontology schema, 

next fetches input triples selectively by implementing rule-specific input formats, and 

finally eliminates duplicate derivations by grouping rules having same output forms. 

3 Rule Materialization 

In our previous work[5], we applied dynamic materialization on some rules having 

genric patterns in RDFS and OWL semantics[6][7] and in this paper, we extend the 

materialization to all rules having schema triple patterns in RDFS and OWL seman-

tics. Triples can be divided into two types: schema and instance triples. Schema indi-

cates triples defining classes, relationships between them, and attributes related to 

them while instance means triples describing individuals, relationship between them, 



 

 

and attributes related to them. Similarly, triple patterns forming rules can also be di-

vided into two types: schema and instance triple patterns. Schema triples are generally 

small and static to a given ontology so as to be maintained in main memory while 

instance triples may continue to grow as much as not to be maintained in main 

memory. So, schema-only rules could be processed sufficiently on rete framework, 

but rules having instance triple patterns could not be processed on rete when the pat-

terns are too generic. 

For example, the generic triple pattern (u p v) of rdfs2 in Table 1 could be 

matched to all given triples, but only small part of them could be joined with specific 

triples matched to the remaining triple pattern (p rdfs:domain c) due to the common 

variable ‘p’. Indexing mechanisms such as hashing are usually applied to check such 

consistency efficiently, but they also require large memory spaces. More badly, as the 

target ontology grows, such indexing size also grows and may not be maintained in 

main memory. To solve this issue, we take following approaches according to types 

of rules: 

 Schema-only rules (i.e., rdfs 5, 6, 8, 10, 11, 12, and 13, and owl-horst 9, 10, 12a, 

12b, 12c, 13a, 13b, and 13c) are processed fully on rete framework.  

 Generic-only rules (i.e., rdf 1 and 2, rdfs 1, 4a, and 4b, owl-horst 5a and 5b) are 

replaced and processed fully using dictionary which encodes all unique terms of 

input triples. 

Table 1. RDF and RDFS rules[6] 

id entailment rules 

rd
f 

1 (u p v)  (p rdf:type rdf:Property) 

2 
(u p v) (if v is a XML literal and _:n is a bland node allocated to v)  (_:n rdf:type 

rdf:XMLLiteral) 

rd
fs 

1 
(u p v) (if v is a plain literal and _:n is a bland node allocated to v)  (_:n rdf:type 

rdfs:Literal) 

2 (p rdfs:domain c) (u p v)  (u rdf:type c) 

3 (p rdfs:range c) (u p v)  (v rdf:type c) 

4a (u p v)  (u rdf:type rdfs:Resource) 

4b (u p v)  (v rdf:type rdfs:Resource) 

5 (p rdfs:subPropertyOf q) (q rdfs:subPropertyOf r)  (p rdfs:subPropertyOf r) 

6 (p rdf:type rdf:Property)  (p rdfs:subPropertyOf p) 

7 (p rdfs:subPropertyOf q) (u p v)  (u q v) 

8 (c rdf:type rdfs:Class)  (c rdfs:subClassOf rdfs:Resource) 

9 (c rdfs:subClassOf d) (u rdf:type c)  (u rdf:type d) 

10 (c rdf:type rdfs:Class)  (c rdfs:subClassOf c) 

11 (c rdfs:subClassOf d) (d rdfs:subClassOf e)  (c rdfs:subClassOf e) 

12 
(p rdf:type rdfs:ContainerMembershipProperty)  (p rdfs:subPropertyOf 

rdfs:member) 

13 (c rdf:type rdfs:Datatype)  (c rdfs:subClassOf rdfs:Literal) 

 



 

 

 Rules related to ‘owl:sameAs’ (i.e., owl-horst 6, 7, and 11) are replaced with 

sameAs table storing all same terms, defining a canonical term among them, and 

replacing all same term occurrences with their canonical ones. 

 Remaining rules having combination of schema and instance triple patterns (i.e., 

rdfs 2, 3, 7, and 9, owl-horst 1, 2, 3, 4, 8a, 8b, 14a, 14b, 15, and 16) are processed 

first on rete to be materialized into schema-specific rules and then each material-

ized rule is processed on distributed and parallelized Hadoop framework. 

The first and second ones are straightforward and the third one is similar to the ap-

proach of WebPIE[1]. So, the detailed explanation of them is omitted here. For the 

last one, our previous work[5] introduced rete-based framework that materializes 

some of the rules (i.e., rdfs 2, 3, 7, and 9, owl-horst 4, and 8a) into schema-specific 

rules and this paper  extends the work into other rules in OWL Horst and incorporates 

Hadoop framework[9] additionally to deal with billions of triples.  

For example, when a given ontology defines n functional properties, p1,…,pn, our 

rete-based reasoning framework will materialize the rule owl-horst1 into following n 

rules: (u pi v) (u pi w)  (v owl:sameAs w) (here, i = 1,…,n). These rules can be im-

plemented in one pair of a mapper and a reducer as in WebPIE[1] but having pi as 

parameters. In addition, when input triples are stored and indexed with six possible 

Table 2. OWL Horst rules[1][8] 

id entailment rules 

1 (p rdf:type owl:FunctionalProperty) (u p v) (u p w)  (v owl:sameAs w) 

2 (p rdf:type owl:InverseFunctionalProperty) (u p w) (v p w)  (u owl:sameAs v) 

3 (p rdf:type owl:SymmetricProperty) (u p v)  (v p u) 

4 (p rdf:type owl:TransitiveProperty) (u p v) (v p w)  (u p w) 

5a (u p v)  (u owl:sameAs u) 

5b (u p v)  (v owl:sameAs v) 

6 (u owl:sameAs v)  (v owl:sameAs u) 

7 (u owl:sameAs v) (v owl:sameAs w)  (u owl:sameAs w) 

8a (p owl:inverseOf q) (u p v)  (v q u) 

8b (p owl:inverseOf q) (u q v)  (v p u) 

9 (c rdf:type owl:Class) (c owl:sameAs d)  (c rdfs:subClassOf d) 

10 (p rdf:type rdf:Property) (p owl:sameAs q)  (p rdfs:subPropertyOf q) 

11 (u p v) (u owl:sameAs x) (v owl:sameAs y)  (x p y) 

12a (c owl:equivalentClass d)  (c rdfs:subClassOf d) 

12b (c owl:equivalentClass d)  (d rdfs:subClassOf c) 

12c (c rdfs:subClassOf d) (d rdfs:subClassOf c)  (c owl:equivalentClass d) 

13a (p owl:equivalentProperty q)  (p rdfs:subPropertyOf q) 

13b (p owl:equivalentProperty q)  (q rdfs:subPropertyOf p) 

13c (p rdfs:subPropertyOf q) (q rdfs:subPropertyOf p)  (p owl:equivalentProperty q) 

14a (c owl:hasValue v) (c owl:onProperty p) (u p v)  (u rdf:type c) 

14b (c owl:hasValue v) (c owl:onProperty p) (u rdf:type c)  (u p v) 

15 (c owl:someValuesFrom d) (c owl:onProperty p) (u p v) (v rdf:type d)  (u rdf:type c) 

16 (c owl:allValuesFrom d) (c owl:onProperty p) (u p v) (u rdf:type c)  (v rdf:type d) 

 



 

 

combinations of subject, predicate and object using Hbase[10], one of column-based, 

no-SQL databases, the input format of the mapper can be implemented to selectively 

fetch triples only matched to the corresponding pattern. Finally, we can combine rules 

having a common conclusion (e.g., rdfs 2, 3, and 9) and implement one pair of a 

mapper and a reducer to efficiently eliminate duplicates derived from different rules. 

4 Experiments 

To demonstrate the feasibility of the proposed materialization approach, we first 

checked memory usages according to materialization. Fig. 1 shows that the memory 

without materialization is exhausted quickly even though the size of data is quite 

small, while the memory with materialization is consumed smoothly. We also com-

pared the elapsed time in reasoning with and without materialization using 

LUBM[11]. The result in Fig. 2 shows that materialization improves the reasoning 

remarkably and even makes it linear to the size of data. 

Especially, rete-reasoning without materialization consumed and exhausted memo-

ries very quickly even for small size of data. However, materialization solved this 

issue effectively by maintaining only schema triples in memory and leaving reasoning 

of instance rules to Hadoop framework. 

Fig. 1. Memory usages with and without materialization 

 

Fig. 2. The elapsed time in reasoning with and without materialization according to the size of 

data (LUBM) 

  
(a) without materialization, LUBM(20)     (b) with materialization, LUBM(1000) 



 

 

5 Conclusion 

This paper explained a rete-based reasoning method that materializes RDFS and 

OWL-Horst rules when an ontology schema is given and then can combine with Ha-

doop framework to deal with billions of triples. Each generic instance rule is material-

ized into several schema-specific rules, which can be implemented in a pair of a map-

per and a reducer. Each mapper can selectively fetch input triples matched to its pat-

tern using Hbase and rules having a common conclusion can be combined into a re-

ducer to efficiently eliminate duplicate derivations from different rules. 

The combination with Hadoop framework is being implemented and will be tested 

to check how much our method could improve reasoning performance, comparing to 

WebPIE[1] in near future. 
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