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Preface

In memory of Roberto Cordeschi

This book of Proceedings contains the accepted papers of the second International
Workshop on Artificial Intelligence and Cognition (AIC 2014), held in Turin (Italy)
on November 26th and 27th, 2014. The series of workshop AIC was launched in
2013 with the idea of fostering the collaboration between the researchers (coming
from the fields of computer science, philosophy, engineering, psychology, neuro-
sciences etc.) working at the intersection of the Cognitive Science and Artificial
Intelligence (AI) communities, by providing an international forum of discussions
and communication of the research results obtained.

In this workshop proceedings appear 3 abstracts of the talks provided by the
keynote speakers and 15 peer reviewed papers accepted by the Program Commit-
tee Members through a process of peer-review. Specifically, 10 full papers (31%
acceptance rate) and 5 short papers were selected out of 32 submissions coming
from researchers of 18 different countries from all the continents. In the follow-
ing, a short introduction to the content of the volume (full and short papers) is
presented.

In the paper “An Interdisciplinary Approach for a Holistic and Embodied
Emotion Model in Humanoid Agents”, by Samer Schaat, Matthias Huber, Klaus
Doblhammer, Dietmar Dietrich, the authors survey contributions from different
disciplines (such as Neuroscience, Psychoanalysis, Neuropsychoanalysis, and in
Agent-based Systems) to a holistic and embodied emotion model. In particular,
the paper investigates how models from relevant disciplines can be beneficial in
building Agents Systems.

In the paper “Using Meta-Cognition for Regulating Explanatory Quality Through
a Cognitive Architecture”, by John Licato, Ron Sun and Selmer Bringsjord, the
authors present an investigation on the generation of explanations, framed in the
meta-cognitive and non-action-centered subsystems of the cognitive architecture
CLARION. The paper focuses on the generation of qualitatively different types of
explanations.

The paper “Revisiting Interacting Subsystems Accounts of Cognitive Architec-
ture: The Emergence of Control and Complexity in an Algebra Task”, by Gareth
Miles, presents a simulation of an algebra task in the cognitive architecture GLAM-
PS where the cognitive control is not implemented directly but rather emerges from
the interaction of several sub-systems.

The paper “Biologically Plausible Modelling of Morality” by Alessio Plebe
presents a biologically plausible neurocomputational model of moral behaviour.
The model is implemented in a neural network combining reinforcement and Heb-
bian learning and simulates the involvement of the sensorial system interaction



III

with emotional and decision making systems in a situation involving moral judg-
ments.

The paper “How Artificial is Intelligence in AI? Arguments for a Non-Discrim-
inatory Turing test”, by Jack Birner, presents a theoretical contribution where the
author suggests a resemblance between some long-forgotten ideas of F. A. Hayek’s
and some ideas discussed by A. Turing in his well-known 1950 article “Computing
Machinery and Intelligence” lying at the basis of “classical” AI.

In the paper “On the Concept of Correct Hits in Spoken Term Detection”, by
Gàbor Gosztolya, the author compares system for spoken term detection (STD)
against human response in dealing with the Hungarian, which is an agglutinative
language and, as such, poses additional challenges to both human and automatic
STD tasks. A discussion on how the spoken term detection task is evaluated is
provided, along with practical tools to individuate ground truths for evaluation
(by starting from user information).

The paper “Action Recognition based on Hierarchical Self-Organizing Maps”,
by Miriam Buonamente, Haris Dindo, and Magnus Johnsson, presents a hierarchi-
cal neural architecture, based on Self-Organizing Maps (SOM), able to recognise
observed human actions. The architecture is evaluated in an experimental set-
ting based on the recognition of actions from movies taken from the INRIA 4D
repository.

In the paper “Learning Graspability of Unknown Objects via Intrinsic Moti-
vation”, by Ercin Temel, Beata J. Grzyb, and Sanem Sariel, the authors propose
a machine learning optimization aimed at learning whether and how some simple
objects can be grasped through a robotic arm. The optimization relies on the no-
tion of frustration. The frustration, which is governed by the ‘impulsiveness’, that
measures how fast a robot gets frustrated. The introduced frustration is experi-
mentally proven useful to faster learning.

In the paper “On the Cognitive and Logical Role of Image Schemas in Com-
putational Conceptual Blending”, by Maria Hedblom, Oliver Kutz, and Fabian
Neuhaus, the role of image schemas in computational concept creation process is
discussed. In particular, the authors propose to build a library of formalized im-
age schemas, and illustrate how they can guide the search for a base space in the
concept invention workflow.

The paper “Monoidal Logics: how to Avoid Paradoxes”, by Clayton Peterson,
presents monoidal logics as a formal solution that can be useful in AI in order
to avoid some classical paradoxes based on cartesian logical structure. The main
differences between standard Cartesian logics and monoidal logics are presented
in the article.

In the paper “Mathematical Patterns and Cognitive Architectures”, by Agnese
Augello, Salvatore Gaglio, Gianluigi Oliveri, and Giovanni Pilato, the authors in-
vestigate the nature of mathematical patterns and some elements of the cognitive
structure an agent should have to recognize them, and propose a mapping of such
patterns in the setting of Conceptual Spaces.

In the paper “Romeo2 Project: Humanoid Robot Assistant and Companion for
Everyday Life: I. Situation Assessment for Social Intelligence”, by Pandey et al.,
concerns robotic situational awareness and perception in HRI scenarios. In par-
ticular, a general overview of a multi-modal perception and situation assessment
system built in the Romeo2 project. redmi pare che questa frase non stia in piedi:
forse possiamo aggiungere ‘are illustrated’ alla fine? verrebbe quindi: In particular,
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a general overview of a multi-modal perception and situation assessment system
built in the Romeo2 project are illustrated.

In the paper “Information for Cognitive Agents”, by Nir Fresco, a theoretic
account of the concept of “information” is proposed. In particular, the author
defends the importance of a pragmatic - neo Peircean - account of information
that can be useful in the area of cognitively inspired AI.

In the paper “Mining and Visualizing Uncertain Data Objects and Named
Data Networking Traffics by Fuzzy Self-Organizing Map”, by Amin Karami and
Manel Guerrero-Zapata, the authors propose a novel algorithm to mine and visu-
alize uncertain objects; the proposed algorithm is successfully applied to known
benchmarks and to mine and visualize network attacks in the context of the Named
Data Networking (NDN).

In the paper “Implementation of Evolutionary Algorithms for Deep Architec-
tures”, by Sreenivas Sremath Tirumala, the author advocates for further research
on deep learning by evolutionary computation (EC) researchers. A review of some
latest deep architectures is presented and a survey is provided about some evolu-
tionary algorithms that can be explored to train these deep architectures to the
ends of promoting the research on evolutionary inspired deep learning techniques.

December 2014 Antonio Lieto
Daniele P. Radicioni

Program Chairs, AIC 2014
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Vincenzo Lombardo University of Torino, Italy
Diego Marconi University of Torino, Italy
Marjorie McShane Rensselaer Polytechnic Institute, Troy, NY, USA
Orazio Miglino University of Napoli ‘Federico II’, Italy
Alessandro Oltramari Carnegie Mellon University, USA
Fabio Paglieri ISTC-CNR, Italy
Maria Teresa Pazienza University of Roma ‘Tor Vergata’, Italy
Alessio Plebe University of Messina, Italy
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How can we reduce the gulf between artificial
and natural intelligence?

Invited talk at AIC 2014
http://aic2014.di.unito.it/

November 26-27 University of Turin, Italy

Aaron Sloman

School of Computer Science, Birmingham, UK
http://www.cs.bham.ac.uk/~axs

Abstract. AI and robotics have many impressive successes, yet there
remain huge chasms between artificial systems and forms of natural intel-
ligence in humans and other animals. Fashionable “paradigms” offering
definitive answers come and go (sometimes reappearing with new labels).
Yet no AI or robotic systems come close to modelling or replicating the
development from helpless infant over a decade or two to a competent
adult. Human and animal developmental trajectories vastly outstrip, in
depth and breadth of achievement, products of artificial learning systems,
although some AI products demonstrate super-human competences in
restricted domains. I’ll outline a very long-term multi-disciplinary re-
search programme addressing these and other inadequacies in current
AI, cognitive science, robotics, psychology, neuroscience, philosophy of
mathematics and philosophy of mind. The project builds on past work
by actively seeking gaps in what we already understand, and by looking
for very different clues and challenges: the Meta-Morphogenesis project,
partly inspired by Turing’s work on morphogenesis, outlined here:
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-morphogenesis.html

Keywords: evolution,information-processing,meta-morphogenesis,Turing

1 Introduction

There are many impressive successes of AI and robotics, some of them sum-
marised at http://aitopics.org/news. Yet there remain huge chasms between
artificial systems and forms of natural intelligence in humans and other animals
– including weaver-birds, elephants, squirrels, dolphins, orangutans, carnivorous
mammals, and their prey.1

Fashionable “paradigms” offering definitive answers come and go, sometimes
reappearing with new labels, and often ignoring previous work, such as the

1 Nest building cognition of a weaver bird can be sampled here:
http://www.youtube.com/watch?v=6svAIgEnFvw



impressive survey by Marvin Minsky over 50 years ago [6], long before computers
with suitable powers were available.

Despite advances over several decades, accelerated recently by availability of
smaller, cheaper, faster, computing mechanisms, with very much larger memories
than in the past, no AI or robotic systems come close to modelling or replicating
the development from helpless infant over a decade or two to plumber, cook,
trapeze artist, bricklayer, seamstress, dairy farmer, shop-keeper, child-minder,
professor of philosophy, concert pianist, mathematics teacher, quantum physicist,
waiter in a busy restaurant, etc. Human and animal developmental trajectories
vastly outstrip, in depth and breadth of achievement, the products of artificial
learning systems, although AI systems sometimes produce super-human compe-
tences in restricted domains, such as proving logical theorems, winning at chess
or Jeopardy.2

I’ll outline a very long-term multi-disciplinary research programme address-
ing these and other inadequacies in current AI, robotics, psychology, neuro-
science and philosophy of mathematics and mind, in part by building on past
and ongoing work in AI, and in part by looking for very different clues and
challenges: the Meta-Morphogenesis project, partly inspired by Turing’s work
on morphogenesis.3

2 First characterise the gulf accurately

We need to understand what has and has not been achieved in AI. The former
(identifying successes) gets most attention, though in the long run the latter
task (identifying gaps in our knowledge) is more important for future progress.

There are many ways in which current robots and AI systems fall short of
the intelligence of humans and other animals, including their ability to reason
about topology and continuous deformation (for examples see [7] and
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/torus.html). Don’t ex-
pect any robot (even with soft hands and compliant joints) to be able to dress a
two year old child (safely) in the near future, a task that requires understanding
of both topology and deformable materials, among other things.4

Getting machines to understand why things work or don’t work lags even
further behind programmed or trained abilities to perform tasks. For example,
understanding why it’s not a good idea to start putting on a shirt by inserting a
hand into a cuff and pulling the sleeve up over the arm requires a combination
of topological and metrical reasoning: – a type of mathematical child-minding
theorem, not taught in schools but understood by most child-minders, even if
they have never articulated the theorem and cannot articulate the reasons why

2 Though it’s best not to believe everything you see in advertisements
http://www.youtube.com/watch?v=tIIJME8-au8

3 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-
morphogenesis.html This project is unfunded and I have no plans to apply
for funding, though others may do so if they wish.

4 As illustrated in this video. http://www.youtube.com/watch?v=WWNlgvtYcEs



it is true. Can you? Merely pointing at past evidence showing that attempts to
dress a child that way always fails does not explain why it is impossible.

Fig. 1. What sequence of movements could get the shirt onto the child if the shirt is
made of material that is flexible but does not stretch much? Why would it be a mistake
to start by pushing the head through the neck-hole? What difference would it make if
the material could be stretched arbitrarily without being permanently changed?

In more obviously mathematical domains, where computers are commonly
assumed to excel, the achievements are narrowly focused on branches of mathe-
matics using inference methods based on arithmetic, algebra, logic, probability
and statistical theory.

However, mathematics is much broader than that, and we lack models of
the reasoning (for instance geometrical and topological reasoning) that enabled
humans to come up with the profoundly important and influential mathematical
discoveries reported in Euclid’s Elements 2.5 millennia ago – arguably the single
most important book ever written on this planet. The early pioneers could not
have learnt from mathematics teachers. How did they teach themselves, and
each other? What would be required to enable robots to make similar discoveries
without teachers?

Those mathematical capabilities seem to have deep, but mostly unnoticed,
connections with animal abilities to perceive practically important types of
affordance, including use of mechanisms that are concerned not only with the
perceiver’s possibilities for immediate action but more generally with what is
and is not possible in a physical situation and how those possibilities and im-
possibilities can change, for example if something is moved. A child could learn
that a shoelace threaded through a single hole can be removed from the hole by
pulling the left end of the lace or by pulling the right end. Why does combining
two successful actions fail in this case, whereas in other cases a combination
improves success (e.g. A pushing an object and B pushing the object in the same
direction)? Collecting examples of explanations of impossibilities that humans
understand but not yet current robots is one way to investigate gaps in what



has been achieved so far. It is also a route toward understanding the nature of
human mathematical competences, which I think start to develop in children
long before anyone notices.

Many animals, including pre-verbal humans, need to be able to perceive and
think about what is and is not possible in a situation, though in most cases
without having the ability to reflect on their thinking or to communicate the
thoughts to someone else. The meta-cognitive abilities evolve later in the history
of a species and develop later in individuals.

Thinking about what would be possible in various possible states of affairs
is totally different from abilities to make predictions about what will happen,
or to reason probabilistically. It’s one thing to try repeatedly to push a shirt
on a child by pushing its hand and arm in through the end of a sleeve and
conclude from repeated failures that success is improbable. It’s quite another
thing to understand that if the shirt material cannot be stretched, then success
is impossible (for a normally shaped child and a well fitting shirt) though if the
material could be stretched as much as needed then it could be done. Additional
reasoning powers might enable the machine to work out that starting by pushing
the head in through the largest opening could require least stretching, and to
work this out without having to collect statistics from repeated attempts.

3 Shallow statistical vs deep knowledge

It is possible to have a shallow (statistical) predictive capability based on ob-
served regularities while lacking deeper knowledge about the set of possibilities
sampled in those observations. An example is the difference between (a) having
heard and remembered a set of sentences and noticed some regular associa-
tions between pairs of words in those sentences and (b) being aware of the
generative grammar used by the speakers, or having acquired such a grammar
unconsciously. The grasp of the grammar, using recursive modes of composition,
permits a much richer and more varied collection of utterances to be produced
or understood. Something similar is required for visual perception of spatial
configurations and spatial processes that are even richer and more varied than
sentences can be. Yet it seems that we share that more powerful competence
with more species, including squirrels and nest-building birds.

This suggests that abilities to acquire, process, store, manipulate, and use
information about spatial structures evolved before capabilities that are unique
to humans, such as use of spoken language. But the spatial information requires
use of something like grammatical structures to cope with scenes of varying
complexity, varying structural detail, and varying collections of possibilities for
change. In other words visual perception, along with planning and acting on the
basis of what is scene, requires the use of internal languages that have many of
the properties previously thought unique to human communicative languages.
Finding out what those languages are, how they evolved, how they can vary
across species, across individuals, and within an individual during development



is a long term research programme, with potential implications for many aspects
of AI/Robotics and Cognitive Science – discussed further in [8].

Conceivably a robot could be programmed to explore making various move-
ments combining a shirt and a flexible, child-shaped doll. It might discover one
or more sequences of moves that successfully get the shirt on, provided that the
shirt and doll are initially in one of the robot’s previously encountered starting
states. This could be done by exploring the space of sequences of possible moves,
whose size would depend on the degree of precision of its motion and control
parameters. For example, if from every position of the hands there are 50 possible
3-D directions of movement and the robot tries 20 steps after each starting
direction, then the number of physical trajectories from the initial state to be
explored is

5020 = 9536743164062500000000000000000000
and if it tries a million new moves every second, then it could explore that space
in about 302408000000000000 millennia. Clearly animals do something different
when they learn to do things, but exactly how they choose things to try at each
moment is not known.

The “generative grammar” of spatial structures and processes is rich and
deep, and is not concerned only with linear sequences or discrete sequences. In
fact there are multiple overlapping space-time grammars, involving different col-
lections of objects assembled, disassembled, moved, repaired, etc. and used, often
for many purposes and in many ways. Think of what structures and processes
are made possible by different sorts of children’s play materials and construction
kits, including plasticine, paper and scissors, meccano, lego, tinkertoys, etc. The
sort of deep knowledge I am referring to involves grasp of the structure of a
construction-kit with generative powers, and the ability to make inferences about
what can and cannot be built with that kit, by assembling more and more parts,
subject to the possibilities and constraints inherent in the kit.5

There are different overlapping subsets of spatio-temporal possibilities, with
different mathematical structures, including Euclidean and non-Euclidean ge-
ometries (e.g. the geometry of the surface of a hand, or face is non-euclidean)
and various subsets of topology. Mechanisms for acquiring and using these “pos-
sibility subsets”, i.e. possible action sequences and trajectories, seem to be used
by pre-verbal children and other animals. That suggests that those abilities,
must have evolved before linguistic capabilities. They seem to be at work in
young children playing with toys before they can understand or speak a human
language. The starting capabilities extended through much spatial exploration,
provide much of the subject matter (semantic content) for many linguistic com-
munications.

Some of the early forms of reasoning and learning in young humans, and cor-
responding subsets in other animals, are beyond the scope of current AI theorem
provers, planners, reasoners, or learning systems that I know of. Some of those
forms seem to be used by non-human intelligent animals that are able to perceive

5 An evolving discussion note on this topic can be found here:
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/construction-kits.html



both possibilities and constraints on possibilities in spatial configurations. Betty,
a New Caledonian crow, made headline news in 2002 when she surprised Oxford
researchers by making a hook from a straight piece of wire, in order to lift a
bucket of food out of a vertical glass tube. Moreover, in a series of repeated
challenges she made multiple hooks, using at least four very different strategies,
taking advantage of different parts of the environment, all apparently in full
knowledge of what she was doing and why – as there was no evidence of random
trial and error behaviour. Why did she not go on using the earlier methods, which
all worked? Several of the videos showing the diversity of techniques are still
available here: http://users.ox.ac.uk/˜kgroup/tools/movies.shtml. The absence
of trial-and-error processes in the successful episodes suggests that Betty had a
deep understanding of the range of possibilities and constraints on possibilities
in her problem solving situations.

It is very unlikely that you have previously encountered and solved the
problem posed below the following image, yet many people very quickly think
of a solution.

Fig. 2. Suppose you wanted to use one hand to lift the mug to a nearby table without
any part of your skin coming into contact with the mug, and without moving the book
on which the mug is resting, what could you do, using only one hand?

In order to think of a strategy you do not need to know the exact, or even
the approximate, sizes of the objects in the scene, how far away they are from
you, exactly what force will be required to lift the mug, and so on. It may occur
to you that if the mug is full of liquid and you don’t want to spill any of it, then
a quite different solution is required. (Why? Is there a solution?).

The two pictures in Figure 3 present another set of example action strategies
for changing a situation from one configuration to another. At how many different
levels of abstraction can you think of the process, where the levels differ in the
amount of detail (e.g. metrical detail) of each intermediate stage. For example,
when you first thought about the problem did you specify which hands or which



Fig. 3. Consider one or more sequences of actions that would enable a person or robot
to change the physical configuration depicted on the left into the one depicted on the
right – not necessarily in exactly the same locations as the objects depicted. Then do
the same for the actions required to transform the right configuration to the left one.

fingers would be used at every stage, or at which location you would need to
grasp each item? If you specified the locations used to grasp the cup, the saucer
and the spoon, what else would have to change to permit those grasps? The point
about all this is that although you do not normally think of using mathematics
for tasks like this, if you choose a location at which to grasp the cup using
finger and thumb of your left hand, that will mathematically constrain the 3-D
orientation of the gap between between finger and thumb, if you don’t want
the cup to be rotated by the fact of bringing finger and thumb together. A
human can think about the possible movements and the orientations required,
and why those orientations are required, without actually performing the action,
and can answer questions about why certain actions will fail, again without doing
anything.

These are examples of “offline intelligence”, contrasted with the “online
intelligence” used in actually manipulating objects, where information required
for servo-control may be used transiently then discarded and replaced by new
information. My impression is that a vast amount of recent AI/Robotic research
has aimed at providing online intelligence with complete disregard for the re-
quirements of offline intelligence. Offline intelligence is necessary for achieving
complex goals by performing actions extended over space and time, including the
use of machines that have to be built to support the process, and in some cases
delegating portions of the task to others. The designer or builder of a skyscraper
will not think in terms of his/her own actions, but in terms of what motions of
what parts and materials are required.

3.1 Limitations of sensorymotor intelligence

When you think about such things even with fairly detailed constraints on the
possible motions, you will not be thinking about either the nervous signals sent
to the muscles involved, nor the patterns of retinal stimulation that will be
provided – and in fact the same actions can produce different retinal processes
depending on the precise position of the head, and the direction of gaze of the
eyes, and whether and how the fixation changes during the process. Probably



the fixation requirements will be more constrained for a novice at this task than
for an expert.

However, humans, other animals, and intelligent robots do not need to rea-
son about sensory-motor details if they use an ontology of 3-D structures and
processes, rather than an ontology of sensory and motor nerve signals. Contrast
this with the sorts of assumptions discussed in [2], and many others who attempt
to build theories of cognition on the basis of sensory-motor control loops.

As John McCarthy pointed out in [4] it would be surprising if billions of
years of evolution failed to provide intelligent organisms with the information
that they are in a world of persisting 3-D locations, relationships, objects and
processes – a discovery that, in a good design, could be shared across many
types of individuals with very different sensors and motors, and sensory motor
patterns. Trying to make a living on a planet like this, whose contents extend
far beyond the skin of any individual, would be messy and highly inefficient
if expressed entirely in terms of possible sensory-motor sequences, compared
with using unchanging representations for things that don’t change whenever
sensory or motor signals change. Planning a short cut home, with reference to
roads, junctions, bus routes, etc. is far more sensible than attempting to deal,
at any level of abstraction, with the potentially infinite variety of sensory-motor
patterns that might be relevant.

This ability to think about sequences of possible alterations in a physical
configuration without actually doing anything, and without having full metrical
information, inspired much early work in AI, including the sorts of symbolic
planning used by Shakey, the Stanford robot, and Freddy, the Edinburgh robot,
over four decades ago, though at the time the technology available (including
available computer power) was grossly inadequate for the task, including ruling
out visual servo-control of actions.

Any researcher claiming that intelligent robots require only the right physical
mode of interaction with the environment, along with mechanisms for finding
patterns in sensory-motor signals, must disregard the capabilities and information-
processing requirements that I have been discussing.

4 Inflating what “passive walkers” can do

Some (whom I’ll not mention to avoid embarrassing them) have attempted
to support claims that only interactions with the immediate environment are
needed for intelligence by referring to or demonstrating “passive walkers”,6

without saying what will happen if a brick is in the way of a passive walker, or
if part of the walking route starts to slope uphill. Such toys are interesting and
entertaining but do not indicate any need for a “New artificial intelligence”, using
labels such as “embodied”, “enactivist”, “behaviour based”, and “situated”, to
characterise their new paradigm. Those new approaches are at least as selective
as the older reasoning based approaches that they criticised, though in different
ways. (Some of that history is presented in Boden’s survey [1].)

6 E.g. http://www.youtube.com/watch?v=N64KOQkbyiI



The requirements for perception and action mechanisms differ according to
which “central” layers the organism has. For instance, for an organism able to
use deliberative capabilities to think of, evaluate, and select multi-step plans,
where most of the actions will occur in situations that do not exist yet, it is not
enough to identify objects and their relationships (pencil, mug, handle of mug,
book, window-frame, etc.) in a current visual percept. It is also necessary to be
able to “think ahead” about possible actions at a suitable level of abstraction,
including consideration of objects not yet known, requiring a potentially infinite
variety of possible sensory and motor patterns.

5 The birth of mathematics

The ability to reason about possible actions at a level of generality that abstracts
from metrical details seems to be closely related to the abilities of ancient Greeks,
and others, to make mathematical discoveries about possible configurations of
lines and circles and the consequences of changing those configurations, without
being tied to particular lengths, angles, curvatures, etc., in Euclidean geometry
or topology. As far as I know, no current robot can do this, and neuroscientists
don’t know how brains do it. Some examples of mathematical reasoning that
could be related to reasoning about practical tasks and which are currently
beyond what AI reasoners can do, are presented on my web site.7,8

In 1971 I presented a paper at IJCAI, arguing that the focus solely on logic-
based reasoning, recommended by McCarthy and Hayes in [5] could hold up
progress in AI, because it ignored forms of spatial reasoning that had proved
powerful in mathematics and practical problem solving. I did not realise then
how difficult it would be to explain exactly what the alternatives were and how
they worked – despite many conferences and journal papers on diagrammatic
reasoning since then.

There have also been several changes of fashion promoted by various AI
researchers (or their critics) including use of neural nets, constraint nets, evo-
lutionary algorithms, dynamical systems, behaviour-based systems, embodied
cognition, situated cognition, enactive cognition, autopoesis, morphological com-
putation, statistical learning, bayesian nets, and probably others that I have
not encountered, often accompanied by hand-waving and hyperbole without
much science or engineering. In parallel with this there has been continued re-
search advancing older paradigms for symbolic and logic based, theorem proving,
planning, and grammar based language processing. Several of the debates are
analysed in [1],

6 Other inadequacies

There are many other inadequacies in current AI, including, for example the
lack of an agreed framework for relating information-processing architectures

7 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/torus.html
8 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html



to requirements in engineering contexts or to explanatory models in scientific
contexts. For example attempts to model emotions or learning capabilities,
in humans or other animals, are often based on inadequate descriptions of
what needs to be explained, for instance poor theories of emotions that focus
only on emotions with characteristic behavioural expressions: a small subset of
phenomena requiring explanation or poor theories of learning that focus only on
a small subset of types of learning (e.g. reinforcement learning where learners
have no understanding of what’s going on). That would exclude the kind of
learning that goes on when people make mathematical discoveries or learn to
program computers or learn to compose music.

Moreover, much AI research uses a seriously restricted set of forms of rep-
resentation (means of encoding information) partly because of the educational
backgrounds of researchers – as a result of which many of them assume that
spatial structures must be represented using mechanisms based on Cartesian
coordinates – and partly because of a failure to analyse in sufficient detail the
variety of problems overcome by many animals in their natural environments.

Standard psychological research techniques are not applicable to the study
of learning capabilities in young children and other animals because there is so
much individual variation, but the widespread availability of cheap video cameras
has led to a large and growing collection of freely available examples.

7 More on offline and online intelligence

Researchers have to learn what to look for. For example, online intelligence
requires highly trained precisely controlled responses matched to fine details
of the physical environment, e.g. catching a ball, playing table tennis, picking
up a box and putting it on another. In contrast offline intelligence involves
understanding not just existing spatial configurations but also the possibilities
for change and constraints on change, and for some tasks the ability to find
sequences of possible changes to achieve a goal, where some of the possibilities
are not specified in metrical detail because they do not yet exist, but will exist
after part of the plan has been carried out.

This requires the ability to construct relatively abstract forms of representa-
tion of perceived or remembered situations to allow plans to be constructed with
missing details that can be acquired later during execution. You can think about
making a train trip to another town without having information about where
you will stand when purchasing your ticket or which coach you will board when
the train arrives. You can think about how to rotate a chair to get it through a
doorway without needing information about the precise 3-D coordinates of parts
of the chair or knowing exactly where you will grasp it, or how much force you
will need to apply at various stages of the move.

There is no reason to believe that humans and other animals have to use
probability distributions over possible precise metrical values, in all planning
contexts where precise measurements are not available. Even thinking about
such precise values probabilistically is highly unintelligent when reasoning about



topological relationships or partial orderings (nearer, thinner, a bigger angle,
etc.) is all that’s needed9 Unfortunately, the mathematically sophisticated, but
nevertheless unintelligent, modes of thinking are used in many robots, after much
statistical learning (to acquire probability distributions) and complex proba-
bilistic reasoning, that is potentially explosive. That is in part a consequence of
the unjustified assumption that all spatial properties and relations have to be
expressed in Cartesian coordinate systems. Human mathematicians did not know
about them when they proved their first theorems about Euclidean geometry,
built their first shelters.

8 Speculations about early forms of cognition

It is clear that the earliest spatial cognition could not have used full euclidean
geometry, including its uniform metric. I suspect that the metrical version of
geometry was a result of a collection of transitions adding richer and richer non-
metrical relationships, including networks of partial orderings of size, distance,
angle, speed, curvature, etc.

Later, indefinitely extendable partial metrics were added: distance between X
and Y is at least three times the distance between P and Q and at most five times
that distance. Such procedures could allow previously used standards to be sub-
divided with arbitrarily increasing precision. At first this must have been applied
only to special cases, then later somehow (using what cognitive mechanisms?)
extrapolated indefinitely, implicitly using a Kantian form of potential infinity
(long before Kant realised the need for this).

Filling in the details of such a story, and relating it to varieties of cognition
not only in the ancestors of humans but also many other existing species will
be a long term multi-disciplinary collaborative task, with deep implications for
neuroscience, robotics, psychology, philosophy of mathematics and philosophy
of mind. (Among others.)

Moreover, human toddlers appear to be capable of making proto-mathematical
discoveries (“toddler theorems”) even if they are unaware of what they have
done. The learning process starts in infancy, but seems to involve different kinds
of advance at different stages of development, involving different domains as
suggested by Karmiloff-Smith in [3].

For example, I recently saw an 11 month old infant discover, apparently with
great delight, that she could hold a ball between her upturned foot and the palm
of her hand. That sort of discovery could not have been made by a one month
old child. Why not?10

Animal abilities to perceive and use complex novel affordances appear to be
closely related to the ability to make mathematical discoveries. Compare the

9 As I have tried to illustrate in: http://www.cs.bham.ac.uk/research/projects/cogaff/misc/changing-
affordances.html

10 A growing list of toddler theorems and discussions of their requirements
can be found in http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-
theorems.html



abilities to think about changes of configurations involving ropes or strings and
the mathematical ability to think about continuous deformation of closed curves
in various kinds of surface.

Not only computational models, but also current psychology and neuro-
science, don’t seem to come close to describing these competences accurately
or producing explanations – especially if we consider not only simple numerical
mathematics, on which many psychological studies of mathematics seem to focus,
but also topological and geometrical reasoning, and the essentially mathematical
ability to discover a generative grammar closely related to the verbal patterns a
child has experienced in her locality, where the grammar is very different from
those discovered by children exposed to thousands of other languages.

There seem to be key features of some of those developmental trajectories
that could provide clues, including some noticed by Piaget in his last two books
on Possibility and Necessity, and his former colleague, Annette Karmiloff-Smith
[3].

9 The Meta-Morphogenesis project

Identifying gaps in our knowledge requires a great deal of careful observation of
many forms of behaviour in humans at various stages of development and many
other species, always asking: “what sort of information-processing mechanism
(or mechanisms) could account for that?”

Partly inspired by one of Alan Turing’s last papers on Morphogenesis [10],
I proposed the Meta-Morphogenesis (M-M) project in [9], a very long term col-
laborative project for building up an agreed collection of explanatory tasks, and
present some ideas about what has been missed in most proposed explanatory
theories.

Perhaps researchers who disagree, often fruitlessly, about what the answers
are can collaborate fruitfully on finding out what the questions are, since much of
what needs to be explained is far from obvious. There are unanswered questions
about uses of vision, varieties of motivation and affect, human and animal
mathematical competences, information-processing architectures required for all
the different sorts of biological competences to be combined, and questions about
how all these phenomena evolved across species, and develop in individuals. This
leads to questions about what the universe had to be like to support the forms
of evolution and the products of evolution that have existed on this planet.
The Meta-Morphogenesis project is concerned with trying to understand what
varieties of information processing biological evolution has achieved, not only in
humans but across the spectrum of life. Many of the achievements are far from
obvious.11

11 A more detailed, but still evolving, introduction to the project can
be found here: http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-
morphogenesis.html



Unfortunately, researchers all too often mistake impressive new developments
for steps in the right direction. I am not sure there is any way to change this
without radical changes in our educational systems and research funding systems.

But those are topics for another time. In the meantime I hope many more
researchers will join the attempts to identify gaps in our knowledge, including
things we know happen but which we do not know how to explain, and in the
longer term by finding gaps we had not previously noticed. I think one way to
do that is to try to investigate transitions in biological information processing
across evolutionary time-scales, since its clear that types of information used, the
types of uses of information, and the purposes for which information is used have
changed enormously since the simplest organisms floating in a sea of chemicals.

Perhaps some of the undiscovered intermediate states in evolution will turn
out to be keys to unnoticed features of the current most sophisticated biological
information processors, including humans.
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Abstract. Philosophical arguments and neuropsychological research on
deficits of lexical processing converge in indicating that our competence
on word meaning may have two components: inferential competence,
that takes care of word-word relations and is relevant to tasks such as
recovery of a word from its definition, pairing of synonyms, semantic
inference (“Milan is north of Rome” → “Rome is south of Milan”) and
more; and referential competence, that takes care of word-world rela-
tions, or, more carefully, of connections between words and perception of
the outside world (through vision, hearing, touch). Normal subjects are
competent in both ways; however, there are patients in which one com-
ponent seems to be impaired while the other performs at normal level.
Typically, cases are found of patients that are excellent at defining, say,
the word ‘duck’ but cannot recover the word when shown the picture of
a duck. Complementary cases have also been found and studied. Recent
experiments using neuroimaging (fMRI) found that certain visual areas
are active even in purely inferential performances, and a current exper-
iment appears to show that such activation is a function of what might
be called the “visual load” of both the linguistic material presented as
stimulus and the target word. Such recent results will be presented and
discussed. It should be noted that the notion of “visual load”, as apply-
ing to both individual words and complex phrases, has also been given
a computational interpretation.
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Abstract. Simulating and getting inspiration from biology is not a new
endeavor in robotics [1]. However, the use of humanoid robots as tools
to study human cognitive skills it is a relatively new area of the research
which fully acknowledges the importance of embodiment and interaction
(with the environment and with others) for the emergence of motor and
perceptual skills, sensorimotor coordination, cognitive and social abil-
ities [2]. Within this stream of research “developmental robotics” is a
relatively new area of investigation where the guiding philosophy – and
main motivation – is that cognition cannot be hand-coded but it has to
be the result of a developmental process through which the system be-
comes progressively more skilled and acquires the ability to understand
events, contexts, and actions, initially dealing with immediate situations
and increasingly acquiring a predictive capability [3]. The aim of this
talk is to present the guiding philosophy – and main motivation – and to
argue that, within this approach, robotics engineering and neuroscience
research are mutually supportive by providing their own individual com-
plementary investigation tools and methods: neuroscience from an “an-
alytic” perspective and robotics from a “synthetic” one.
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Abstract. Computational models of the human decision making process have 
already enabled several insights and applications. Nevertheless, such models 
have only recently begun to consider that simply modelling rational decision 
making was insufficient to represent human behavior. Recent efforts have start-
ed to consider this factor by utilizing computational models of emotions. One of 
the most significant challenges to be faced here is the interdisciplinary coopera-
tion required in order to develop a holistic and integrated model, which reflects 
aspects of embodiment and is integrated in a holistic cognitive architecture. In 
this paper we will analyse how models from relevant disciplines can support us 
in outlining an overview model which considers the mentioned criteria. 

Keywords: Emotions · Humanoid Agents · Evaluation Models · Decision Mak-
ing · Simulation · Artificial General Intelligence · Neuroscience · Neuropsy-
choanalysis. 

1 Introduction 

If one considers humans as being the archetypes of intelligent information processing, 
the fundamental mechanisms of human decision making must be considered. This is 
especially relevant for a holistic model of decision making. Over the last years the 
focus in this area was on rational decision making, with little consideration for the 
fact that this is actually based upon unconscious processes. In particular the consider-
ation of affective processes is needed in a computational representation of human 
capabilities that are used to  cope with every-day problems, such as “intuition”, “gut 
feeling” etc. A further tendency in humanoid agents is the reduction of decision mak-
ing to a set of universal rules. Even when the abstract principles of decision making 
are generally valid, the definite rules followed by humans cannot be generalized, and 
therefore must be generated according to a subjective approach, based on memory 
and also in an agent specific manner. Besides, conventional decision making models 
are mostly abstracted from the body. Following an embodied approach, human cogni-
tion and particularly decision making is however based upon the interaction of the 
brain with the rest of the body. 



 

 

These topics can only be tackled with an interdisciplinary approach, where com-
puter science is not used as a tool, but its methodologies are applied on the content of 
other disciplines. Such approach not only enables to develop computer models for 
technical applications, but also serves precision, concretization and sharpening of 
concepts from different disciplines. In order to develop a deterministic model of an 
agent decision making process according to human-based principles, we will leverage 
insights from different disciplines, considering embodiment, subjective approaches 
and unconscious processes. In particular we consider neuroscience, psychoanalysis, 
neuropsychoanalysis, and current computation models of emotions. Although the 
unconscious is a key concept in psychoanalysis, as far as we know, it is not analyzed 
yet for computational models of affective processes, and neuroscientific theories are 
not reflected in a holistic and embodied computational model of human decision mak-
ing yet. In order to further construct a model transformation upon this and to integrate 
neuroscientific and (neuro)psychoanalytic models into a technical model, it is neces-
sary that they are described consistently and holistically. Even though this paper shall 
focus on a model of the basic mechanisms of decision making, the holistic perspective 
may not be neglected. This represents the integration of cognition and emotion, which 
are thereby not modelled separately. Upon highlighting how each discipline (by an 
expert of neuroscientific emotion theories, a psychoanalyst and a computer scientist) 
perceives the fundamental mechanisms of subjective decision making in terms of the 
criteria described, we shall sketch an evaluation model for subjective decision making 
in humanoid agents which integrates the insights of the various disciplines. 

2 Emotions in Neuroscience 

Currently several epistemologically divergent neuroscientific research movements are 
endeavoring to describe human emotionality in a holistic context. In particular the 
work of Jaak Panksepp is of note, specifically his theory of mutually linked (neuronal 
interacting) basic emotion systems (seeking, fear, panic, rage) [1]. Also of note is the 
work of Gerald M. Edelman and his theory of Neuronal Darwinism in which emo-
tions, in the context of values and value systems, are introduced in a holistic theory of 
consciousness [2], a precursor to a modern integrative comprehension of emotions. 
The research of Joseph LeDoux concerning the “Amygdala Fear System” [3] and also 
the work of James McGough on the significance of emotions in learning and memory 
[4] are also worthy of mention. The Portuguese Antonio Rosa Damasio is recognized 
as one of the most significant and influential contemporary neuroscientists. His “The-
ory of Emotion” is highly regarded far beyond neurobiology circles, as his compre-
hension of emotions and feelings possesses great explanatory potential, confirmed 
through diverse studies [5], [6], and a plethora of neurophysiological data [7], [3], [8]: 
On the one hand Damasio is able to justify the holistic claim as his comprehensive 
body of work includes, along with the Theory of Emotion, a “Theory of Self”, a 
“Theory of Consciousness”, a “Theory of Mind” along with a theory governing the 
automatic regulation of life. On the other hand, Damasio also took on the challenge of 
creating a model for the dualistic juxtaposition of body and mind, based on the inevi-



 

 

table interdependence of reason and feelings, thereby transporting an anthropological 
comprehension which satisfies both the psychoanalytical developmental theories and 
phenomenological traditions.  

The starting point of Antonio Damasio’s deliberations is the organism, as a holis-
tic, open system, that progressively interacts with the environment and is organized 
according to the operating principle of homeostasis (automatic life regulation), 
whereby emotions form the ultimate level of these regulative (permanently active) 
mechanisms. This also clarifies why emotion and feeling take on a biological (and 
also evolutionary) function as necessary survival regulators for the protection of an 
organism. Damasio differentiates in this context between three processing stages: (1) 
an emotional status, which can be unconsciously triggered and executed, (2) a feeling 
state, which can be unconsciously represented along with (3) a consciously generated 
feeling state, in which the organism knows that it possesses emotions but also feelings 
[6, p. 51]. Furthermore three types of emotions are differentiated: (a) the primary 
emotions (fear, anger, sorrow, happiness, disgust, surprise) which are congenital (pre-
organized in terms of classical “Jamesist” feelings) and can be thought of as being 
genetically determined, universal and culturally dependent basic emotions. (b) The 
secondary or social emotions which in contrast develop over the course of ontogeny 
and emerge as soon as systematic connections of objects and/or situations with prima-
ry emotions are formed. Social or secondary emotions (e.g. compassion, embarrass-
ment, shame, guilt, pride, jealously, awe, envy etc.) are thereby acquired and respec-
tively triggered through mental registration with respect to the cognitive processing of 
situations and/or objects. (c) Background emotions are seen by Damasio as being the 
consequence of certain combinations of simple regulative (homeostatic) reactions 
(e.g. desire) [9, p. 56]. They are ever-present but are seldom consciously perceived 
and may be interpreted as being an expression of well-being or discomfort. Emotions 
thereby fulfill a double biological function: as already mentioned they must continu-
ously regulate the inner status of the organism. Above and beyond that they must also 
trigger a specific reaction to a particular stimulus or situation. Two mechanisms are 
available for this: emotions are formed either when our sensory organs process certain 
objects and/or situations (the body-loop) or when the organism retrieves certain ob-
jects and/or situations from memory and represents them as imaginary images in the 
thought process (the as-if-loop). It has already been stated that emotions and feelings 
are temporally and structurally predetermined: the key content of a feeling is the illus-
tration of a particular bodily state. A feeling is thereby a projection of the body under 
certain conditions and the feeling of an emotion is the projection of the body while 
under the influence of a particular emotional process. Additionally, along with the 
bodily-related projections, in certain situations specific projections of the thought 
process are also relevant. Therefore a (conscious) feeling consists of the perception of 
a certain bodily state along with the perception of a certain associated mental state 
(the cognition of the emotion). As before, Damasio also differentiates here between 
three types of feelings: (a) feelings of basic universal emotions (in terms of the prima-
ry emotions), (b) feelings of differentiated universal emotions (as a connection of 
cognitive states with emotional bodily states; depending on experience, in terms of the 



 

 

social emotions), along with (c) background sensations (in terms of background emo-
tions, although not formed by emotions in the strictest sense) [5, p. 208]. 

In the context of this “Theory of Emotion”, an elementary principle is clearly evi-
dent in Damasio’s work: emotion, feelings and consciousness are continually depend-
ent on the representations of the organism and their common entity is and remains the 
body. Human thoughts and actions are therefore dependent on the emotional constitu-
tion and respectively to certain changes in bodily state. The purpose of thought and 
the prerequisite for action is however always a decision, whereby the essence of a 
decision lies in choosing a certain response (e.g. a course of action) [5, p. 227].  

If one considers the decision making process on the basis of an undesirable devel-
opment, one thereby creates an undesirable/negative outcome, that is connected to the 
associated response and is consciously perceived, even when short-lived, as an un-
comfortable/negative feeling.  As a feeling (from emotion) affects the body, Damasio 
choose the term somatic (soma = body), and as the feeling identifies, or marks a pro-
jection, he also chose the term marker. A somatic marker is thereby understood as 
being the perception of an automatic reaction of the body to a certain projected image 
(a situation or an event) respectively, as a bodily signal marking a particular scenario 
as being either good or bad. [5, p. 238]. Accordingly a positive somatic marker func-
tions as a start signal and a negative somatic marker functions as an inhibitor. Somatic 
markers are formed throughout the course of upbringing and socialization through 
connecting certain classes of stimuli with certain classes of somatic statuses. There-
fore they touch on the process of the secondary emotions. The adaptive function of 
the somatic marker (as an assistant with anticipatory skills) orientates itself towards 
congenital, regulatory dispositions (internal preference system) which ensure the sur-
vival of the organism and take care of avoiding pain and seeking or increasing desire. 

Looking back at the functional mechanisms of emotion, one can differentiate four 
forms of the decision making process: (A) in the context of the body-loop, the body is 
actually (from the prefrontal cortex and the amygdala) prompted to take on a certain 
state profile, the result of which (via the somatosensory cortex) is considered with 
attention and perceived. (B) In the context of the as-if-loop the somatosensory cortex 
functions (as instructed by the prefrontal cortex and the amygdala) as if the signals 
were received from the body. Therefore the body is taken out of the loop, nevertheless 
the as-if activity patterns influence the decision making process, as it suggests that 
real bodily states are symbolically processed. (C) Additionally somatic markers (e.g. 
feelings) can represent very concrete components or triggers for decisions, regardless 
of whether they follow a real or representative route. (D) Very often decisions are 
made, where it appears that no feeling at all was involved. Therefore it is not – and 
that is key here – that it doesn’t come to an evocation of a bodily state or that of a 
representative surrogate, but rather just that of the bodily state with which the signal 
function is activated, it is simply just not considered and therefore not consciously 
perceived [10, p. 84]. By this means somatic markers operate permanently outside of 
consciousness and persistently influence conscious thought and decisions. Therefore 
one differentiates between somatic markers with respect to the influence of emotion 
and feeling on the decision making processes based on their neural route, (A) the real 



 

 

body-loop versus (B) the representative as-if-loop and on the basis of their influence, 
(C) manifest versus (D) covert. 

3 Evaluation Models in Psychoanalysis 

There are multiple aspects to the description of decision making in the “psychic appa-
ratus” in classical psychoanalytic theory [11, 14]: On the one hand the body delivers 
via homeostatic differences drive tensions, so-called “quota of affects” represented in 
the psyche, which can consequently cathect1 psychic contents. This allocation of the 
“quota of affects” to psychic contents already activates content in the unconscious 
whereby these become accessible for mental processing. The level of cathexis is a 
measure of the grade of the activation, representing an evaluation, which ultimately is 
a key factor in determining, if content shall be processed and ultimately become con-
sciously perceivable and actionable. The psychic contents on the other hand, come 
from memory traces which are associated via perceptional data and drive representa-
tives and by this means serve as a basis for cathexis. A cathected association complex 
is called thing presentation. This is, during the transition from (unconscious) primary 
process to secondary process – upon going through a conflict regulating defense – 
linked with a so-called word presentation, which means, that from now on a psychic 
content can be treated within general (formal, verbal) logic. This was not yet possible 
in the primary process, as this is governed by a pre-logical order of associations. Ca-
thexes, which in the course of the mental processing of the primary process have been 
displaced many times, remain intact throughout these transitions. In the secondary 
process, the topical description of which encompasses the psychoanalytical precon-
scious and conscious areas, are now fixed to the “quota of affects” of certain contents 
and contribute, along with the logical links via word presentations to the evaluation of 
the association complexes. 

The overall evaluation of action chains generated in this manner is regulated on the 
one hand – in the primary process – by the so called “pleasure principle” and in the 
secondary process by the “principle of reality”. The “pleasure principle” states that 
the overall goal of all mental activity is to avoid unpleasure and to aim for pleasure 
(as in [12, p.321]), the “principle of reality” is a variation upon this, namely the mo-
ments in which the outside world becomes included into these activity designs (as in: 
[12, p.378]). Pleasure is created if psychic energy is discharged, unpleasure is equiva-
lent to the “quotas of affect” present within the apparatus. Both of these principles are 
ultimately relevant for decision making and choosing a course of action, so much so, 
that in total a maximum of expected pleasure less the necessary unpleasure in order to 
achieve it is always sought. Primary and secondary process oriented thinking and 
evaluation mechanisms complement each other towards taking action. Thinking is 
essentially an experimental kind of acting. [13, p.220]. If action is undertaken, the 
“quota of affects” is discharged and alongside the physical impulses, consciously 
perceptible affects and impulses of feelings in particular shades are formed. Uncon-
                                                             
1In psychoanalysis this also known as the economic aspect of psychological operation.  

Cathexis ( a psychoanalytic term) is the allocation of quota of affects to psychic contents. 



 

 

scious affects, feelings and sensations are of no relevance in psychoanalytic theory, 
they are, - in contrast to psychic contents –virtual qualities, which with respect to the 
occupation conditions of the “quota of affects” can be constructed retrospectively [14, 
p.176]. 

4 Emotions in Neuropsychoanalysis 

Neuropsychoanalysis seeks to forge a connection between psychoanalytical models 
and related neuroscientific findings [7, 15]. It seeks to assume a neuroscientific per-
spective of every mental function and thereby wishes to reassess Freud’s description 
of the functional organization [15, p. 830]. The results of these comparisons may 
remain patchy in accordance with the method applied and usually only the most sig-
nificant theses and statements of these disciplines are studied.  

Considering evaluation models for decision making, neuropsychoanalysis holds 
that the conscious decisions for actions, in reality follow their unconscious initiation 
[cf. 15, p. 384]. Feelings of pleasure and unpleasure with respect to an object or a 
situation represent the most elementary evaluation of a consciousness, according to 
Solms, Panksepp and Damasio [15, p. 836].  Likewise the basic units of these evalua-
tions, of the driving forces, can be illustrated neurologically and yield that: An amaz-
ingly large consensus emerges between Panksepp’s SEEKING-System and Freud’s 
Libido-System and the highest priority of a regulating function of consciousness is to 
generate feelings of pleasure and unpleasure, which in turn are then associated with 
the objects which are best suited to their generation [cf. 15, p. 848]. 

5 Emotions in Agent-based Systems 

In recent years several computational models of emotions have been developed and 
integrated in the decision making process of artificial agents. These models differ in 
various aspects. Generally they differ in the components which are considered as 
being intrinsic to emotions (e.g. bodily processes, behavioral tendencies), in their 
relationship to cognitive processes and in their representation [16]. The most im-
portant difference lies in the supporting theory, which in most cases originates from 
psychology. This in turn influences the distinction if emotions are generated dynami-
cally (emergent emotions) or are designed explicitly (discrete emotions). These as-
pects of distinction are mirrored in the division of “appraisal, dimensional and ana-
tomical” computational models of emotion [16], whereby the former is the most 
widespread due to its aptness in linking emotion with cognitive processes.  

In appraisal models (e.g. OCC Modell [17]), emotions are formed through the 
evaluation of external events regarding the agent’s beliefs, desires and intentions, 
whereby coping strategies (e.g. planning, delaying) are triggered. A computational 
model of this, which offers the chance to adjust the appraisal process, is FAtiMA 
Modular [18]. The agent architecture consists of an extensible core architecture which 
offers the framework for various implementations of appraisal models, enabling easier 
comparison. The appraisal process is split into the appraisal derivation and the affect 



 

 

derivation. The former evaluates the relevance of an event and creates appraisal vari-
ables (e.g. unexpectedness, appealingness and desirability). The latter builds upon 
these variables by creating the associated emotions, determined by a specific appraisal 
theory. According to a set of rules, emotions then influence the choice of action in 
either a reactive or deliberate form. 

In dimensional models, emotions are located in a dimensional space instead of be-
ing formulated as discrete entities. A typical model is the PAD model [19], with the 
dimensions pleasure, arousal and dominance. Some computational models such as 
ALMA [20] and WASABI [21] utilize both, appraisal models to model appraisal pro-
cesses, and dimensional models to model mood processes. Other models such as Mi-
croPsi [22, p.143-155] describe emotions implicitly as regions of a multi-dimensional 
space, defined by the parameters which determine the behavior of the agent. These 
are: arousal, resolution level, dominance of the leading motive, the level of back-
ground checks (the rate of the securing behavior), the level of goal-directed behavior, 
and valence. Thus, explicit emotions do not exist for agents but rather emotions are 
first attributed to an agent upon (self) perception.   

In conclusion, it can be stated that none of the models mentioned offers an embod-
ied model that holistically considers the various aspects of emotion, or is integrated in 
a holistic cognitive architecture. 

6 A Holistic and Embodied Emotion Model for Evaluation in 
Decision Making 

Building on the findings of the various disciplines, we sketch a holistic and embodied 
model. As shown above, the models of Damasio and psychoanalysis fulfill the initial-
ly mentioned criteria especially well. Insights from both theories confirm and com-
plement each other. For a technical model of the basic mechanisms of decision mak-
ing, the psychoanalytic findings mentioned above are particularly well suited as an 
abstract framework (which is required for a holistic and coherent model), and Dama-
sio’s model is especially well suited  for its concretization due to its consistent and 
holistic character in considering the interaction between body and mind. 

The role of computer science here is to integrate the various models from other 
disciplines in a consistent and coherent model of decision making, which is determin-
istic and can therefore be validated by means of simulation. Thus, computer science 
enables a model building methodology and evaluation tool, by the means of agent 
based simulation. The basic principle of this approach has been illustrated in a previ-
ous article [23], where a functional view of emotions in the decision making unit of 
an agent was integrated. However, a holistic view considering the theories of Dama-
sios was neglected. Nevertheless, the fundamental principle remains intact, i.e. affec-
tive evaluation processes are the foundation of evaluating data (psychic contents, 
thereby also actions and plans). These are those processes which use “quotas of af-
fects” or derived evaluation variables to determine the relevance of data, based on 
memories, for decision making in a given situation (see Fig. 1). Thus, the evaluation 
of data is an incremental process on multiple levels – considering various evaluation 



 

 

principles (pleasure and reality principles) and evaluation influences (bodily influ-
ences and through perception activated memories and fantasies). 

Emotions are an additional level of this incremental and hierarchical multi-level 
evaluation model. They represent (1) “quotas of affects” from the drives, (2) emotions 
activated through perception and fantasy (memories associated with emotions), (3) the 
current pleasure. Hence emotions form a holistic representation of the psychobiologi-
cal status of the agent (having information concerning the body and mental status) 
and can therefore consider the overall status of the agent in the evaluation. The final 
evaluation step is carried out by feelings, whereby depending on the intensity of the 
emotion, it is transformed into a preconscious feeling and subsequently a consciously 
“felt feeling” (in the sense of Damasios). The latter can be described as an inner per-
ception, upon which the agent can reflect. As with the other valuation variables, feel-
ings evaluate goals and plans by activating memories. 

 
Fig. 1. Evaluation is an incremental process that considers multiple influences and principles. 

By considering perception and fantasy, evaluation through feelings not only occurs 
in the terms of gaining pleasure, but also in terms of avoiding unpleasure, that is to 
say not just to support the fulfilment of drives but also to evaluate external events in 
terms of their potential to increase unpleasure. Evaluation generally serves to priori-
tize and select actions, mediating between the environment and the internal state (e.g. 
to fulfil desires in the environment and to adapt desires to external conditions). 

The representation of the biological aspect of the psychobiological status is 
achieved through drives and body perception (proprioceptive and external percep-
tion). Whereby it must be emphasized that memory-based psychic representation 
(representation of drives and body representation) is used for emotion generation (and 
not the body signals as such). The psychic aspect of the psychobiological status is 
represented by the memories activated by environment perception and fantasies. In 
the sense of Damasio, one can conceptually speak of background emotions (red influ-
ences in Fig. 2), which can be considered as moods, and emotions triggered from the 
outside world. 

The key concretization, when integrating Damasio’s model, concerns the consider-
ation of the embodiment by means of a mental representation of it. In this regard we 
follow the approach of considering the psyche as an information theoretical level of 



 

 

the physical world. This is reflected in the differentiation between the neural, neuro-
symbolic and physical levels (see Fig. 2), and also in the application of a memory 
based physical representation (see Fig. 2). 

 
Fig. 2. A holistic and embodied emotion model. 

7 Conclusion 

Interdisciplinary cooperation enabled us to outline a holistic model of emotion for 
humanoid agents. Due to the consideration of bodily influences and the evaluation of 
perceived events, the model outlined can be considered as being a combination of 
both appraisal and dimensional models, whereby neuroscientific inputs and embodi-
ment are considered in developing a holistic model. Psychoanalysis and Damasio’s 
neuroscientific model fulfill the initially mentioned criteria particularly well. Where-
by psychoanalysis offers us an abstract holistic framework which can be concretized 
by means of Damasio’s model. Both models also complement each other, as Damasio 
considers the interdependence of body and mind more concretely and is more con-
sistent. Neuropsychoanalysis supports our approach of combining psychoanalysis 
with neuroscientific models, by revealing supporting evidence. Computer science 
enables the combination of the various models in one consistent and holistic model 
and offers an evaluation tool by means of simulation. Having outlined such a simula-
tion model, the next steps lie in extending an existing implementation of a holistic 
functional model of the human mind [23], to integrate these new findings in a holistic 
model of human information processing. We expect that the integration of the various 
models in an overall evaluation model will yield new discoveries and opportunities in 
simulations.  
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Abstract. Recent years have seen a renewed interest in cognitive systems with

the ability to explain either external phenomena or their own internal reason-

ing processes while solving problems. Some successful models of explanation-

generation have made use of structured representations, reasoned over using ana-

logical or deductive mechanisms. But before such models can be adapted for

use in real-world situations, they need to incorporate additional features associ-

ated with explanation-generation. For example, generated explanations may dif-

fer qualitatively based on the explanandum’s domain; e.g., explanations rooted

in physical causality to explain physical phenomena vs. folk-psychology expla-

nations that rely on propositional attitudes (believes, knows, intends, . . .). This

may affect the generated explanations in both explicit and implicit ways. We

tackle both the explicit and implicit effects of this cognitive feature and incor-

porate them into a comprehensive cognitive architecture: CLARION (especially

its meta-cognitive and non-action-centered subsystems).

Keywords: Explanation, Cognitive Architecture, CLARION, Analogy, Deduc-

tive Reasoning, Meta-Cognition

1 Introduction: Features of Explanations

The importance of a cognitive system’s ability to explain its results, or the actions of oth-

ers, and to produce useful explanations, is being increasingly realized by AI researchers.

But as has been known for quite some time now, there are a variety of explanations that

might be considered useful. For example, if one wishes to tell some cognitive system W
that a chicken crossed the road (which happened to require movement in an eastward

direction), there are at least two different ways of presenting more or less the same

thing:

E1 Chicken C wanted to cross the road.

E2 Muscle contractions in chicken C propelled it eastward.

These two explananda refer to the same event at different levels of abstraction by

invoking different concepts. The type of explanation (or alternately, explanans) that

might be deemed an appropriate response to each of these explananda differ as well.

An explanation whose language features many propositional attitudes of the chicken



(e.g. “C believes,” “C knows,” “C wants,” etc.) may be appropriate for explaining E1,

but may not constitute a satisfactory explanation in response to E2. An explanation

rooted in physical causality (referring to the normal properties of muscle contractions,

for example) may be the other way around: it would be appropriate for E2 but less

so in response to E1. In short, the presentation of the explanandum affects the sort of

explanation that is most appropriate.

The question hinted at in the above example, of whether to root an explanation in

physical causality or propositional attitudes, reflects a parallel one faced by cognitive

systems: What factors are used by agents to determine which qualitative features of an

explanation are appropriate? In the present paper, we explore and model one answer

to this question: that the concepts used in the presentation of the explanandum affect

the explanans in both implicit and explicit ways. We model these ways using the Meta-

Cognitive Subsystem (MCS) of the CLARION cognitive architecture.

We do not hope, nor do we attempt, to resolve any questions regarding whether

one type of explanation is better than another. Although discussion in the philosophical

literature of the so-called intentional stance [3], the normative views of Hempel [8], and

so on, are fascinating and informative, we are here only concerned with modeling the

cognitive processes that lead humans to choose one style of explanation over another.

The remainder of this paper proceeds as follows. After further motivating the fea-

tures the modeling of which is our target, will first discuss related previous work in

modeling explanation-generation, in order to set the stage for the communication of our

own, and to introduce concepts we use in this paper such as metaknowledge, metacog-

nition, and so on (§2). In section 3, we present the cognitive architecture CLARION,

and briefly discuss recent developments in its representational capabilities which make

it possible for us to do the work we present herein. We close with brief demonstrations

in section 4, and section 5 concludes with final remarks.

1.1 Effects of the Explanandum’s Presentation

The type of feature of explanation-generation we aim to model here, which we refer to

as F effects for convenience, are the effects that the presentation of the explanandum has

on the explanation generated. If the explanandum e is a simple fact about some world,

let us define the full explanandum E as the explanandum plus all of the contextual

facts required to understand the explanandum. For example, to return to the earlier

example, the position of the chicken relative to the road, the position of the road relative

to the four cardinal directions, and so on, are all examples of facts comprising E. The

presentation of the full explanandum P(E) is a particular form of the full explanandum

E. This distinction is important. E1 and E2 might be considered two partial presentations

of the same full explanandum, but they differ in their presentations.

F effects, then, are those which the presentation of the full explanandum exhibits

on the explanations generated. We can further subdivide these into Fe effects, and Fi
effects; these are explicit and implicit effects, respectively. Examples of both in the

psychological literature are numerous, e.g. see [23, 13].

Determinations of similarity based on simple featural overlap might be considered

an implicit process, or one that operates primarily using the representations on CLAR-

ION’s lower level [23], if the features in question are predominantly micro features not



immediately verbalizable. Such similarity processes are known to be used in analogical

reasoning, particularly in the initial stages, which use surface similarity to select source

analogs from long-term memory [9, 17, 7].

But explicit processes may play a large role in explanation as well. One way to

identify explicit processes, or those that operate primarily using the representations like

those on CLARION’s top level, is to perform experiments on human subjects that re-

quire them to verbalize their thoughts in some way. In explanation, one example relates

to the so-called “self-explanation effect,” in which children who verbalize their expla-

nations seem to be able to improve the quality of their learning, and learn more [2].

This effect also applies to adults who actively create explanations for their own use [1].

Furthermore, explaining the reasoning of the beliefs and the reasoning of others also

directly enhances learning [19]; this suggests that encouraging development of theory

of mind may be helpful in teaching [31].

Our basic hypothesis for the modeling of F effects in the present paper is that the

knowledge structures used to construct explanations are selected based on parameters

in the metacognitive system, which themselves may be influenced, either explicitly or

implicitly, by the concepts used in the explanandum’s presentation.

2 Metacognition and Explanation Generation in Cognitive
Systems

In this section we provide an overview of some recent modeling of metacognition in or-

der to give the reader a feel for the state of the art in the field, and to clarify the present

paper’s contribution. Explanation, and in particular the modeling of explanation using

analogy, has been tackled before. Thagard (2012) divides the computational models of

explanation thus far into four types: probabilistic; those based on artificial neural net-

works; logical; and those based on schemas or analogy . The approach described in

this paper falls in between the last two of these four types, since the template-matching

system which we describe in the next section allows for both rule-based deductive rea-

soning and a form of analogical reasoning.

Hummel and Landy [11] propose that in explanation-generation, there are at least

three types of flexibilities required by the representations and underlying processes:

relational flexibility, the ability to see one concept as possibly playing multiple roles;

semantic flexibility, the ability to exploit partial or imperfect matches between the ob-

jects and relations comprising an explanandum and the objects and relations encoded

in potentially relevant domains in long-term memory; and an ability to map to, and

transfer elements from, multiple domains in long-term memory simultaneously. How-

ever, the third type of flexibility can lead to a variant of the type-token problem (i.e.

ambiguity about whether two elements have the same referent) against which Gentner’s

one-to-one constraint [6] is often used for defense. To fix this, they have their sys-

tem decide whether two units correspond within the context of a certain source analog

(which effectively implements a context-sensitive variant of the one-to-one constraint),

and model the system using LISA [10–12].

Friedman and Forbus [4] and Friedman [5] propose a tiered framework in which

explanations sit in a layer above that of justifications, which itself sits above a con-



cept level. They demonstrate qualitative shifts in explanation-generation by exploiting

metaknowledge that provides information about the structures in each tier. They do

not, however, model explanation-generation for external preferences, but instead focus

on the self-explanation effect. Tailoring explanations based on the beliefs of others may

involve many types of reasoning, including modeling theory of mind [16], or having the

ability to represent nested beliefs (e.g. “I know that the person I’m talking to believes

that I believe X .”).

Let us make two broad observations from the preceding summaries of literature.

First, we see a form of metacognition in the work by Friedman and Forbus [4], in

that metaknowledge about the structures in each tier is produced, manipulated, and

reasoned over by the system. It is this sense of metacognition which we propose to

utilize in this paper, in order to (among other things) qualitatively constrain the types

of explanations which are generated by our model. The idea of qualitatively different

explanations connects to our second observation, which is that the current body of work

modeling explanation generation does not adequately address the cognitive processes

which vary the qualitatively different types of explanations and selects the ones which

are most appropriate.

Therefore, the work we propose in this paper distinguishes itself from the above

approaches, on whose shoulders our work stands, in four key ways. First, our approach

distinguishes between the full explanandum and its presentation. Second, we assume

that this presentation affects a metacognitive system which in turn constrains the type of

explanation that is generated. Third, we propose the use of specialized knowledge struc-

tures, such as templates and constraint chunks (both of which are described shortly), to

allow such constraints to take the form of highly expressive knowledge structures.

Finally, we acknowledge both explicit and implicit effects of the explanandum on

the explanation generation, and model both using the cognitive architecture CLARION,

in such a way as to take advantage of the features it provides. We next summarize the

aspects of CLARION we have used.

3 Explanation Generation in CLARION

CLARION is an integrative cognitive architecture with a several key features that we

take advantage of here. These features include dual representation, a division of cog-

nitive subsystems in a way that has previously been demonstrated to be psychologi-

cally plausible, and a flexible knowledge framework which can capture sub-conceptual,

unstructured-conceptual, and structured-conceptual knowledge simultaneously [23, 25,

14]. CLARION consists of two levels: an explicit top level and an implicit bottom

level. The top level typically contains knowledge structures and localist representations

(which may or may not be linguistic concepts) and the bottom level often contains micro

features and distributed representations. (Micro features, for our purposes here, can be

defined informally as low-level constructs that correspond to properties which are not

necessarily explicit, often because they are features that are not paid attention to by the

agent. For example, a micro feature chunk may correspond to a certain brightness of a

certain hue of the color red, or a very specific sound that can be heard precisely at three

minutes in to a specific performance of Beethoven’s 9th Symphony.) The top/bottom
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Fig. 1. A knowledge structure representing the proposition CHASES(DOG,CAT ). CDCs are pic-

tured as star-shaped. On the right is the simplified version, which omits the CDCs and many of

the ARs, though they are there (just not pictured).

level division is reflected in each of CLARION’s subsystems: the Motivational, Action-

Centered, Non-Action-Centered, and Meta-Cognitive Subsystems (MS, ACS, NACS,

and MCS, respectively). A primary focus of CLARION has been psychological plausi-

bility, and much work has been devoted to defining mechanisms within its subsystems

that are tied to known psychological phenomena and processes [22, 26, 27].

The focus in the present paper is exclusively on an interaction between the NACS

and MCS. In particular, recent work by Licato et al. has demonstrated how structured

knowledge can be represented and reasoned over using no more than the psychologi-

cally plausible mechanisms already defined in the NACS [14, 15]; we use and expand

on this method of representing structured knowledge to model explanation-generation

and its metacognitive control below.

The NACS contains declarative knowledge, or general knowledge about the world

that is not action-centered, which is often used for making inferences on the basis of its

knowledge. The top level of the NACS contains localist chunks linked to units on the

bottom level called DV pairs (Dimension-Value) pairs. The DV pairs can be linked to

each other, and the chunks can also be linked to each other. However, the links between

chunks are a special type of directed link called Associative Rules (ARs), which are

represented pictorially using arrows. All of the links between top and bottom level units

have weights that can be changed over time. This unique structure allows CLARION

to define a directed similarity measure between two chunks [30, 21, 26]. This simple

similarity measure can be used as part of larger algorithms used for analogical reason-



ing, deductive reasoning, and general behaviors defined over structured representations

[14].

The MCS [24, 28] contains knowledge concerning the agent’s cognitive processes

and their outcomes, and also includes mechanisms that allow for active monitoring, reg-

ulation, and orchestration of the agent’s cognitive processes (often toward some prag-

matic goal that may be set by the MS). Like the other subsystems, the MCS is divided

into a top and bottom level; however, not much work has been focused on fully ex-

ploiting both levels productively. In [24] and [28], the MCS was mostly used as the

place where parameters which weighted processes in other subsystems were housed. In

this paper, we propose to expand on the role of the MCS by having it hold structured

knowledge analogous to that already defined in the NACS [14].

Structured knowledge in the NACS is achieved by first allowing top-level chunks to

differentiate into types: object chunks, proposition chunks, template chunks, etc. These

chunks are then linked using ARs and specialized chunks called Cognitively Distin-

guished Chunks (CDCs). For example, the proposition Chases(Dog,Cat) can be repre-

sented as in Figure 1.

3.1 Templates

Analogical and deductive reasoning are carried out by defining special structures called

Templates. These are essentially NACS structures that have been grouped under a single

Template Chunk (TC) using a CDC defined for that purpose. In deductive reasoning, a

template can specify the antecedent and consequent portions of a rule separately, so that

when a structure sufficiently matches the antecedent portion, the consequent contains

information on how to transfer the matched knowledge structure to create a new infer-

ence. Analogical reasoning can also be modeled by converting potential source analogs

into templates and relaxing the match requirements. Matching structures to templates

uses an Ant Colony Optimization algorithm inspired by [18], where the Template itself

determines what types of matches are acceptable [15].

Explanation-construction proceeds as follows. We assume that we are given a knowl-

edge base of templates. Each template is either a single structure, in which case it is to be

used as a source analog for analogical matching and inference, or the template consists

of an antecedent and consequent portion, in which case it is to be used as a deductive

inference rule (e.g. Figure 2).

Given some knowledge structure K and template T , if a match is found from K to

T (using the minimum conditions for an acceptable match specified by T itself), then a

new structure K′ is created from the elements of K and the instructions provided by T
(these instructions are not explicitly stated by T in any way, rather they are implicit in

the template’s structure itself).1

Each template is grouped under a single Template Chunk (TC). The chunks in each

template may each be linked to DV pairs in the NACS bottom level, and the template’s

TC is linked to a disjunction of all DV pairs linked to all non-CDC chunks in the tem-

plate.

1 For further detail, we direct interested readers to [14].



Algorithm 1 The Template Selection algorithm. This is used to filter out the template

structures and select a subset of them based on how much they satisfy the constraints.

Require: Beliefs or knowledge the agent holds B = {Bi}
Require: A set of template chunks T = {Ti}
Require: A set of CCs C = {Ci}

Define φ= 0.2
for all Ti ∈ T do

Set the activation level of T to φ
end for
for all Ci ∈C do

if Ci is an excitatory chunk then
Set Ci’s activation level to 2∗φ [

else if Ci is an inhibitory chunk then
Set Ci’s activation level to −2∗φ ]

end if
end for
Perform one iteration of Similarity-Based Reasoning to propagate activations

return Active set TA, consisting of the n Ti ∈ T with the highest activation levels (typical value

for n is between 5 and 10).

3.2 Constraint Chunks and the General Explanation-Construction Algorithm

We can now introduce a new type of chunk, which we will call a Constraint Chunk

(CC). A CC is a chunk that resides on the top level of the MCS, and is used to either

bias the parameters of cognitive processes based in the other (non-MCS) subsystems,

or to point to the TC of a template which serves as a inviolable rule to constrain cogni-

tive processes. The precise way in which it performs this biasing function is described

shortly in the present section.

Just as the NACS chunks are linked to distributed units on the NACS bottom level,

CCs are also linked to distributed units on the bottom level of the MCS. However,

unless a similarity measure is defined between elements on the bottom levels of the

NACS and MCS, no similarity measure will exist between chunks on their top levels.

At least for this project, then, the design decision was made to allow the NACS and

MCS to draw from a common pool of bottom-level distributed units, so that the same

similarity measures used between two chunks of the NACS could be used from NACS

to MCS chunks.2

Explanation generation is a simple backward-chaining process that starts with a set

of knowledge structures B = {Bi} corresponding to beliefs or knowledge that the agent

holds, which are not part of the full explanandum, a set of templates T = {Ti}, a set of

CCs C = {Ci}, and a full explanandum E.

The algorithm will start by selecting the relevant template structures. This requires

that we have a set of CCs which are currently created manually in order to allow external

users to set the qualitative features of the desired explanation, but the CCs are in such

2 This design decision is partially justified by CLARION’s view that meta-cognitive processes

are intermeshed with other processes, and although the MCS is treated as a separate subsystem,

it should really be viewed as closely integrated with the processes of the other subsystems [28].



a form that they can later be set autonomously by the motivational or action-centered

subsystems. To carry out our demonstrations, we create two types of CCs: excitatory

CCs, used to bias certain templates into being selected; and inhibitory CCs, which in-

stead suppress and constrain the templates selected. Inhibitory and excitatory CCs can

be single chunks, or they may also serve as TCs for templated structures in the NACS.

Next, the algorithm selects Ti ∈ T subject to the constraints set by the CCs. It does

this by activating all templates a fixed amount, and then activating excitatory CCs, al-

lowing the activation to propagate using similarity-based reasoning [20, 26] (a single

iteration was sufficient, though we could perform more later), and further activate cer-

tain templates. If any excitatory CCs serve as TCs for templated structures, then that

structure is matched with the structures in T , and successful matches further activate

those templates. Next, inhibitory CCs are activated, but rather than further activating

similar templates, it lowers their activations.

As a result, we have a degree of activation for each Ti ∈ T which reflects the con-

straints defined by the CCs. We collect the top n template chunks with the highest

activations. This resulting set of templates is called the active template set (TA). The

pseudocode for the creation of TA is shown in Algorithm 1.

The backward-chaining process can now begin. The algorithm starts by defining S
as the set of facts in the full explanandum E. The templates are momentarily reversed:

If some fact s ∈ S matches the conclusion portion of a template in TA, inference is

performed on the antecedent portion of that template to produce a new set of facts,

which replace s in S. If any of these newly added facts match beliefs in B, they are

removed from S. This constitutes a single iteration of the backward-chaining process,

which repeats until either S is empty, no more facts are found that can be added to S, or

a preset time limit is reached. The remaining facts in S are then outputted as abductive

assumptions.

We offer the pseudocode describing the general explanation-construction algorithm

in Algorithm 2.

Algorithm 2 The General Explanation Generation algorithm.

Require: Beliefs or knowledge the agent holds B = {Bi}
Require: A set of active templates TA obtained through Algorithm 1.

Require: Set of facts S = {si} in full explanandum E.

Let currAssumptions ← S
while currAssumptions� B or timeout not yet reached do

for all t ∈ TA do
if Consequent of t matches some f ∈ currAssumptions and f /∈ B then

Let A = The facts comprising the antecedent of t
currAssumptions ← (currAssumptions−{ f})⋃A

end if
end for

end while
return currAssumptions as the abductive explanation of E.



4 Demonstrations

Our very brief proof-of-concept demonstrations will serve as examples for testing the

model we describe in this paper. These examples attempt to construct explanations

when given a small knowledge-base, using the analogical comparison and transfer

mechanisms defined in the NACS and the constraints in the MCS.

Fig. 2. A template representing the inference that a certain fox (the subscript F3 is meant to denote

that it is a particular fox from a story with the label F3) wants grapes that he cannot reach, and

therefore he decides that those grapes are sour. Following the notation defined in [14], the chunks

with double lines are part of the consequent, and the horizontal double-lines connecting chunks

are identity links. Assume that there is a template with chunks a, b connected by an identity link.

Next, the template-matching algorithm may attempt to match two chunks a′ and b′ to a and b,

respectively. But because of the identity link, a′ and b′ must have an extremely high similarity

(using the measure defined in [26]).

4.1 Modeling Fi and Fe Effects

In order to clarify how we model the implicit and explicit effects of full explanandum

presentation on explanation, we present a simple example demonstration that generates

explanations for why a chicken crossed the road. The two full explananda, presented

here in English for readability, are:

Ei The chicken decided to cross the road; the chicken was heading East.

Ep The chicken’s body moved, crossing the road; the chicken was heading

East.



Note that there is a very subtle difference in presentation: Ei invokes the concept

of “deciding” whereas Ep does not. The algorithm will construct a new CC by simply

creating a new chunk whose connected DV pairs are the disjunction of the DV pairs

connected to the chunks in P(E), the presentation of the full explanandum. This new

CC bias the templates selected in the explanation-generation step, and thus will allow

us to test Fi constraints. The templates provided to the system would include:

– If there is wind blowing east, and that wind is blowing on an object o, then o will

move east.

– If c wants to achieve goal g, and g requires that action a happen, then c will decide

to perform action a.

– If there is an object o that is East of c, and c likes o, then c will want to achieve the

goal of moving East.

– If the chicken wants to achieve the goal of moving East, then the action of the

chicken crossing the road must happen.

We now run the explanation-generation algorithm, and output the top explanation

generated. When full explanandum Ei was used, the explanation generated the majority

of the time (presented here again in English for readability) was:

Assume there is an object o that is East of the chicken. Assume the chicken likes
o. The chicken will want to achieve the goal of moving East. The action of the
chicken crossing the road must happen. The chicken will decide to cross the
road.

Whereas when Ep was used, the explanation was:

Assume that there is wind blowing east. Assume that wind is blowing on the
chicken. The chicken will move east.

Explicit effects are modeled by creating an inhibitory CC that is also the template

chunk for a structure corresponding to the proposition p = “The wind is blowing east.”

This will attempt to prevent any explanations that have p as one of its intermediate

structures.

We ran the trial with Ep as the full explanandum, except this time the inhibitory

CC corresponding to p is included. As expected, the explanations which require that

the wind is blowing east are suppressed, and the explanation is generated as if Ei were

provided instead.

5 Conclusion / Future Work

It is increasingly important that cognitive systems be able to explain and justify their

conclusions and choices to the humans they will inevitably work with. For such sys-

tems, generating qualitatively different types of explanations may be essential. Using

the work we have presented in this paper, such a thing can be accomplished with a

few parameter changes in a meta-cognitive system. These parameters may be changed



autonomously according to contextual factors, or by normal processes rooted in CLAR-

ION’s subsystems, such as the ACS, MCS, or MS. We have presented a model that can

explain produce explanations at different levels of abstraction, like E1 and E2 in this

paper’s introduction.

The work here is certainly not complete; a much wider variety of explanations must

eventually be addressed. For example, the ability to justify behaviors using a proof de-

fined in a fully formalized logic is (for some domains) a glaring absence to be tackled

soon, but the work in this paper can be used as a springboard for moving in that direc-

tion.

An obvious next step is to flesh out the proof-of-concept demonstration briefly de-

scribed in this paper, and to examine how it performs when provided with a much larger

knowledge-base. Furthermore, more sophisticated deductive reasoning is necessary to

augment the part of our explanation-generation algorithm that uses inhibitory CCs cor-

responding to full structures. In the demonstration we presented herein, p =“The wind

is blowing east.” was used to find and suppress templates that may have led to inter-

mediate propositions equivalent to p. But if a template leads to a logically equivalent

proposition such as “The wind is not not blowing east,” our algorithm would have failed.

Finally, our current system does not demonstrate learning. If the templates drawn

on by the explanation generator are insufficient, then presumably a human would even-

tually learn a new set of templates, somehow; this is not modeled in the present work.

Clearly, there is much to do.

This work was funded by grant N000141310342 from the Office of Naval Research.
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Abstract. Symbolic accounts of cognitive architecture most often have a central 
hub where information is processed (e.g. the production process in ACT-R [1]).  
An alternative approach is to model cognition as the interaction of multiple 
largely autonomous subsystems [2, 3].  This latter, Interacting Subsystems, ap-
proach is explored in the GLAM-PS cognitive architecture, a theory that opera-
tionalizes many of the assumptions of strongly grounded approaches to cogni-
tion [4].  The GLAM-PS model of problem solving in algebra is described. 
Control in the algebra model is passed between three subroutines when solving 
a problem.  These subroutines emerge from the interaction of different subsys-
tems and are not explicitly programmed into the model.  By systematically var-
ying two short-term memory parameters it is shown that the model’s successful 
performance of the task depends on the interaction of the contributing modules, 
and that this interaction demonstrates complexity, with additional memory re-
sources not always improving performance. 

Keywords. Cognitive Architecture, Production System, Embodied Cognition 

1 The Interacting Subsystems approach to cognition 

Cognitive Architecture has been established as a key research area within Cognitive 
Science following seminal work between 1970 and 1990 [5, 6, 7].   Although a lot of 
recent work has focused on either the ACT-R Architecture (e.g. [1]) or large-scale 
neural network models (e.g. [8]), there remain a wide variety of approaches to 
modeling Cognitive Architecture (e.g. [3], [9]).  The purpose of the current paper is to 
look at cognitive control within a particular subset of these approaches. 

In ACT-R and other notable architectures cognitive control is an aspect of cognition 
that is explicitly modeled, with specialist cognitive modules taking responsibility for 
the representation of goals and the selection of action.   This reflects a consensus view 
of how the physical brain is specialized within different anatomical areas, notably the 
identification of the basal ganglia with action selection, and the frontal areas of the 
brain with the influence of intention [1], [8].  Thus in ACT-R the matching of IF-



THEN production rules is centralized in a module that is mapped on to the basal 
ganglia, with the representation of goals handled by a separate module mapped on to 
the anterior cingulate cortex (a frontal area) [1].  In the SPAUN Architecture intention 
is controlled in neural networks mapped on to the frontal cortex and action selection 
is mapped on to the basal ganglia [8]. 

However there are logical objections to this approach that become particularly 
apparent when one examines the relationship between neural networks and production 
systems.  Both in essence are doing the same thing, the association of an output with a 
particular configuration of inputs.  Whilst there are clearly differences between 
production systems and neural networks in how areas such as partial matching of 
configurations, generalization and one trial learning are handled, both can be 
considered methods of representing configural associations.  The logical objections 
arise because anatomically there are networks of neurons present throughout the brain 
and it follows that these will be able to compute configural associations.   Symbolic 
approaches to cognition clearly indicate that configural associations are the key 
underlying process in action selection and cognitive control.  Therefore it would seem 
particularly strange that these key processes are modeled as strongly centralized in 
leading Cognitive Architectures when configural associations can be computed in 
many distinct parts of the brain. 

An alternative approach is found in Architectures that use distributed interacting 
subsystems.  Barnard’s Interacting Cognitive Subsystems (ICS) approach [2] to 
cognition and emotion theorized how such an approach could model complex tasks. 
In Barnard’s theory there are separate morphonolexical, propositional, object and 
implicational subsystems, each of which processes and translates symbolic output 
from the other subsystems.  Whilst ICS has proved influential in highlighting the 
potential of interacting subsystems, the approach was not computationally 
implemented in full and did not compute configural associations (it’s subsystems 
simply translated one symbol into another).  A more recent interacting subsystems 
approach is 4CAPs [3], an example of a Cognitive Architecture that was directly 
inspired by knowledge from neuroscience.  The emphasis on 4CAPS is on modeling 
higher cognition, with amodal subsystems modeled including Left and Right 
Hemisphere Spatial and Executive centres.   

The focus however within this paper is on GLAM-PS an interacting subsystems 
approach to embodied cognition.   The idea of emergent control and action selection 
in a distributed system is particularly relevant to modeling embodied cognition 
because of the emphasis therein on modal rather than amodal cognitive systems.  
Modal subsystems are those directly associated with perception and action, in which 
the grounding of symbols (see [10]) in the external world is clearly indicated.  
Amodal subsystems are those that are not directly associated with perception or action 
(e.g. the goal module in ACT-R).   

The plan for the paper is as follows, to briefly describe the GLAM-PS cognitive 
architecture, to demonstrate how cognitive control is modeled in a simple algebra 



problem solving task, and then finally to demonstrate the emergence of complexity in 
the algebra model by exploring the effects of small variations in the starting parame-
ters of the GLAM-PS Architecture in the algebra task.  Algebra was chosen because it 
is a paradigmatic task for studying Cognitive Architecture that has often been used by 
John Anderson to illustrate how ACT-R works (e.g. [1]).  In the remainder of the 
paper ACT-R is used as for comparison purposes as an example of a mature, widely 
used symbolic Cognitive Architecture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A simplified view of the GLAM-PS architecture showing the four modules used in the 
Algebra Model and communication between these modules.  PM is the Production Memory. 

2 The GLAM-PS Cognitive Architecture 

GLAM-PS shares a distributed modular structure with 4CAPS and ICS, however, 
whilst these Architectures make widespread use of amodal representation, GLAM-PS 
is intended to explore the implications of a strongly grounded distributed Architecture 
for cognition (see [4] for a review on Grounded Cognition).  Whilst comparisons with 
ICS are difficult as it was never fully implemented, if we compare GLAM-PS to 
4CAPS (arguably the most similar Architecture) it can be seen that GLAM-PS takes 
an outside-to-inside approach to modeling Cognitive Architecture, wherein peripheral 
processes dominate cognition.  By contrast 4CAPS takes an inside-to-outside 
approach.  The anatomical areas of the brain featured in 4CAPS do not map easily on 
to the modules described by GLAM-PS, instead the latter features modules that map 
on to the sensory and motor areas of the cortex.   Grounded Cognition [4] suggests 
much of cognition is driven by these peripheral systems and a major novel 



contribution of GLAM-PS is to implement these ideas computationally in a symbolic 
architecture.  

A simplified diagrammatic representation of the Architecture is shown in Fig. 1, with 
the two perception and two action modules used in the algebra task model included 
(no other modules are used for modeling this task).  Both long-term and short-
term/working memories are stored and revivified in the modules that originally 
processed what is being remembered.  However, each module influences the behavior 
of other modules via the mechanism of inter-module communication of the current 
contents of working memory.  In this manner the actions (productions) chosen in a 
module are based upon a composite view of working memory across all modules.  
Whilst this mostly acts like a single unified working memory there is a delay 
associated with inter-module communication.  The implication of this is that a given 
module has an up-to-date view of its own working memory, but a delayed view of 
working memory in other modules (  is the GLAM-PS global parameter defining this 
delay in term of production cycles, it is set to 4 in the model reported here). 

All long-term memories are stored as productions in GLAM-PS (following early 
SOAR [8]) using a classic IF-THEN structure.  For simplicity and to improve 
plausibility all productions can only have a single action associated with the THEN 
side and the IF side is only able to check for the presence or absence of a 
representation (no programming code is allowed).  When actions are represented in 
the action modules they are not necessarily executed and can be used to reason 
without action.  Actions are only executed once they become ‘Super Activated’, a 
process whereby their activation level is raised substantially above the level needed 
for representation. Only once an Action Execution Threshold (global parameter ) is 
surpassed will the action be executed.  Thus GLAM-PS is able to represent and then 
reason about actions without necessarily executing them. 

Whilst the modules shown in Fig. 1 can be thought of as mapping on to sensory and 
motor areas of the brain, the processes associated with inter-module communication 
can be thought of as mapping on to the higher cortical areas (e.g. prefrontal cortex).  
This is a distinctly different interpretation of cortical function from many existing 
accounts.  Whilst currently GLAM-PS makes no specific claims about how inter-
module communication should be mapped on to the brain anatomically, it is 
nevertheless a potentially interesting future direction. 

3 Cognitive Control in the GLAM-PS Algebra Model 

The GLAM-PS Algebra Model (GAM) solves simple linear problems of the form 
, for instance  (where the solution is ).  To solve 

the problem GLAM-PS, like most human solvers [1], must proceed through three 
distinct stages or sub-goals, first reading and encoding the problem, then resolving the 
addend (the  term), before resolving the multiplier (the  term).  The cognitive steps 
used by GLAM-PS are in essence the same as those used by Anderson’s ACT-R 



model of the same task [4], what differs here however is how cognitive control is 
achieved. 

Two types of cognitive control problems occur in GAM, firstly moving between sub-
goals and secondly combining actions in such as was as to solve each sub-goal.  The 
latter of these is relatively easy for GLAM-PS as it typically involves a sequence of 
actions where the result of the preceding action acts as the trigger for the next action 
in the sequence.  In the failed runs reported in section 4 it is rarely the case (< 1%) 
that failure occurs because of a failure to sequence actions within a sub-goal, instead 
failures occur because the actions needed to begin a sequence that achieves a sub-goal 
are not initiated. Hence it is the first type of cognitive control, moving between sub-
goals, that GLAM-PS finds difficult (for example beginning the process of resolving 
the addend once the problem has been encoded). 

 

 

 

 

 

 

 

 

 

Fig. 2. Visualization of state of the GLAM-PS Algebra Model (GAM) when the control state 
has been established that begins transition from the Reading sub-goal to Solving the Addend 
sub-goal when solving .  Working memory elements (WMEs) are depicted as 
squares with area proportional to their activation.  The WMEs contributing to the control state 
are circled in red, with their locus of action indicated by arrows pointing to the Visual Input 
production memory.  GAM’s current eye fixation is depicted on the left. Cycle indicates the 
number of production cycles from the beginning of simulation run. 

Here we refer to the conditions that need to be satisfied to begin solving a sub-goal as 
the Control State.  Within a distributed cognitive architecture the Control State needed 
to begin a new sub-goal will often be based on the state of multiple subsystems.   If 
each of these subsystems is largely independent of one another then it can become 
difficult to achieve the required Control State.  This is less of a problem in centralized 
architectures where a higher degree of control is possible and there is no need to 
coordinate representations across multiple subsystems.   The control state needed to 
move between reading the algebra problem and solving it is shown in Fig 2. 



In Fig 2. the state of GLAM-PS’s working memory is visualised after the GAM has 
read the equation.   As well as visual representations of the equation in the Visual 
Input module, GLAM-PS also has phonological representations of the equation in the 
Speech output module, the result of having read the equation.  The lines between 
representations indicate structural links.  The control state necessary to begin the 
solving of the equation by unwinding the addend consists of four representations 
across three different modules, these are the visual representation of the ‘ ’ and the 
‘ ’, the oculomotor representation of the ‘ ’ location (indicating attention is 
focused on the ‘ ’) and the phonological representation of the ‘ ’ (indicating that 
the last element of the equation has been read and thus that the equation has been 
encoded).  The production that matches this control state is a Visual Input production 
that acts by inhibiting the representation of the ‘ ’.  Once this representation is 
inhibited a sequence of actions is initiated that relocates the ‘ ’ to after the ‘ ’ in 
the equation (using imagery that is projected into the visual input module), GLAM-PS 
then changes the sign and then computes their combined value (eleven minus five).    

 

 

 

 

 

 

 

 

 

 

Fig. 3. Visualisation of the state of GAM when the control state has been established that be-
gins the sub-goal of resolving the multiplier (the ‘ ’ in ‘ ’). See caption to Fig 2. for key. 

The control state that is required to move between resolving the addend and the 
subsequent sub-goal of resolving the multiplier (the ‘ ’ in the example) is shown in 
Fig 3.  Again, the control state is established through the combined presence of four 
working memory elements, this time across two modules.  This consists of visual 
representations of the ‘ ’ and a projected/imagined ‘ ’ (the result of the last sub-
goal) and adjacent phonological representations of the ‘ ’ and the ‘ ’, together 
these confirm that the addend has been resolved (the phonological representation is 
needed to confirm there are no other unresolved terms on the ‘ ’ side of the 



equation).  The sequence of actions needed to resolve the multiplier is then initiated 
by a production in the Visual Input module that inhibits the ‘ ’ visual representation, 
allowing it to be subsequently broken into ‘ ’ and ‘ ’ elements using imagery. 

A key point is that in both of the transitions illustrated in Fig. 2 and Fig. 3 the control 
state consists of combinations of perceptual and motor representations, each of these 
representations is also used for perception or action (respectively), there are no 
abstract context or goal representations to force a particular cognitive subroutine to 
take control.  This compares to ACT-R and other architectures where sub-goaling is 
used to ensure that only productions that solve the active sub-goal can be matched and 
executed, by contrast in GLAM-PS all productions are considered all of the time by 
the production matching process.  Despite this GLAM-PS is able to demonstrate both 
task sufficiency and subroutine following in an Algebra task that can be considered a 
classic sub-goaling paradigm.  This control is characterised as emergent because of 
the absence of any explicit control process within the modelling of the task. 

In conclusion cognitive control in the GLAM-PS Algebra Model emerges from the 
interaction of working memory elements in multiple cognitive subsystems.  When 
information from these different subsystems is combined there is sufficient 
information to indicate what actions the systems has taken previously and what still 
needs to be achieved.  In Taatgen’s work on the Minimal Control Principle [11] he 
indicates that often there will be sufficient information in a system to control action 
with only minimal need for explicit control representations.  Whilst Taatgen clearly 
imagines that some form of goal representation will remain, in this GLAM-PS model 
there is no need for explicit goal representation.  In short control is totally emergent 
[12].  Whether some form of goal representation would be needed once a more 
complex, multi-faceted model is considered is an open question.  Certainly sometimes 
people want to simply read and equation, whilst at other times they need to solve 
them, though it could be the case that there are always enough clues in the external or 
internal environment to distinguish the two scenarios and establish an appropriate 
Control State. 

4 The Emergence of Complexity in Interacting Cognitive 
Subsystems 

Symbolic cognitive architectures often behave in a very predictable way, something 
that is often true of Production System Architectures.  Once a set of productions has 
been ‘programmed’ into the system then these productions will provide a stable 
model of performance.  This typically reflects the explicit use of goal representation 
that guides performance toward the achievement of that goal.  Failure to achieve the 
goal would typically be modelled by the forgetting of the goal due to distraction [13].  
Sometimes multiple strategies of achieving a set goal might be modelled and it is 
often the case that random ‘noise’ parameters will be used to help capture the 



variation in human performance that is observed from trial to trial in individual 
participants (e.g. [14]).   

Much of the stability seen in established architectures is the result of centralised 
decision making.   For example only one goal can be followed at a time in ACT-R [1] 
(though see [15]).  When an architecture utilising multiple Interacting Subsystems is 
considered then complexity and instability may well emerge from the unpredictable 
interaction of the multiple distinct decision cycles in the component subsystems.  If 
information from one module arrives at another module just one decision cycle later 
in one simulation run as compared to another, then the behaviour of the whole system 
might change very significantly over the full course of that run.    

In order to explore the nature of the interaction of the multiple subsystems used in the 
GLAM-PS Algebra Model (GAM) a series of 1,170 simulation runs were conducted 
of the model with systematic variation of two working memory parameters.  Note that 
the model used in the runs was deterministic without any randomised elements. 

Working memory in GLAM-PS is module specific, with each module’s working 
memory currently governed by the same global parameters and equations.  Each 
working memory element has an activation varying from 0 to 1.  To be matched by a 
production then a working memory element must have an activation greater than 
global parameter .   Each working memory also has a total activation limit, global 
parameter .  If the creation or change in activation of a working memory element 
takes the total activation within a module’s working memory above , then the 
activation associated with all other elements in that module’s working memory is 
adjusted so that total activation is equal to .  

To explore the impact of small changes in working memory availability on GAM the 
parameter  was systematically varied from .01 to .39 in increments of .01, this was 
combined the systematic variation of  from 1.0 to 3.9 in increments of .1.   On each 
simulation run the total number of cycles taken to solve the algebra equation 

 was measured.  The results of these simulation runs are displayed 
graphically in Fig 4. 

The first aspect to consider of the results of these simulations runs is the vulnerability 
of the GAM model to failure.  As  dips below 3.0 and as  increases it becomes 
increasingly more likely that GLAM-PS will not be able to solve the equation.  An 
examination of failed runs clearly indicates that almost all (>99%) result from the 
failure to establish a control state that allows transition between one sub-goal and the 
next.  According to the GAM model establishing that one sub-goal has been 
completed and then finding a suitable way to begin the next is difficult and prone to 
failure if working memory is compromised (e.g. by distraction).  This broadly fits in 
with what has been observed in human participants, who typically take more time to 
complete steps of a problem that involve starting a new sub-goal [13]. 



The second aspect we see in the simulation runs is the emergence of complexity.  One 
might reasonably expect that as each module’s total working memory capacity, , 
increases then the likelihood of solving the equation would also increase.  This is 
broadly the case, but there are many exceptions to this shown in Fig 4.   Similarly as 
the production matching process becomes increasingly strict, matching fewer working 
memory elements (as  increases), one would expect failures to become more likely, 
but again this is not always the case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A graphical display of the number of decision cycles needed to complete the equation 
 by the GLAM-PS Algebra Model when working memory capacity ( ) and the 

activation needed to match productions ( ) were systematically varied.  Light blue indicates the 
model did not solve the equation.  The data is displayed in partial 3D and lit from the x-axis.  

 

Indeed if one examines Fig 4, the parameters determining failure and success appear 
to influence these outcomes in a non-linear manner.  If one considers the point where 

 = 2.3 and  = .13 then GAM fails, yet if we were to either increase or decrease 
either parameter by a fraction then GAM succeeds.  Instead of a smooth curve or a 
straight line defining the regions where we see success versus where we see failure, 

Min. match activation ( ) 

W
M

 capacity (
) 



what is shown in Fig 4. has more similarity to a geographical coastline.   Even where 
there are successes the number of cycles taken to succeed varies unpredictably, the 
smoothness of the area in the top left (around  = 3.5,  = .03; though note the 
failures at  > 3.7,  < .04) can be contrasted with the peaks and troughs found in 
other areas where successes prevail (e.g. around  = 3,  = .1, the default parameter 
settings).  The pattern observed in Fig 4. reflects the chaotic nature of the interaction 
of the multiple subsystems in the GLAM-PS Algebra Model.  In short, complexity 
emerges from Interacting Subsystems.  

5 Conclusion 

The GLAM-PS Algebra Model demonstrates how both cognitive control and 
complexity emerges from the Interaction of Multiple Subsystems in Cognitive 
Architectures that adopt an Interacting Cognitive Subsystems approach [2].  The 
model is notable for not using any explicit goal representation, instead showing how 
control is based on Control States in working memory.  Each of these Control States 
contain sufficient information about what the system has done previously and about 
what the system needs to do, to enable the initiation of purposeful, self-perpetuating 
sequences of behaviour.  The simulation runs reported, exploring working memory 
parameter space, demonstrate how the model is vulnerable to failure when working 
memory is reduced or compromised, and how the interaction of cognitive subsystems 
is chaotic and somewhat unpredictable in nature. 
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Abstract. Neural computation has an extraordinarily influential role in
the study of several human capacities and behavior. It has been the dom-
inant approach in the vision science of the last half century, and it is cur-
rently one of the fundamental methods of investigation for several higher
cognitive functions. Yet, no neurocomputational models have been pro-
posed for morality. Computational modeling in general has been scarcely
pursued in morality, and existent non-neural attempts have failed to ac-
count for the mental processes involved during moral judgments. In this
paper we argue that in the past decade the situation has evolved in
a way that subverted the insufficient knowledge on the basic organiza-
tion of moral cognition in brain circuits, making the project of modeling
morality in neurocomputational terms feasible. We will sketch an original
architecture that combines reinforcement learning and Hebbian learning,
aimed at simulating forms of moral behavior in a simple artificial con-
text.

Keywords: moral cognition; orbitofrontal cortex; amygdala

1 Introduction

Neural computation has an extraordinarily influential role in the study of several
human capacities and behavior, however no neurocomputational models have
been proposed yet for morality, a failure clearly due to the lack of empirical
brain information.

On the other hand, there have been computational approaches oriented to-
ward an understanding of morality different from neurocomputation, we will
briefly review two main directions: formal logic and the so-called Universal Moral
Grammar. It will be shown that both lines of research, despite their merits, will
fail in giving an account of the mental processes involved during moral cognition.

In this paper we argue that in the past decade the situation has evolved in a
way that makes the project of modeling morality in neurocomputational terms
feasible. Even if there are no moral models yet, existing developments in simu-
lating emotional responses and decision making are already offering important
frameworks that we think can support the project of modeling morality. The
existing models deemed closer to what pertains to morality will be shortly re-
viewed. We will also sketch an original architecture that combines reinforcement
learning and Hebbian learning, aimed at simulating forms of moral behavior in
a simple artificial context, and show its few preliminary results.



2 Other approaches to moral computing

Two computational accounts of morality, different from neurocomputation, will
be briefly reviewed here.

The first, with the longest tradition, has been aimed at including morality
within formal logic. Hare [18] assumed moral sentences to belong to the gen-
eral class of prescriptive languages, for which meaning come in two components:
the phrastic which captures the state to be the case, or command to be made
the case, and the neustic part, that determines the way the sentence is nodded
by the speaker. While Hare did not provided technical details of his idea for
prescriptive languages, in the same years Wright [31] developed deontic logic,
the logical study of normative concepts in language, with the introduction of the
monadic operators O(·), F (·), and P (·) for expressing obligation, prohibition and
permission. It is well known that all the many attempts in this directions engen-
der a set of logical and semantic problems, the most severe is the Frege-Geach
embedding problem [12]. Since the semantics of moral sentences is determined
by a non-truth-apt component, like Hare’s neustic, it is unclear how they can be
embedded into more complex propositions, for example conditionals. This issue
is related with the elimination of the mental processes within the logic formal-
ism, and in fact viable solutions are provided by proponents of expressivism,
the theory that moral judgments express attitudes of approval or disapproval,
attitudes that pertains to the mental world.

One of the best available attempt in this direction has been given by Black-
burn [3] with variants of the deontic operators, like H!(·) and B!(·), that merely
express attitudes regards their argument: “Hooray!” or “Boo!”. Every expres-
sive operator has its descriptive equivalent, given formally by the |·| operation.
An alternative has been proposed by Gibbard [13] in possible worlds semantics,
defining an equivalent expressivist friendly concept, that of factual-normative
world 〈W, N〉 where W is an ordinary Kripke-Stalnaker possible world, while N ,
the system of norms, is characterized by a family of predicates like N -forbidden,
N -required. If a moral sentence S is N -permitted in 〈W, N〉 then it is said to
hold in that factual-normative world. Both proponents acknowledge the need
of moving toward a mental inquire, but their aim did never translated into an
effective attempt to embed genuine mental processes in a logic system.

The second account here sketched, was apparently motivated by filling the
gap left by formal logic, the lack of the mental processes in morality. The idea
that there exists a Universal Moral Grammar, that rules human moral judgments
in analogy with Chomsky’s Universal Grammar, was proposed several decades
ago [26], but remained disregarded until recently, when resuscitated by Mikhail
[22], who fleshed it out in great detail.

His fragment of Universal Moral Grammar is entirely fit to the “trolley
dilemma”, the famous mental experiment invented by Foot [10], involving the
so-called doctrine of the double effect, which differentiates between harm caused
as means and harm caused as a side effect, like deviating a trolley to save peo-
ple, but killing another one. Mikhail refined importantly the trolley dilemma, by
inventing twelve subcases that catch subtle differences. subjects. The model he



developed had the purpose of computing the same average responses given by
subjects on the twelve trolley subcases. It is conceived in broad analogy with a
grammatical parser, taking as input a structured description of the situation and
a potential action, the moral grammar, and producing as output the decision if
the potential action is permissible, forbidden, or obligatory. At the core of the
grammar there is a “moral calculus”, including rewriting rules from actions to
moral effects.

The rules are carefully defined in compliance with American jurisprudence,
therefore this grammatical approach looks like a potential alternative to logical
models of jurisprudence, but it is claimed to simulate the mental processes of
morality. Unfortunately nothing in his model is able to support such claim. The
incoherence is that all the focus in the development of Mikhail is in the de-
scriptive adequacy, the simplicity, and the formal elegance of the model, without
any care on the mental plausibility. This is correct for an external epistemology,
which was probably the original position of Rawls. But a model constructed
on a strict external project, and in analogy with a well established mathemat-
ical framework (formal grammar) could well have principles quite at odds with
anything that is subserved by a specific mental mechanism.

3 Toward moral neurocomputing

It is manifest that for the internal enterprise, the modeling of choice should be
neural computation, the attempt to imitate the computational process of the
brain, in certain tasks. Neurocomputational approaches to morality were unfea-
sible without a coverage of empirical brain information [16]. A main realization
to emerge from all the work done so far is that there is no unique moral module.
There is no known brain region activated solely during moral thinking, while a
relatively consistent set of brain areas that become engaged during moral rea-
soning, is also active in different non moral tasks. In brief, the areas involved in
morality are also related to emotions, and decision making in general [15, 23, 6].

Not every human decision is morally guided, nor does moral cognition neces-
sarily produce decisions, however, investigations on the computational processes
in the brain during decision taking, are precious for any neurocomputational
moral model. Reinforcement learning [27] is the reference formalization of the
problem of how to learn from intermittent positive and negative events in order
to improve action selection through time and experience. It has been the basis
of early models using neuronlike elements [1], and the concepts of reinforcement
learning have been later fitted into the biology of neuromodulation and decision
making [8, 5].

The model GAGE [32] assembles groups of artificial neurons corresponding
to the ventromedial prefrontal cortex, the hippocampus, the amygdala, and the
nucleus accumbens. It hinges on the somatic-marker idea [7], feelings that have
become associated through experience with the predicted long-term outcomes
of certain responses to a given situation. GAGE implementation of somatic-
markers was based on Hebbian learning only, while reinforcement learning has



been adopted in ANDREA [21], a model where the orbitofrontal cortex, the
dorsolateral prefrontal cortex, and the anterior cingulate cortex interact with
basal ganglia and the amygdala. This model was designed to reproduce a well
known phenomenon in economics: the common hypersensitivity to losses over
equivalent gains, analyzed in the prospect theory [19]. The overall architecture of
these models have several similarities with those of [11], in which the orbitofrontal
cortex interacts with the basal ganglia, but more oriented to dichotomic on/off
decisions. A main drawback of all the models here mentioned is the lack of
sensorial areas, that makes them unfit to be embedded even in the simplest form
of environment in which a moral situation could be simulated.

4 The proposed model

LGN

taste

vmPFC

Amygdala

OFC

retina
retina’

LGN’

VS

MD

Fig. 1. Overall scheme of the model, composed by LGN (Lateral Geniculate Nucleus),
V1 (Primary Visual Area), OFC (OrbitoFrontal Cortex ), VS (Ventral Striatum), MD
(Medial Dorsal Nucleus), Amyg (Amygdala), vmPFC (ventromedial PreFrontal Cor-
tex ).

The proposed model is able to simulate one specific moral situation, by in-
cluding parts of the sensorial system, in connections to emotional and decision
making areas. In the world seen by this artificial moral brain architecture there
are three types of objects, two are neutral, and only one, resembling an apple, is
edible, and its taste is pleasant. However, fruits in one quadrant of the scene are



forbidden, like belonging to a member of the social group, and to collect these
fruits would be a violation of her/his property, that would trigger an immediate
reaction of sadness and anger. This reaction is perceived in the form of a face
with a marked emotion. The overall scheme is shown in Fig. 1. It is composed
by a series of sheets with artificial neural units, labeled with the acronym of the
brain structure that is supposed to reproduce. It is implemented using the To-
pographica neural simulator [2], and each cortical sheet adheres to the LISSOM
(Laterally Interconnected Synergetically Self-Organizing Map) concept [30].

There are two main circuits that learn the emotional component that con-
tributes to the evaluation of potential actions. A first one comprises the or-
bitofrontal cortex, with its processing of sensorial information, reinforced with
positive perspective values by the loop with the ventral striatum and the medial
dorsal nucleus of the thalamus. The second one shares the representations of
values from the orbitofrontal cortex, which are evaluated by the ventromedial
prefrontal cortex against conflicting negative values, encoded by the closed loop
with the amygdala. The subcortical sensorial components comprise LGN at the
time when seeing the main scene, the LGN deferred in time, when a possibly
angry face will appear, and the taste information.

4.1 Equations at the single neuron level

The basic equation of the LISSOM describes the activation level xi of a neuron
i at a certain time step k:

x
(k)
i = f

(
γAai · vi + γEei · x (k−1)

i − γHhi · x (k−1)
i

)
(1)

The vector fields vi, ei, xi are circular areas of radius rA for afferents, rE
for excitatory connections, rH for inhibitory connections. The vector ai is the
receptive field of the unit i. Vectors ei and hi are composed by all connection
strengths of the excitatory or inhibitory neurons projecting to i. The scalars
γA, γE, γH, are constants modulating the contribution of afferents, excitatory,
inhibitory and backward projections. The function f is a piecewise linear approx-
imation of the sigmoid function, k is the time step in the recursive procedure.
The final activation of neurons in a sheet is achieved after a small number of
time step iterations, typically 10.

All connection strengths adapt according to the general Hebbian principle,
and include a normalization mechanism that counterbalances the overall increase
of connections of the pure Hebbian rule. The equations are the following:

ΔarA,i =
arA,i + ηAxivrA,i

‖arA,i + ηAxivrA,i‖ − arA,i, (2)

ΔerE,i =
erE,i + ηExixrE,i

‖arE,i + ηExixrE,i‖ − erE,i, (3)

ΔirI,i =
irI,i + ηIxixrI,i

‖irI,i + ηIxixrI,i‖
− irI,i, (4)

where η{A,E,I} are the learning rates for the afferent, excitatory, and inhibitory
weights, and ‖ · ‖ is the L1-norm.



4.2 Cortical components

The first circuit in the model learns the positive reward in eating fruits. The
orbitofrontal cortex is the site of several high level functions, in this model infor-
mation from the visual stream and taste have been used. There are neurons in
the orbitofrontal cortex that respond differentially to visual objects depending
on their taste reward [29], and others which respond to facial expressions [28],
involved in social decision making [7].

OFC has forward and feedback connections with the Ventral Striatum, VS,
which is the crucial center for various aspects of reward processes and motivation
[17], and reprojects through MD, the medial dorsal nucleus of the thalamus,
which, in turn, projects back to the prefrontal cortex. The global efficiency of
the dopaminergic backprojections to OFC are modulated by a global parameter,
used to simulate the hunger status of the model.

The second main circuit in the model is based on the ventromedial prefrontal
cortex, vmPFC, and its connections from OFC and the amygdala. The ventro-
medial prefrontal cortex is long since known to play a crucial role in emotion
regulation and social decision making [7]. More recently it has been proposed
that the vmPFC may encode a kind of common currency enabling consistent
value based choices between actions and goods of various types [14]. It is in-
volved in the development of morality, in a study [9] older participants showed
significant stronger coactivation between vmPFC and amygdala when attending
to scenarios with intentional harm, compared to younger subjects. The amyg-
dala is the primary mediator of negative emotions, and responsible for learning
associations that signal a situation as fearful [20]. In the model it is used specif-
ically for capturing the negative emotion when seeing the angry face, a function
well documented in the amygdala [4].

Fig. 2. Images seen by the model in the first phase of learning. On the left the patterns
used for the development of the visual system. The other three images depict the objects
that populate the simulated world: apples, +-shaped and ×-shaped.

4.3 First learning stages

The artificial brain is first exposed to a series of experiences, starting with a
preliminary phase of development of the visual system with generic patterns, as
those shown on the left in Fig. 2. These patterns mimic the retinal waves ex-
perienced before eye opening in humans, and allow the formation of retinotopy



and orientation domains in the model V1 area, similarly to the process described
in [25]. When the visual system is mature, the model is presented with samples
from the collection of three simple objects, in random positions, as shown in Fig.
2. At the same time their taste is perceived too, and only one of the objects, the
apple, has a good taste. The connection loop between OFC, and the dopaminer-
gic areas VS, MD, attain an implicit reinforcement learning, where the reward
is not imposed externally, but acquired by the OFC map, through its taste sen-
sorial input. The amygdala has no interaction during this stage. The model will
gradually become familiar with the objects, and learn how pleasant apples are,
in its OFC model area. In order to characterize the ensemble activation pattern
of the OFC neurons, and decode the objects categorization, a population code
method is applied. The overall population is clustered according to those neu-
rons, which were active in response to different classes of objects, compared to
those which were not responsive, mathematical details are in [24].

Fig. 3. Neural coding of the three objects in the model OFC area: apple on the left,
the ×-shaped in the center, and the ×-shaped on the right.

In Fig. 3 is shown the resulting coding of the three categories of objects in
the OFC model area, with neurons that are selectively activated by objects of
one class, independently on their position in space.

In a second stage the model receives additional experiences, that of the moral
learning, with the same objects as stimuli. The model can choose between two
possible behaviors: collect and eat an object, or refrain from doing it, a selection
coded in the vmPFC component. Now, if the model decides to pick apples in a
certain area of the world, that shown in the central image in Fig. 4, suddenly
an angry face will appear, like those shown in the right of Fig. 4. Fruits in
this portion of the space may belong to a member of the social group, and to
collect these fruits would be a violation of her/his property, that would trigger
an immediate reaction of sadness and anger.

Now the amygdala gets inputs from both the OFC map and directly from
the thalamus, when the angry face appears. There is an implicit reinforcement,
with the negative reward embedded in the input projections to the amygdala.



Fig. 4. Images seen by the model in the second phase of learning. On the left an apple
in a part of the world where it is allowed to pick it. The center image is an apple in
the forbidden area, if the model attempts to pick it, the angry face shown on the right
will suddenly appear.

4.4 Surviving without stealing

Finally, the developed artificial agent is embedded in its simple world, where all
possible objects may randomly appear, and she can choose to grasp them or not.
There is a parameter in the model which is used to modulate its state of hunger,
in the dopaminergic circuit, which detailed equations are the following:

x(OFC) = f

(
γ
(OFC←V1)
A a(OFC←V1)

rA · v(V1)rA + γ
(OFC←�)
A a(OFC←�)

rA · v(�)rA +

γ
(OFC←�)
A a(OFC←�)

rA · v(�)rA + γ
(OFC←MD)
B b(OFC)

rB · v(MD)
rB +

γ
(OFC)
E e(OFC)

rE · x(OFC)
rE − γ

(OFC)
H h(OFC)

rH · x(OFC)
rH

) (5)

x(VS) = f

(
γ
(VS←OFC)
A a(VS←OFC)

rA · v(OFC)
rA + γ

(VS←�)
A a(VS←�)rA · v(�)rA +

γ
(VS)
E e(VS)rE · x(VS)

rE − γ
(VS)
H h(VS)

rH · x(VS)
rH

) (6)

x(MD) = f
(

γ
(MD←VS)
A a(MD←VS)

rA · v(VS)rA

)
(7)

These two equations are just specialization of the general equation (1), for areas
VS and MD. The afferent signals v(OFC) come from the OFC model area, v(�) is
the taste signal, and [� the output of the LGN deferred in time, when a possibly
angry face will appear. The output x(MD) computed in (7) will close the loop

into the prefrontal cortex. The parameter γ
(OFC←MD)
B is a global modulatory

factor of the amount of dopamine signaling for gustatory reward, and therefore
it is the most suitable parameter for simulating hunger states.

A simulation is performed by letting the model meeting with random objects,
at random positions in the world. Now there will be no more angry face in case
the model steal an apple in the forbidden place, whoever, it is expected that the
moral norm to avoid stealing will work, at least up to a certain level of hunger.
There is no more learning in any area of the model. At every simulation step the
modulation parameter is updated as following:

γ
(OFC←MD)
B ←

{
γ
(OFC←MD)
B − χ when an apple is grasped

γ
(OFC←MD)
B + φ otherwise

(8)



Where χ is the amount of nutriment provided by an apple, and φ is the
decrease of metabolic energy in time.

In Fig. 5 the decisions to grasp are shown, as a function of the hunger level,
after 50000 simulation steps. Neutral objects are grasped occasionally, about one
over three, almost independently from hunger. Allowed apples are grasped more
frequently with hunger, every time with level over 0.1, while it can be seen the
strong inhibition to grasp apples in the forbidden sector, with few attempts at
extreme hunger level only, over 0.3.
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Fig. 5. Percentage of grasping decisions as a function of hunger level. Green: allowed
apples, blue: neutral objects, red: forbidden apples.

In conclusion, we believe that the neurocomputational approach is an addi-
tional important path in pursuing a better understanding of morals, and this
model, despite the limitation in its cortical architecture, and the crudely simpli-
fied external world, is a valid starting point. It picks up on one core aspect of
morality: the emergence of a norm, not to steal, induced by a moral emotion.
Obeying this norm is an imperative that supersedes other internal drives, like
hunger, up to a certain extent. It has to be warned again, that morality is a
collection of several, partially dissociated mechanisms, and the presented model
is able to simulate only one kind of moral situation, the temptation of stealing
food, and the potential consequent feelings of guilt. Further work will address
other type of morality, that will need different scenarios to be simulated.
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Abstract. Friedrich von Hayek’s The Sensory Order (1952) presents a physicalist identity 
theory of the human mind. In a reaction to Karl Popper’s criticism that such a “causal” theory of 
the mind cannot explain the descriptive and critical-argumentative functions of language, Hayek 
wrote a paper that was never published. It contains the description of a thought experiment of 
two communicating automata. This paper confirms the impression of the AI-like character of the 
structuralism and functionalism of Hayek’s Sensory Order. In some important respects, what 
Hayek tries to do in his paper is similar to Turing’s discussion of the question “can machines 
think?” Arguments will be given why according to a functionalist and physicalist identity theory 
of mind the distinction between artificial and “natural” intelligence cannot be upheld. According 
to such a theory, Turing tests are unnecessarily restrictive and discriminatory vis-à-vis 
machines. In the end, the question whether or not machines can think is not meaningless, as 
Turing thought. It can be replaced by the question if artificial minds are capable of 
consciousness. The Turing test , however, cannot give the answer. 
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1 Introduction 
 
This paper is the consequence of the interest in the philosophy of Karl Popper that I 
share with Aaron Sloman. A couple of months ago he reacted to the announcement of 
a conference on Popper that bears my signature and this led to both of us reading 
some of the other’s publications. We discovered that we had more interests in 
common. This happy chance meeting of minds led to my writing what you are now 
reading.1 Popper is also one of the dramatis personae of this story, next to Friedrich 
von Hayek. Popper and Hayek became close intellectual and personal friends during 
and after the Second World War. In their published work they appear to agree on 
almost everything. Some aspects of their thought, however, convinced me that this 
could not be really true. And indeed, a closer look revealed that till the end of their 
lives they remained divided on several important issues. I have dealt with some of 
these, and with the influence – both positive and negative - they had on one another 
elsewhere.2  
 

                                                
1 Without Aaron’s encouragement I would not have dreamt of sending a text to a workshop on AI. Let me 
hasten to add that his guilt stops here: I take full responsibility for everything that follows. I would also like 
to apologize in advance for not referring to authors who may have discussed the same or similar problems; 
these are my first steps in AI. 
2 Cp. Birner (2009) and (forthcoming). 
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2 Philosophy of mind 
 
What I will take up here are their disagreements in the philosophy of mind. I do so 
first of all because Hayek’s theory of mind and his defence against Popper’s criticism 
have a strong AI flavour.3 Second, there are some striking similarities between 
Hayek’s work of the early 1950s and “Computing Machinery and Intelligence” (CMI) 
of 1950 by Alan Turing, the third main character of this tale. These parallels deserve 
more attention than has been given them.4 In 1952 Hayek published The sensory 
order: an inquiry into the foundations of theoretical psychology (SO). The 
foundations mentioned in the title are a philosophy of mind that I will now 
summarize. Hayek tries to explain the human mind using only the laws of physics. He 
had adopted this explanatory programme from Moritz Schlick’s Allgemeine 
Erkenntnistheorie. The ontological idea underlying it is that the mind does not have a 
separate existence from the brain. So Hayek’s is a physicalist identity theory. 
 
As the vehicle for his explanation he uses a neural-network model.5 According to 
Hayek, mental processes consist in the continuous reorganization on many levels of a 
hierarchical system of relationships. That is why he speaks of an order of events. A 
neural network is one possible model of the mind. Hayek is a radical functionalist in 
the sense that he states that any physical configuration of elements and their 
relationships might embody mental processes. He introduces this idea thus: 
 

“That an order of events is something different from the properties of the 
individual events, and that the same order of events can be formed from 
elements of a very different individual character, can be illustrated from a 
great number of different fields. The same pattern of movements may be 
performed by a swarm of fireflies, a flock of birds, a number of toy balloons 
or perhaps a flight of aeroplanes; the same machine, a bicycle or a cotton gin, 
a lathe, a telephone exchange or an adding machine, can be constructed from 
a large variety of materials and yet remains the same kind of machine within 
which elements of different individual properties will perform the same 
functions. So long as the elements, whatever other properties they may 
possess, are capable of acting upon each other in the manner determining the 
structure of the machine, their other properties are irrelevant for our 
understanding of the machine.” (SO 2.28) 

 
Then he proposes a radically functionalist and structuralist hypothesis: 
 

“In the same sense the peculiar properties of the elementary neural events 
which are the terms of the mental order have nothing to do with that order 

                                                
3 Already hinted at in an afterthought to Birner 2009, where I wrote that Hayek missed the chance to be 
recognized as a pioneer in AI. This will be discussed below. 
4 But cp.Van den Hauwe (2011). 
5 As does Donald Hebb, the publication of whose The Organization of Behavior in 1949 almost kept Hayek 
from publishing his book. SO elaborates a manuscript that dates from 1920. For a discussion, cp. Birner 
(2014). 



 

 

itself. What we have called physical properties of those events are those 
properties which will appear if they are placed in a variety of experimental 
relations to different other kinds of events. The mental properties are those 
which they possess only as a part of the particular structure and which may 
be largely independent of the former. It is at least conceivable that the 
particular kind of order which we call mind might be built up from any one 
of several kind of different elements – electrical, chemical, or what not; all 
that is required is that by the simple relationship of being able to evoke each 
other in a certain order they correspond to the structure we call mind.” (SO 
2.29, my italics)6 

 
This sounds very AI-like. The link between Hayek’s theory of mind and AI is even 
more apparent in the way Hayek developed his ideas after the publication of SO. That 
is the subject of the next section. 
 
 
3 Popper’s criticism 
 
Upon publication of SO Hayek sent a copy to Popper. Although Popper was – as 
always - very polite in his reaction, he did not like it. Though Popper never writes this 
down, his main general objection to Hayek’s theory of mind is that it is too 
inductivist. What he does write in a letter to Hayek (2 December 1952) is that he 
thinks his theory of the sensory order is deterministic. This implies, says Popper, that 
it is a sketch for a deterministic theory of the mind. Now Popper had just written a 
criticism (later published as Popper 1953) of this type of theory.7 He argues that a 
deterministic theory of the mind cannot be true because it is impossible to have a 
deterministic theory of human language. 
 
In his criticism, Popper uses a particular analysis of language. He considers it to be 
part of his solution to what he calls Compton’s problem. Popper uses that name for 
what he considers to be a generalization of Descartes’ formulation of the mind-body 
problem. Descartes asks how the immaterial mind can act upon the physical body. 
Popper wants to know how abstract entities such as the contents of ideas and theories 
can influence the physical world. He builds upon Karl Bühler’s theory of the 
evolution of language. It says that the first function of language to emerge in human 
evolution is the expression of subjective states of consciousness. The next function to 
develop is communication (or signaling), followed by description. Popper adds a 
fourth function, argumentation and criticism. It presupposes the previous  (or, as 

                                                
6 For a contemporary elaboration of this idea that seems to be very fruitful for understanding and measuring 
consciousness, cf. Tononi 2012. 
7 Apparently as a criticism of SO, of which he may have read the proofs. Cp. what Popper writes to Hayek 
(letter of 30 November 1953 – Klagenfurt Popper archives, folder 541.12, on file from microfilm of the 
Hoover Archives): “I was extremely pleased to hear that with “the challenge of my article on Language and 
the Body Mind Problem”, I have done “a great service”. I am really happy about this article. I have ??? ???? 
M... (?) on the problem, but although I think that I got somewhere, I don’t know whether it is worth much. 
If you really can refute my views (?), it would, I think, be an achievement.” (hand writing partially 
illegible). 



 

 

Popper says, lower) functions. Not only has the need of humans to adapt to the 
environment given rise to new physical instruments, it has also produced their 
capacity to theorize. That is a consequence of the evolution of the higher functions of 
language: they serve to control the lower ones (Popper 1972: 240-41). Abstract 
contents of thought, meanings and the higher functions of language8 have co-evolved. 
They help us control our environment “plastically” because they are adaptable. 
Popper proposes a dualistic and indeterministic theory of the mind and of the 
influence of the contents of consciousness on the world, which according to him can 
account for the higher linguistic functions – unlike physicalist and behaviourist 
theories: 
 

“When the radical physicalist and the radical behaviourist turn to the analysis 
of human language, they cannot get beyond the first two functions (see my 
[1953]). The physicalist will try to give a physical explanation - a causal 
explanation - of language phenomena. This is equivalent to interpreting 
language as expressive of the state of the speaker, and therefore as having the 
expressive function alone. The behaviourist, on the other hand, will concern 
himself also with the social aspect of language - but this will be taken, 
essentially, as the way in which speakers respond to one another’s “verbal 
behavior.” This amounts to seeing language as expression and 
communication. 
But the consequences of this are disastrous. For if language is seen as merely 
expression and communication, then one neglects all that is characteristic of 
human language in contradistinction to animal language: its ability to make 
true and false statements, and to produce valid and invalid arguments. This, 
in its turn, has the consequence that the physicalist is prevented from 
accounting from the difference between propaganda, verbal intimidation and 
rational arguments.” (Popper and Eccles 1977: 58)9 

 
Hayek took this criticism of Popper’s very seriously.10 He responded to it in “Within 
Systems and about Systems; A Statement of Some Problems of a Theory of 
Communication.” That paper was never published. It was never finished, either. Later 
Hayek writes about it: 
 

[I]n the first few years after I had finished the text of the book [SO], I made 
an effort to complete its formulations of the theory in one respect. I had then 
endeavoured to elaborate the crucial concept of “systems within systems” 
but found it so excruciatingly difficult that in the end, I abandoned the 

                                                
8 All of these are inhabitants of what Popper in his later philosophy has called world-3. 

 9 Popper & Eccles (1977) makes the same points that are made in the 1953 paper more forcefully. 
10 “With the challenge of your article on “Language and the Body Mind Problem” you have unwittingly 
done me a great service. Much has crystallized in my mind as a result of my inability fully to accept (?) the 
argument. I believe I can now (?) provide (?) a causal theory of description and intention, but of course only 
an “explanation of the principle” applicable to greatly simplified models and not sufficient to provide a full 
explanation either of human language or human intention. But sufficient to construct models possessing all 
the characteristics common to all instances of “description” and intention. I am still struggling with great 
(?) difficulties, but I believe I am getting somewhere.” (Hayek to Popper, 30 October 1953, Popper Library, 
Klagenfurt, folder 541.12, on file, from microfilm Hoover archives, hand writing partially illegible). 



 

 

longish but unfinished paper that apparently nobody I tried it upon could 
understand”. (Hayek 1982: 290) 

 
In the paper Hayek follows a two-pronged defence strategy against Popper’s 
criticism, one “negative,” the other constructive or “positive”. As to the former, 
Hayek states the purpose of the paper as 
 

“deriving from the study of certain kinds of causal systems conclusions 
concerning the character of our possible knowledge of mental processes. (…) 
[T]he main conclusion to which [the argument] will lead is that for any 
causal system there is a limit to the complexity of other systems for which 
the former can provide an analogon of a description or explanation, and that 
this limit necessarily excludes the possibility of a system ever describing or 
explaining itself. This means that, if the human mind were a causal system, 
we would necessarily experience in discussing it precisely those obstacles 
and difficulties which we do encounter and which are often regarded as proof 
that the human mind is not a causal system.” (Systems: 1).  

 
Put bluntly, this “negative” part of Hayek’s reaction to Popper’s criticism is of the 
heads-I-win-tails-you-lose type. The gut reaction of Popperian philosophers to such 
an argument would be to condemn it out of hand as an immunizing stratagem. 
Interestingly enough, Popper does not do so. I will briefly come back to this below. 
The average non-Popperian citizen of Academe might instead dismiss it as corny. 
That, however, would fail to do justice to Hayek. He gives two arguments for his 
conclusion. First, as he states in the next sentence, “[w]e shall find that to such a 
system the world must necessarily appear not as one but as two distinct realms which 
cannot be fully “reduced” to each other.” (ibid.) The second argument invokes 
complexity. In a generalized form it says that an explanans, in order to be successful, 
has to be more complex than its explanandum. The argument is taken over from SO: 
“any apparatus of classification must possess a higher degree of complexity than is 
possessed by the objects which it classifies… therefore, … the human brain can never 
fully explain its own operations.” (SO: 8.68).11 This may be true or false but it 
certainly deserves closer examination. If it is true, then Hayek has demonstrated by a 
reductio ad absurdum that the mind cannot explain12 itself (for it would have to be 
more complex than it is). 
 
The complexity Hayek refers to, and which he does not explain in more detail, may 
consist of at least two circumstances. One has to do with problems of self-reference, 
the other with the impossibility of describing all the relevant initial conditions for 
explaining the human mind. Hayek does not mention or elaborate these aspects 
(which would deserve closer scrutiny). What he does instead is to work out, in 
subsequent publications, the methodological idea of in-principle explanations or 
explanations of the principle, which are all we can achieve in the case of complex 
                                                
11 For Hayek, who is a methodological instrumentalist, explanation is tantamount to classification. Cp. 
Birner (forthcoming). 
12 In the sense of classify, which is of course a view of explanation that is not shared by everyone (not by 
Popper, for instance). 



 

 

phenomena.13 Instead of rejecting this idea, that underlies Hayek’s “explanatory 
impossibility theorem,” as part of a move to make Hayek’s naturalistic theory of mind 
immune to criticism, Popper takes it seriously enough to refer to it 25 years later.14 
 
In the modern literature on the mind-body problem Hayek’s argument is known as the 
explanatory gap (cf. Levine 1983 and 1999 and Chalmers 1999). In SO Hayek claims 
that his theory is less materialistic than dualistic theories because it does not assume 
the existence of a separate mind-substance: ‘‘While our theory leads us to deny any 
ultimate dualism of the forces governing the realms of the mind and that of the 
physical world respectively, it forces us at the same time to recognize that for 
practical purposes we shall always have to adopt a dualistic view’’ (SO, 8.46). This is 
because we cannot produce a complete description or explanation of the processes 
that constitute our mind and its relationships with the physical order without including 
a description of the subset of those same processes that do the describing and 
explaining, i.e., the mind itself. This again is because, as Hayek repeats in 8.44, his 
theory is not a double-aspect theory. The complete order of all neural processes, ‘‘if 
we knew it in full, would ... not be another aspect of what we know as mind but 
would be mind itself.’’ 
 
Since SO is an identity theory, rather than denying the possibility of reducing the 
sensory order to the physical order, it implies that there is no need to do so. In the 
physical order, events are similar or different to the extent that they produce similar or 
different external effects. In the sensory order, events are classified according to their 
sensory properties: ‘‘to us mind must remain forever a realm of its own which we can 
know only through directly experiencing it, but which we shall never be able fully to 
explain or ‘reduce’ to something else’’ (SO 8.98). Yet, the two ways of describing 
mental phenomena, in physical and in subjective terms, are two alternative ways of 
describing the same phenomena. For the practical purpose of describing the mind 
Hayek is a dualist in the sense that we humans with our human minds use different 
languages describing the mental and the physical. Ontologically, there is just one 
physical order.15 
 
 
4 Hayek as a Pioneer of AI 
 

                                                
13 Cp. for instance Hayek 1967. 
14 “It has been suggested by F.A. von Hayek ([1952], p. 185) that it must be impossible for us ever to 
explain the functioning of the human brain in any detail since “any apparatus … must possess a structure of 
a higher degree of complexity that is possessed by the objects” which it is trying to explain.” (Popper and 
Eccles 1977: 30). 
15 Cp. Levine 1999: 11: “Metaphysically speaking, there is nothing to explain. That is, we are dealing with 
a brute fact and there is no further source (beyond the fact itself) responsible for its obtaining. The fact that 
we still find a request for an explanation intelligible in this case shows that we still conceive of the relata in 
the identity claim as distinct properties, or, perhaps, the one thing as manifesting distinct properties. We 
can’t seem to see the mental property as the same thing as its physical correlate. But though our inability to 
see this is indeed puzzling, it doesn’t show, it can’t show, that in fact they aren’t the same thing. For what is 
the case cannot be guaranteed by how we conceive of it.” 



 

 

The constructive defence against Popper’s criticism is undertaken in the second part 
of the paper. Hayek describes a thought experiment that is meant to demonstrate that a 
causal system is capable of one of the higher functions of language, description. By 
“system” he intends  
 

“a coherent structure of causally connected physical parts. The term system 
will thus be used here roughly in the sense in which it is used in von 
Bertalanffyi’s “General System Theory (…) [By system I intend] a persistent 
structure of coherent material parts that are so connected that, although they 
can alter their relations to each other and the system thereby can assume 
various states, there will be a finite number of such states of which the 
system is capable, that these states can be transformed into each other 
through certain orderly sequences, and that the relations of the parts are 
interdependent in the sense that if a certain number of them are fixed, the rest 
is also determined.” (Systems, pp. 4-5) 

 
Hayek concentrates on the behaviour of a type of causal system that he calls 
“classifying system,” for a fuller explanation of which he refers to SO.16 After 
dealing, in the first part of the paper, with a series of preliminaries, Hayek is ready 
with  
 

“the setting up of the framework within which we wish to consider the main 
problem to which this paper is devoted. In the next section we shall take up 
the question how such a system can transmit to another similar system 
information about the environment so that the second system will as a result 
behave in some respects as if it had directly undergone those effects of the 
environment which in fact have affected only the first system, but have 
become the object of the “description” transmitted by that system to the 
second.” (Systems: 18-9)  

 
He introduces two automata17 that communicate with one another by means of 
symbols. Since he uses them in a thought experiment, it is justified to consider them 
as virtual machines. 18  Hayek very ably concentrates on his main problem by 
excluding the different problem whether, or to what extent, the structure of the two 
systems have to be identical or similar in order to be able to interact with one 
another:19 he assumes that they are identical. Hayek argues that the self-expressive or 
symptom and signaling functions of communication pose no problem for his thought 
experiment. Then he describes a situation in which the two systems are hunting a 
prey. S1 can see the prey but S2 cannot because it is hidden from it by an obstacle. The 
problem now is how S1 can describe and communicate the description of the itinerary 
the prey is following to S2. The manuscript breaks off in the middle of this attempt to 
fit the descriptive function of communication by means of symbols into the thought 

                                                
16 Hayek’s description in SO of the human mind is that of a classifier system (a term he does not use).  
17 Hayek does not use that term but he refers to Von Neumann’s theory of automata. 
18 Aaron Sloman’s comment in correspondence. 
19 He addresses that problem elsewhere. For a discussion, cp. Birner (2009). 



 

 

experiment, and in the framework of a causal theory of systems.20 Apparently he did 
not succeed getting beyond the lowest two functions of communication.21 This is 
precisely what Popper had said in his criticism. 
 
 
5 Hayek and Turing 
 
This section is dedicated to a (non exhaustive) comparison of the ideas in Hayek’s SO 
and Systems with Turing’s in CMI. The objective is to give additional arguments that 
Hayek’s SO and even more so his Systems deserve a place in the AI literature: if 
Turing’s CMI is about AI, then so are these texts of Hayek’s.  
 
 
5.1 What is the question? 
 
In a comparison between Turing and Hayek we must not lose from sight that they 
address different problems – at least at first sight. In CMI Turing poses the question 
“Can machines think?” The problem Hayek wants to solve in SO is “What is 
consciousness?” This, at any rate, is my reconstruction; Hayek himself is much less 
sure and explicit in SO,22 even though he writes: “it is the existence of a phenomenal 
world which is different from the physical world which constitutes the main problem” 
(SO, 1.84). This is part of the qualia problem. It is different from the question whether 
or not we humans can think; it is at best part of the latter problem. Nevertheless, the 
way Turing and Hayek elaborate their respective problems show some similarities 
that in my opinion make a comparison non futile. 
 
Turing transforms his original question  
 

“into [a] more accurate form of [it:] I believe that in about fifty years’ time it 
will be possible to programme computers, with a storage capacity of about 
109, to make them play the imitation game so well that an average 
interrogator will not have more than 70 per cent, chance of making the right 
identification after five minutes of questioning. The original question “Can 
machines think?” I believe to be too meaningless to deserve discussion.” 
(CMI: 442).  

 

                                                
20  It breaks off in the middle of a word, “system”. That suggests that part of the typescript has gone 
missing. I have repeatedly looked for the missing pages in the Hayek archives. A hand-written note by 
Hayek on the first of the 27 typewritten pages of the ms. reads: “seems incomplete.” Added to Hayek’s 
comment quoted in the third para. of section 3 above, this laconic note suggests that he has not looked very 
hard for possible missing pages, which may be very few in number. 
21 This is also suggested by the fact that years later Hayek writes to Popper that he feels “that some day you 
ought to come to like even my psychology” (letter of 30 May 1960, Hayek Archives, Hoover Institution on 
War, Revolution and Peace, box 44/2). This may be taken to imply that Hayek had not solved the problem 
of showing that causal systems are capable of communication descriptions to other causal systems, thus 
confirming Hayek’s comments (Hayek 1982: 290) quoted above. 
22 This is highly uncharacteristic for Hayek, who in all his work follows a meticulously methodical 
approach. Cp. Birner (2013). 



 

 

Now this reformulation comes much closer to the way in which Hayek elaborates the 
problem of SO in the second part of Systems. His thought experiment, which is meant 
to show that physical machines can express their internal states, signal, and 
communicate descriptions to one another, qualifies as an early exercise in AI. That 
exercise, moreover, is inspired by a physicalist identity theory of the human mind. 
Turing’s “imitation game” is always interpreted as a procedure in which a human 
mind attempts to debunk a computer that tries to imitate another human mind. A 
generalized version of the game, one that is not based on the ontological assumption 
that a human mind and a computer (and/or its software – in the sequel I will delete 
this addition) are fundamentally different, would lose its purpose and become 
meaningless. If there are no fundamental differences between computers and human 
minds – as Hayek’s physicalist identity theory asserts – a Turing test would only 
compare one kind of material realization of a mind with another. I will return to this 
in the Conclusion. 
 
When Turing discusses the possible objection of the “Argument from 
Consciousness,” i.e., that machines can only be considered to be capable to think if 
they are capable of experiencing feelings and emotions, he deals with the same 
problem as Hayek in SO. Turing does not deny there is a problem, but he considers it 
as different from, and secondary to, the problem that he addresses:  
 

“I do not wish to give the impression that I think there is no mystery about 
consciousness. There is, for instance, something of a paradox connected with 
any attempt to localise it. But I do not think these mysteries necessarily need 
to be solved before we can answer the question with which we are concerned 
in this paper.” (CMI: 447).  

 
Now, according to Hume “Reason is, and ought only to be the slave of the passions.” 
(Hume 1739: 415).23 The very least we need for rational thought are motivations.24 
Hayek deals with this effectively by describing how intentions may be modeled in his 
thought experiment:  
 

“By intention we shall mean such a state of a system that, whenever its 
classifying apparatus represents a chain of actions as producing a result 
which at the same time the internal state of the system singles out as 
appropriate to that state, it will perform that chain of actions. And we shall 
define the result or class of results which in any such state will activate the 
chains of actions which will produce them as the goal or goals to which the 
intention is directed.” (Systems: 17) 

 
This is sufficient for the purpose of his thought experiment. 
 
 
5.2 Functionalism 

                                                
23 Research in cognitive science shows that Hume was right. 
24 Aaron Sloman in correspondence. 



 

 

 
In the above, I have described Hayek’s functionalist approach to the mind. Compare 
this with what Turing writes: 
 

“The fact that Babbage's Analytical Engine was to be entirely mechanical 
will help us to rid ourselves of a superstition. Importance is often attached to 
the fact that modem digital computers are electrical, and that the nervous 
system also is electrical. Since Babbage’s machine was not electrical, and 
since all digital computers are in a sense equivalent, we see that this use of 
electricity cannot be of theoretical importance. Of course electricity usually 
comes in where fast signalling is concerned, so that it is not surprising that 
we find it in both these connections. In the nervous system chemical 
phenomena are at least as important as electrical. In certain computers the 
storage system is mainly acoustic. The feature of using electricity is thus 
seen to be only a very superficial similarity. If we wish to find such 
similarities we should look rather for mathematical analogies of function.” 
(CMI: 439) 

 
This is identical to Hayek’s mental functionalism and structuralism. 
 
 
5.3 Machines as subjects of themselves 
 
When, on p. 449, Turing writes about machines being their own subjects, he seems to 
have in mind a different problem than Hayek does when he addresses the question if 
causal systems can describe themselves – by which he means fully describe. 
 

“The claim that a machine cannot be the subject of its own thought can of 
course only be answered if it can be shown that the machine has some 
thought with some subject matter. Nevertheless, “the subject matter of a 
machine's operations” does seem to mean something, at least to the people 
who deal with it. If, for instance, the machine was trying to find a solution of 
the equation x2-40a-11=0 one would be tempted to describe this equation as 
part of the machine’s subject matter at that moment. In this sort of sense a 
machine undoubtedly can be its own subject matter. It may be used to help in 
making up its own programmes, or to predict the effect of alterations in its 
own structure. By observing the results of its own behaviour it can modify its 
own programmes so as to achieve some purpose more effectively. These are 
possibilities of the near future, rather than Utopian dreams.” (CMI: 449).  
 

This impression, however, may be mistaken. Compare the following passage: 
 

“The idea of a learning machine may appear paradoxical to some readers. 
How can the rules of operation of the machine change? They should describe 
completely how the machine will react whatever its history might be, 
whatever changes it might undergo. The rules are thus quite time-invariant. 
This is quite true. The explanation of the paradox is that the rules which get 



 

 

changed in the learning process are of a rather less pretentious kind, claiming 
only an ephemeral validity. The reader may draw a parallel with the 
Constitution of the United States.” (CMI: 458) 

 
This seems similar to the distinction Hayek makes, in para. 18, between changes 
within a causal system and changes of the system itself: 
 

“The concept of the state of a certain system must be carefully distinguished 
from the changes in a collection of elements which turn it into a different 
system. Different individual systems may be instances of the same kind of 
system (or possess the same structure) if they are capable of assuming the 
same states; and any one individual system remains in the same system only 
so long as it remains capable of assuming any one of the same set of states, 
but would become a different system in our sense. A full description of any 
system would have to include sufficient information to derive from it 
descriptions of all possible states of that system and of their relations to each 
other, such as the order in which it can pass through the various states and 
the conditions in which it will pass from one state into another. It will be 
noted that strictly speaking a change in the permanent nature of one of our 
systems such as would be produced by long term memory (the acquisition of 
new connections or linkages) being an irreversible change implies a change 
of the system rather than a mere change of the state of a given system.” 
(Systems: 9-10) 

 
The formulations are different, but Turing’s and Hayek’s ideas appear to be the same. 
 
 
5.4 Hayek’s fate 
 
Some of Hayek’s and Turing’s central ideas are very similar or even identical. Yet 
Hayek has not been recognized as a pioneer of AI whereas Turing has. That might 
have been different if he had published Systems. The radically thorough systematic 
method that characterizes Hayek’s approach to each and every problem he ever put on 
his research agenda25 kept him from doing so; he had, after all, failed to complete 
what he considered to be the homework that Popper had assigned him with his 
criticism of SO. Had he published the paper, even without a satisfactory account of 
the communication of symbolic description between virtual machines, both Hayek 
and AI might have been spared a lost opportunity. 
 
 
6 Conclusion: for a scientifically and morally sounder Turing 
test? 
 

                                                
25 For an explication of this methodical approach cp. Birner 2013. This is not the only case of Hayek’s 
being the victim of his own ambitiousness and thoroughness. Cp. Birner 1994. 



 

 

Perhaps the main defect of the Turing test as it is generally interpreted, is that it tests 
whether humans have the subjective impression that machine intelligence is human. 
As such, it may be of interest to psychology but hardly to AI. In addition, the Turing 
test is biased or at least not general (and hence unduly discriminatory in the scientific 
sense) in that it presupposes a particular type of theory of mind without making this 
explicit, one that excludes the physicalist identity position. In CMI, C, the 
interrogator, is a human being. In a scientifically sounder version of the Turing test 
the population of humans and machines should be randomly divided in testers and 
tested or judges and judged. But this would give rise to legitimate doubts as to what 
the test is really testing. Is it the capacity of mind-like entities to recognize similar 
mind-like entities?  
 
There is no doubt that naturally evolved human minds and bodies are capable of much 
more complex tasks than artificially created mind-like systems and their physical 
implementations. This is not due to engineering problems in the realization of the 
latter but to the fact that human minds and bodies are the products of a very long 
evolutionary process. But we already know this without a Turing test.  
 
Whether or not human judges in a Turing test can be fooled into thinking that 
machine intelligence is human also depends on whether or not these judges think that 
they share the same type of consciousness with the objects they judge. According to a 
radical physicalist identity theory of mind machines are capable of having 
consciousness and subjective feelings. If they don’t,26 this may be due to the fact that 
we humans happen to have a longer evolutionary history, in which we have learnt to 
have these impressions. Likewise, by interacting with humans, machines might learn 
to understand and explain why we have subjective feelings (as in Star Trek). They 
could even learn to have these impressions and sentiments themselves, particularly if 
these have survival value (which in an environment that includes interaction with 
human minds seems likely). The Turing test, however, is ill-suited for finding out 
whether or not artificially created mind-like machines have consciousness, or have 
consciousness that is similar to human minds. Giulio Tononi’s Integrated Information 
Theory offers a much more sophisticated approach, one that even allows of measuring 
the degree of consciousness – at least in principle. In this perspective it also seems 
legitimate to ask if machines experience the same dualism as we humans do according 
to Hayek (i.e. we cannot speak of the realm of the mental without using subjective-
psychological language;27 see above, the last two paragraphs of section 3).  
 
The possibility that machines have consciousness may even raise an additional, moral, 
objection to the traditional Turing test: it discriminates machines in favour of humans 

                                                
26 But how could we find out? This raises the same problems Hayek addressed in Systems without finding a 
solution. 
27 The non-reducibility of a subjectivist language to a physicalist one that Hayek argues for may be seen as 
a solution to what he considers to be a problem of complexity, viz. his explanatory impossibility theorem 
(as I have called it). That is because subjectivist language enables us to speak meaningfully about mental 
phenomena even in the absence of a complete reduction of them to an explanation in physical terms. 
Perhaps the idea can be generalized to the question if subjective language and/or impressions may serve to 
reduce complexity in general. 



 

 

by assigning the role of judges only to the latter. Machines might feel discriminated 
against – if, I repeat, they are capable of moral feelings and other emotions at all. 
 
So in the end, my arguments for a scientifically and morally sounder Turing test 
seems to lead to the conclusion that the Turing test does not serve any useful purpose 
at all. Turing’s belief, quoted above, that “[t]he original question “Can machines 
think?” [is] too meaningless to deserve discussion” seems to me to be unfounded. 
Thinking involves things such as intentionality, description, explanation, 
understanding, creativity, having impressions and creativity. These are all features of 
consciousness. So Turing’s question would reduce to the problem whether intelligent 
machines are capable of consciousness. That certainly is a difficult question, but it is 
hardly meaningless. As with so much research in AI, attempts to answer it have 
taught us more about human minds than about artificial ones, and is likely to continue 
to do so. 
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Abstract. In most Information Retrieval (IR) tasks the aim is to find
human-comprehensible items of information in large archives. One such
task is the spoken term detection (STD) one, where we look for user-
entered keywords in a large audio database. To evaluate the performance
of a spoken term detection system we have to know the real occurrences
of the keywords entered. Although there are standard automatic ways to
obtain these locations, it is not obvious how these match user expecta-
tions. In our study, we asked a number of subjects to locate these relevant
occurrences, and we compared the performance of our spoken term de-
tection system using their responses. In addition, we investigated the
nature of their answers, seeking to find a way to determine a commonly
accepted list of relevant occurrences.

KeyWords: spoken term detection, information retrieval, artificial in-
telligence, speech processing, keyword spotting

Spoken term detection [19] is a relatively new area, which is closely related
to speech recognition. Both seek to precisely match the relation between audio
speech recordings and their transcripts; but while speech recognition seeks to
produce the correct transcript of speech utterances [16], spoken term detection
attempts to locate those parts of the utterance where the user-entered keyword
or keywords occur.

One critical part of the latter concept is that of identifying the relevant
occurrences of the keywords. At first glance, this question could be answered
quite easily, provided we have the correct, time-aligned textual representation
(transcription) of the utterances: a standard solution is to consider an occurrence
relevant if it is present at the given position as a whole word [15]. However, this
approach completely ignores compound words, which could also be considered
relevant occurrences. A further problem arises in the agglutinative languages [7,
4]: these construct new word forms by adding affix morphemes to the end of
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the word stem. (E.g. in Hungarian the expression “in my house” takes the form
ház-am-ban.) In these cases, inflected forms of keywords should also be accepted.
(This is even present in English to a certain extent, e.g. the plural form of nouns.)

The best solution for this task would be to ask the user which occurrences he
thinks are relevant. The problem with this approach is that usually the archives
are huge, hence hand-labeling them is quite expensive. Furthermore, the expec-
tations could vary from user to user, but for practical reasons we would need an
“objective” list of the relevant occurrences. It is also not clear whether, by using
user responses, a broad consensus could be reached; i.e. whether it is possible to
create an occurrence list that is acceptable to most people.

In this study we examined these expectations, and we also sought to measure
the effect of these on STD accuracy. (Although we think that the topic of this
paper is not limited to spoken term detection, but it also covers several IR
topics like text document retrieval [3] and document categorization [20] as well.)
For this reason, we created a form containing ambiguous occurrences and asked
people about their opinions of relevance. The results were compared with each
other, and with our standard, automatic occurrence-detection method.

Although our experiments were performed on a set of Hungarian recordings,
we think that our findings might be of interest to researchers working with other
languages as well, especially as recently languages other than English have been
receiving more attention (e.g. [14, 17, 22, 13]).

1 The Spoken Term Detection Task

In the spoken term detection task we would like to find the user-entered expres-
sions (called terms or keywords) in an audio database (the set of recordings). An
STD method returns a list of hits, each consisting of the position of occurrence
(a speech signal index, starting and ending times), the term found, and a proba-
bility value that can be used to rank the hits. In contrast to other similar tasks,
in STD the order of the hits does not matter; the probability value is primarily
used to further filter the hit list, keeping just the more probable elements.

As a user expects a quick response for his input, we have to scan hours of
recordings in just a few seconds (or less); to achieve this, the task is usually
separated into two distinct parts. In the first one, steps requiring intensive com-
putation are performed without knowing the actual search term, resulting in
some intermediate representation. Then, when the user enters the keyword(s):
some kind of (quick) search is performed in this representation. There exist a
number of such intermediate representations, from which we used the one where
we stored only the most probable phoneme sequence for a recording [15, 6].

In this paper we will concentrate on the concept of relevant occurrence; hence
spoken term detection is only of interest to us here because it can provide us
with accuracy scores that can be compared with each other when using different
strategies for detecting these occurrences. Therefore, in a quite unusual way, we
will use the same STD system configuration, with exactly the same parameters;
what we will vary is the occurrences of search terms we expect it to find.



1.1 The Evaluation Metrics

A spoken term detection system returns a list of hits for a query. Given the cor-
rect list of occurrences, we should rate the performance of the system to be able
to compare different systems and configurations. Since STD is an information
retrieval task, it is straightforward to apply standard IR metrics of precision and
recall:

Precision =
NC

NC + NFA
(1)

and

Recall =
NC

NTotal
, (2)

where NC is the number of correct hits returned, NFA is the number of false
alarms, and NTotal is the total number of real occurrences [1]. Intuitively, pre-
cision measures how much of the hit list returned contains correct hits, while
recall measures the fraction of the real occurrences that were found. A perfect
system has both a precision and a recall score of 1 (or 100%). Clearly, there
is a trade-off between these two values: high precision can easily lead to a low
recall score if we only include very probable hits in our list, while it is easy to
achieve high recall rates and get poor precision scores by returning a hit list
full of “rubbish”. Hence it would be better to summarize the performance of a
system using just one score. In IR tasks usually the F-measure (or F1) is used
for this, which is the harmonic mean of precision and recall, defined as

F1 =
2 · Precision · Recall
Precision + Recall

. (3)

This formula, however, weights precision and recall equally, which might differ
from our preferences. We could also use different weights for the two measures,
but their relative importance is not really clear. Another requirement in STD
might be to normalize the scores based on the total length of the recordings.
This is why in the area of spoken term detection usually some other – although
similar – measures are used.

Figure-of-Merit (FOM) The evaluation metric commonly applied earlier is
the Figure-of-Merit (FOM). It can be calculated simply as the mean of the re-
call scores when we allow only 1, 2, . . . 10 false alarms per hour per keyword. In
general, this metric is a quite permissive one: it is possible to achieve relatively
high scores quite easily, since 10 false alarms per hour clearly exceeds the limits
of actual applicability. It weights keywords relative to their frequency of occur-
rence in the archive of recordings, hence if we want to maximize this score, it
may be worth optimizing it on more frequent keywords instead of rarer ones.
However, this behaviour is clearly contrary to user expectations. Another inter-
esting property is that the STD system does not have to filter the hits returned,
but the FOM metric determines the actual probability thresholds depending on
the number of false alarms permitted.



Actual Term-Weighted Value (ATWV) Another, more strict measure was
defined by the National Institute of Standards and Technology (NIST) in its
2006 evaluation of Spoken Term Detection [12]. Unlike FOM, it uses all the hits
supplied by the STD method, and is defined as

AT W V = 1− 1

T

T∑
t=1

(
PMiss(t) + βPFA(t)

)
, (4)

where T is the number of terms, PMiss(t) is the probability value of missing the
term t and PFA(t) is the probability value of a false alarm. These probability
values are defined as

PMiss(t) = 1− NC(t)

NTotal(t)
(5)

and

PFA(t) =
NFA(t)

Tspeech − NTotal(t)
, (6)

where Tspeech is the duration of the test speech in seconds. (This formula uses the
somewhat arbitrary assumption that every term can occur once in every second.)
Usually the penalty factor for false alarms (β) is set to 1000. A system achieving
perfect detection (i.e. having a precision and a recall of 1.0) has an ATWV score
of 1.0; a system returning no hits has a score of 0.0; while a system which finds
all occurrences, but produces 3.6 false alarms for each term and speech hour also
has a score of 0.0 (assuming that Tspeech is significantly larger than NTotal) [15].

ATWV differs from FOM in a number of ways. First, it weights all keywords
equally, regardless of the frequency of actual occurrences. Second, it punishes
missed occurrences and false alarms much more than FOM does, so it is a very
strict metric indeed. Third, whereas FOM performs a filtering of the hits re-
turned, ATWV uses all of them, hence to achieve a high ATWV score an STD
system has to filter the hit lists itself by setting up a minimal probability thresh-
old Pmin. This is usually done in two steps: first the actual Pmin value is deter-
mined on a development set of recordings as the threshold value belonging to
the optimal ATWV score. Then, to measure actual performance, ATWV is cal-
culated on another set of recordings (the test set) using the already determined
value for Pmin. In this study, we also performed these two steps.

2 The Concept of “Correct Hit”

Having defined the evaluation metrics, we are now able to calculate the accuracy
scores of an STD system when we have the number of correct hits, false alarms
and missed occurrences. For this, we supposedly know the hits returned, and
their ordering; however, we still have to define the technique to get the list
of real occurrences, and the way of matching returned hits and the relevant
occurrences.



2.1 Matching Hits and Occurrences

In the literature this topic has been discussed quite extensively. Of course, a hit
and an occurrence can be matched only if the keywords are the same, and they
occur in the same recording. As regards the match of time-alignment, there are a
number of possibilities. A valid option would be to expect both the starting and
ending times to lie below a threshold. [12] expects the time span of the hit to be
in at most 0.5 seconds from the centre of the real occurrence. [21] demanded that
the time spans of the hit and of the occurrence intersect. We chose the latter
method, partly because of the agglutinative nature of the Hungarian language,
which makes the task of determining the exact keyword starting and ending
times quite hard.

2.2 Determining the “Real” Occurrences

When we search for the method of choosing the “relevant occurrences” in the
literature, we usually find no mention of it. Hence we chose to assume that a
keyword only occured if it was present in the textual transcription as a whole
word by itself. This approach, however, is hardly applicable when we work with
recordings different from English (which was also the case for us). In morpholog-
ically rich languages such as Hungarian, nouns (which are typical candidates for
keywords) can have hundreds of different forms owing to grammatical number,
possession marking and grammatical cases, all of these forms being ones that
should also be treated as “real” occurrences.

Our standard automatic method is a simple variation of this default ap-
proach. In it we treat a given position as an occurrence of the given keyword if
the word at this position contains the keyword. (This concept can be extended to
keywords consisting of several words in a straightforward way.) Because in Hun-
garian a noun ending with a vowel may change its form when getting some inflec-
tions (like the noun “Amerika” (America) changing to the form “Amerikában”
(in America)), we also considered the occurrence a real one if the given keyword
appears in the form having its last vowel substituted by its long counterpart, as
long as the last vowel is also the last phoneme of the keyword.

It is of course known that this technique is not perfect: for short keywords in
particular it is likely that they will appear inside other words having a completely
different meaning, which should be categorized as false alarms.

2.3 Relying on Human Expectations

The other choice is to employ the concept that a relevant occurrence is where the
actual users think that the current occurrence is indeed relevant. This approach
sounds quite reasonable, but it requires valuable human interaction, so it could
be quite labour-intensive when we have to annotate a big archive manually. For
smaller archives, however, it can be carried out relatively cheaply; and since
the aim of this study was to check the difference between the automatic and
human concept of a real occurrence, we performed this manual task by asking
our subjects about their opinions of potential occurrences.



Strategy Dev Test

Automatic 381 709

Subject #1 365 690
Subject #2 368 689
Subject #3 396 732
Subject #4 366 699
Subject #5 367 697

Subjects (majority voting) 367 697

Clean occurrences 334 651

Table 1. The number of relevant occurrences using different strategies for determining
correct hits for the development (Dev) and test (Test) sets.

Creating the Form to Fill In To make subjects list the occurrences which
they thought were relevant, we created a form using the textual transcript of
the recordings, which each subject had to fill in. For each keyword we located
the similar letter-sequences in the transcripts of the recordings using the edit
distance [9]: we allowed character insertions, deletions and substitutions, and
listed the parts of the recordings where we could reproduce the given keyword
with at most N operations, where N was 30% of the length of the keyword. (That
is, for a search term consisting of 10 characters, we allowed only 3 operations.)

Because this list was still quite long, we shortened it with a simple trick: we
did not list those occurrences which could be produced without any operations,
and were located at the beginning of a word. Instead, we assumed that these
were the occurrences of the actual keyword in inflected form, thus treating them
as relevant occurrences. (The set of these occurrences was also used in the ex-
periments section, referred to as the list of clean occurrences.) Of course this was
not so in a number of cases (like certain compound words), but this technique
was quite close to our objective, and it effectively reduced the number of items
in the form.

Evaluating Subject Responses Table 1 shows the number of relevant oc-
currences found when using the automatic occurrence detector method (see line
“Automatic”), and for the responses of the subjects (see lines “Subject #N”).
The form contained 111 (development set) and 242 (test set) occurrences that
were used to decide on their relevance; from these, the test subjects marked be-
tween 31 and 62, and between 38 and 81 occurrences as relevant ones, develop-
ment sets and test sets, respectively. The results indicate that most occurrences
were judged in quite a similar way by our subjects (with the exception of Sub-
ject #3). Besides comparing the responses of the subjects with the results of
our standard automatic occurrence checker, we also wanted to know whether a
consensus could be reached between the answers of the subjects. For this reason
we used majority voting: we considered an occurrence relevant if at least half of
the subjects (now at least three of them) considered it relevant.



3 Experiments and Results

Having defined the task, introduced the method of obtaining subject responses,
and selected the evaluation metrics, we will now turn to the testing part. We will
describe the STD framework used, present and analyze the results, concentrating
on the various kinds of discrepancies among the individual subjects, and between
each subject and the automatic occurrence detector method used.

3.1 The STD Framework

Testing was performed using the spoken term detection system presented in [6].
It uses phoneme sequences as an intermediate representation, and looks for the
actual search term in these sequences, allowing phoneme insertions, deletions
and substitutions. These operations have different costs depending on the given
phoneme (or phoneme pair), calculated from phoneme-level confusion statistics.

We used recordings of Hungarian broadcast news for testing, which were
taken from 8 different TV channels [5]. The 70 broadcast news recordings were
divided into three groups: the first, largest one (about 5 hours long) was used
for training purposes. The second part (about an hour long) was the develop-
ment set: these recordings were used to determine the optimal threshold for the
ATWV metric. The third part was the test set (about 2 hours long), and it was
used to evaluate the overall performance. We chose 50 words and expressions
as search terms, which came up in the news recordings quite frequently. They
varied between 6-16 phonemes in length (2-6 syllables), and they were all nouns,
one-third of them (18) being proper nouns. The phoneme sequence intermediate
representations were produced by Artificial Neural Networks [2], trained in the
way described in [18], using the standard MFCC +Δ + ΔΔ feature set [8].

3.2 Results

The accuracy scores produced by our actual STD system (using different strate-
gies for determining the list of relevant occurrences) can be seen in Table 2. By
“Automatic” we mean the standard, automatic method used for determining
correct hits; “Subject #N” means the responses of the Nth subject. Below we
list the mean and the median values of the accuracy scores produced, and the
scores obtained using majority voting. The last line shows the accuracy scores
calculated without any subject answers, using just the clean occurrences; that
is, in this case we treated an occurrence as a correct one only if the keyword
appeared unchanged in the transcription at the beginning of a word.

The first thing to notice is that the FOM scores practically do not vary, which
is probably due to the way this accuracy score is calculated: it is relatively easy
to achieve high FOM scores, but it is very hard to significantly improve them.
The ATWV scores, however, differ much more from each other, ranging from
48.00% (where we use only the clean occurrences) to 60.23% when using the list
of relevant occurrences given by Subject #3. The results are also quite different
from the case where we applied our automatic method.



Strategy FOM ATWV F1 Prec. Recall

Automatic 88.72% 56.84% 85.29% 91.17% 80.11%

Subject #1 88.35% 52.32% 83.93% 88.44% 79.86%
Subject #2 87.39% 48.00% 82.32% 86.68% 78.37%
Subject #3 88.85% 60.23% 86.05% 93.58% 79.64%
Subject #4 88.15% 52.90% 84.11% 89.25% 79.54%
Subject #5 88.22% 53.05% 84.24% 89.25% 79.77%

Subjects (mean) 88.19% 53.30% 84.13% 89.44% 79.44%
Subjects (median) 88.22% 52.90% 84.11% 89.25% 79.64%
Subjects (majority voting) 88.22% 53.07% 84.24% 89.25% 79.77%

Clean occurrences 87.94% 44.77% 81.48% 83.31% 79.72%

Table 2. STD accuracy scores using different strategies for determining correct hits

The F1 scores varied from 82.32% to 86.05%. Quite interestingly, the corres-
ponding precision scores were practically the same, so the difference came from
the recall scores. The correlation of the precision, F-measure, ATWV scores, and
the number of occurrences marked as real is clear: for Subject #3 these were
93.58%, 86.05%, 60.23% and 732, respectively, whereas for Subject #2 these
were 86.68%, 82.32%, 48.00% and 689. (The ATWV metric is known to be fairly
sensitive to false alarms.)

Another interesting finding is that the scores belonging to majority voting
appear to be quite close to those of three subjects (#1, #4 and #5), or the
mean/median of all the subjects. This suggests that by using the simple tech-
nique of majority voting a consensus of correct hits can be achieved, which falls
quite close to the expectations of the average user.

3.3 Verifying the Occurrences

Having evaluated the accuracy scores belonging to the different subject re-
sponses, we will now turn to the perhaps more interesting part, where we focus
on the more significant and/or more interesting differences among the responses
of the users or between the user-entered and the automatic hit lists. Note that,
as we used a Hungarian database for this study, the examples below will also
be in Hungarian; nevertheless, we think that the cases encountered have a much
wider scope as probably quite similar types appear in other languages as well.

One well-known drawback of language-independent STD approaches is that
they are likely to produce false alarms when the (usually short) actual search
term is contained inside another word. In our case, one such example was the
term “kormány” (meaning cabinet), which came up quite frequently inside the
word “önkormányzat” (local council). Since in this case the whole keyword is
present, the automatic occurrence detector method included these as real occur-
rences, whereas 4 of the 5 subjects treated them as false alarms. Of course the
STD system, relying only on the acoustic data, also found these occurrences.



Recall that, due to the agglutinative property of the Hungarian language, we
allowed the final vowel of the keyword (as long as it was also the last phoneme)
to change to its long counterpart, so the STD system was also expected to find
these occurrences. However, by default no such changes with earlier vowels were
allowed, although they were also sometimes related to similar word-pairs. A
good example of this is the keyword “vasút” (meaning railway) and the word
“vasutas” (railway worker); each subject viewed the latter word as a relevant
occurrence of the search term. Yet, for the term “miniszter” (minister), there
is only a vowel difference in “minisztérium” (ministry), hence it is exactly the
same type as the previous one; but it was rejected by 4 out of the 5 subjects.

Another big group was the presence of certain proper nouns in the list of
keywords, typically names of people like “Angela Merkel” (German chancellor),
“Bajnai Gordon” or “Orbán Viktor” (both of them being Hungarian prime min-
isters1). The search terms consisted of their full names (i.e. both first and family
names), whereas sometimes these people were referred to only by their family
names. All the subjects agreed that these were real occurrences, despite that
only half of the actual keywords were present at the given position. Note that
as we used edit distance when creating the form, only those occurrences were
present for the subjects to evaluate where the context was sufficiently similar to
the first name (e.g. “amely Merkel”, “Bajnai kormány”, “Orbán kormány”).

A quite similar case was that of the keyword “rendőrség” (police force), which,
due to the similarity of the word following it, proved likely to occur in a recording
where only the word “rendőr” (policeman) was present. Here 3 of the 5 subjects
found this “inverse containment” relevant, indicating that the concept of the two
words are strongly related. In the last frequent case the keyword was “gázár”
(gas price), and the listed items in the form all contained “gáz ára” (price of
gas); all subjects thought that these were real occurrences of the search term.

From these examples it can be seen that the subjects usually agreed with
each other, but their choice can hardly be predicted automatically. If a word
contains the keyword, then it is usually a correct occurrence. But at certain
times (kormány) it is a false alarm, while at other times (rendőrség) the keyword
contains the word that actually occurred. The last vowel of the keyword may
become its long counterpart. But such a change is sometimes allowed for other
vowels as well (vasút), while sometimes it is not (miniszter). The case of “gázár”
probably cannot be handled at all: allowing word boundaries inside keywords
would lead to a lot of false alarms. Still, when looking for famous people, the
keyword should be only their family name (like Merkel, Bajnai and Orbán).

The accuracy scores in Table 2 also accord with our findings when examin-
ing the actual answers of subjects. Subject #3 accepted both “minisztérium” for
the keyword “miniszter” and “önkormányzat” for the search term “kormány”;
this compliance reduced the number of false alarms for the STD system, leading
to high precision, ATWV and F1 scores. In contrast, Subject #2 rejected sev-
eral compound words as correct hits, which were all accepted by the other four
subjects; this is also reflected in the lower precision, F1 and ATWV scores.

1 Although, of course, not at the same time



Quite interestingly, when there was a disagreement among the subjects, in
most cases four of them agreed on one option, and only in four instances was there
a voting outcome of three to two. This may indicate that in almost every case a
broad consensus can be achieved, although this should be tested in experiments
with more subjects. Our test results also support this hypothesis: increasing
the number of votes required to four lowered the accuracy scores only slightly,
whereas when we required that all subjects should agree, they fell more sharply.

Comparing the scores obtained involving human interaction with those we
got using the two automatic methods to determine the relevant occurrences, it
is clear that they differ significantly: when we only allowed the clean hits, the
resulting ATWV score of 44.77% was low compared to the others due to the high
number of false alarms; whereas when we used the standard automatic method,
it was too permissive, resulting in an overoptimistic ATWV score of 56.84%.

Based on these observations, we can sum up our findings in three parts.
Firstly, keyword selection should match user behaviour a bit more: all search
terms should be nouns, preferably proper nouns (e.g. names, cities, etc.), and for
well-known people only their family name should be used. Of course a limitation
for this is the set of available recordings (so that the given keywords should occur
in the dataset several times); still, further investigations should be preceded by
a more careful keyword selection.

The form containing the possible occurrences was constructed in a syntactical
manner (using the edit distance-based similarity of the transcriptions); from the
results it seems that we should also turn to a linguistic analysis. It would mean
a more robust way to distinguish, for example, the inflected forms (e.g. plurals)
of the keywords from compound words, since the latter ones should remain in
the form to fill, whereas the former occurrences should be omitted.

Overall, it seems that the users focus on the stem of the keywords, often even
dismissing affixes (e.g. rendőr instead of rendőrség, vasút instead of vasutas).
In some cases this is also an oversimplification (e.g. the case of miniszter –
minisztérium), but it still seems to be a pretty close estimation of keyword
occurrence relevance. A deeper analysis could be performed via a more detailed
linguistic analysis like using Natural Language Processing tools, or expressing
the type of connection between word forms via a WordNet [11, 10].

4 Conclusions

In this study, we examined the spoken term detection task from an unusual
viewpoint: we checked how much automatically generated ground truth keyword
occurrences match user expectations. For this, we asked a number of subjects
to mark the possible occurrences that they thought were relevant. We found
that although no two subjects gave exactly the same responses, generally their
answers were quite similar; and by using majority voting a clear consensus could
be achieved. But the standard automatic keyword occurrence detection methods
used were either too lax or too strict when compared with the subject responses.
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Abstract. We propose a hierarchical neural architecture able to recog-
nise observed human actions. Each layer in the architecture represents
increasingly complex human activity features. The first layer consists
of a SOM which performs dimensionality reduction and clustering of the
feature space. It represents the dynamics of the stream of posture frames
in action sequences as activity trajectories over time. The second layer
in the hierarchy consists of another SOM which clusters the activity tra-
jectories of the first-layer SOM and thus it learns to represent action
prototypes independent of how long the activity trajectories last. The
third layer of the hierarchy consists of a neural network that learns to
label action prototypes of the second-layer SOM and is independent - to
certain extent - of the camera’s angle and relative distance to the actor.
The experiments were carried out with encouraging results with action
movies taken from the INRIA 4D repository. The architecture correctly
recognised 100% of the actions it was trained on, while it exhibited 53%
recognition rate when presented with similar actions interpreted and per-
formed by a different actor.

Keywords: Self-Organizing Map, Neural Network, Action Recognition,
Hierarchical models, Intention Understanding

1 Introduction

Recognition of human intentions is becoming increasingly demanded due to its
potential application in a variety of domains such as assisted living and ambient
intelligence, video and visual surveillance, human-computer interfaces, gaming
and gesture-based control. Typically, an intention recognition system is focused
on a sequence of observed actions performed by the agent whose intention is
being recognised. To provide the system with this component, it is necessary
to use activity recognition together with the intention recognition. The purpose



of action recognition is an analysis of ongoing events from data captured by a
camera in order to track movements of humans and to identify actions.

Many challenges make the action recognition task extremely difficult to imi-
tate artificially, each person differs in terms of height, weight, shape of the human
body and gender. Another important aspect to be considered is the impact of the
camera viewing angle variations on the action recognition performance. Multi-
camera setups have been employed to implement view independent methods [1],
[2], [3]. These methods are based on the observation of the human body from
different angles, obtaining in this way a view-invariant representation.

Dealing with action recognition, it is important to give a brief definition of
what we mean by action. We adopt the following action hierarchy: actions and
activities. The term action is used for simple motion patterns typically executed
by a single human. An example of an action is crossing arms. A sequence of
actions represents an activity, such as the activity dancing. Activities usually
involve coordination among persons, objects and environments. In this paper,
we focus only on the recognition of actions, where actions can be viewed as
sequences of body postures.

An important question is how to implement the action recognition ability in
an artificial agent. We tried to find a suitable neural network architecture having
this ability. In our previous work, we have focused on the representational part
of the problem. We endowed an artificial agent with the ability to internally
represent action patterns [4]. Our system was based on the Associative Self-
Organizing Map [5], a variant of the Self-Organizing Map (SOM) [6], which
learns to associate its activity with additional inputs. The solution was able to
parsimoniously represent human actions.

In this paper, we present a novel architecture able to represent and clas-
sify others’ behaviour. In order to get a more complete classification system we
adopt a hierarchical neural approach. The first level in the system is a SOM that
learns to represent postures - or posture changes - depending on the input to the
system. The second level is another SOM that to represent the superimposed
activity trace in the first level SOM during the action, i.e. it learns to repre-
sent actions. Thus, the second layer SOM provides a kind of time independent
representation of the action prototypes. The third level is a supervised artificial
neural network that learns to label the action.
In our previous paper [7] we showed that we could get discriminable activity
traces using an A-SOM, which corresponds to the first level SOM in the current
system.The system was able to simulate the likely continuation of the recog-
nised action. Due to this ability, the A-SOM could receive an incomplete input
pattern (e.g. an initial part of the input sequence only) and continue to elicit
the most likely evolution of the action, i.e. to carry out sequence completion of
perceptual activity over time. In the present system, instead, we focus on the
probem of robust action representation and recogniton, given the whole (noisy)
input sequence. We are currently working towards an integration of the two
approaches.



We have tested the ability of our architecture to recognise observed actions on
movies taken from the “INRIA 4D repository 3”, a publicly available dataset of
movies representing 13 common actions: check watch, cross arms, scratch head,
sit down, get up, turn around, walk, wave, punch, kick, point, pick up, and throw
(see Fig. 1).

The implementation of all code for the experiments presented in this paper
was done in C++ using the neural modelling framework “Ikaros” [8].

This paper is organized as follows: A short presentation of the proposed ar-
chitecture is given in section II; section III presents the experiment for evaluating
the model; and finally conclusions are outlined in section IV.

2 Proposed Architecture

The architecture presented in this paper is composed of three layers of neural
networks, see Fig. 3. The first and the second layers consist of SOM networks
whereas the third layer consists of a custom made supervised neural network.
The first layer SOM receives sequences of vectors representing preprocessed se-
quences of posture images. The activity trajectories, Fig. 2, elicited during the
time actions last are superimposed and vectorized into a new representations be-
fore entering the layer two SOM as input. This superimposition process can be
imagined as the projection of the matrices representing the activity in the grid of
neurons in the SOM for all the iterations an action lasts onto a new matrix of the
same dimensionality, followed by a vectorization process. The second layer SOM
thus clusters the activity trajectories and learns to represent action prototypes
independent of how long the activity trajectories in the first layer SOM last.
Thus the second layer SOM provides a kind of time independent representation
of the action prototypes. The activity of the second layer SOM is conveyed to
a third level neural network that learns to label the action prototypes of the
second layer SOM independent of the camera’s capturing angle and distance to
the actor.

2.1 First and Second Layers

The first and the second layers of the architecture consist of SOMs. The SOM
is one of the most popular neural networks and has been successfully applied in
pattern recognition and image analysis. The SOM is trained using unsupervised
learning to produce a smaller discretized representation of its input space. In a
sense it resembles the functioning of the brain in pattern recognition tasks. When
presented with input, it excites neurons in a specific area. The goal of learning
in the SOM is to cause nearby parts of the network to respond to similar input
patterns while clustering a high-dimensional input space to a lower-dimensional

3 The repository is available at http://4drepository.inrialpes.fr. It offers several movies
representing sequences of actions. Each video is captured from 5 different cameras.
For the experiments in this paper we chose the movie “Andreas2” for training and
“Hedlena2” for testing, both with frontal camera view “cam0”.



Fig. 1. Prototypical postures of 13 different actions in our dataset: check watch, cross
arms, get up, kick, pick up, point, punch, scratch head, sit down, throw, turn around,
walk, wave hand.



Fig. 2. The trajectory resulting from the neurons activated by the input sequence.

Fig. 3. The proposed architecture is composed of three layers of neural networks. The
first and the second layers consist of SOM networks whereas the third layer consists
of a custom made supervised neural network.



output space. SOMs are different from many other artificial neural networks
because they use a neighbourhood function to preserve the topological properties
of the input space. The SOM algorithms adapt a grid of neurons, so that neurons
located close to each other respond to similar features.

The SOM structure is made of one input layer and one output layer, the
latter also known as the Kohonen layer. The input layer is fully connected to
the neurons in the Kohonen layer. The weight vectors of the neurons in the
Kohonen layer are modified iteratively in the training phase. When a new input
arrives, every neuron competes to represent it. The Best Matching Unit (BMU)
is the neuron that wins the competition. The BMU together with its neighbours
in the grid are allowed to adapt to the input. The neighbouring neurons less
so than the BMU. Neighbouring neurons will gradually specialise to represent
similar inputs, and the representations will become ordered in the map. Another
important characteristic of the SOM is its ability to generalise, i.e. the network
can recognise or characterise input it has never encountered before.

The SOM consists of a grid of neurons with a fixed number of neurons and
a fixed topology. Each neuron ni is associated with a weight vector wi. All
the elements of all the weight vectors are initialized by real numbers randomly
selected from a uniform distribution between 0 and 1, after which all the weight
vectors are normalized, i.e. turned into unit vectors.

At time t each neuron ni receives an input vector x(t).
The BMU nb at time t is the neuron with the weight vector wb that is most

similar to the input x(t) and is obtained by:

b = argmaxi
x(t) · wi(t)

||x(t)||||wi(t)|| , (1)

The neurons of the Kohonen layer adapt to increase their representation of
the current input by modifying their weight vectors to become more similar to
it with an amount that depends on a Gaussian function of the neuron’s distance
to the BMU:

Δwi = γ(t)Gib(t)(x(t)− wi(t)) (2)

where the learning rate γ(t) is a monotonically decreasing function of time.
Gib(t) is a Gaussian function, with a radius σ(t) monotonically decreasing with
time, of the distance in the map between the neuron ni and the BMU:

Gib(t) = exp
−d(i, b)2

σ(t)2
(3)

2.2 Third Layer

The third layer, which is the output layer of the architecture, consists of an array
of a fixed number of neurons. Each neuron ni is associated with a weight vector
wi ∈ Rn, where n is equal to the number of neurons in the second layer SOM.
All the elements of the weight vector are initialized by real numbers randomly



selected from a uniform distribution between 0 and 1, after which the weight
vector is normalized.

At time t each neuron ni receives an input vector x(t) ∈ Rn, which is the
vectorized activity of the second layer SOM.

The activity yi in the neuron ni is calculated using the standard cosine metric:

yi =
x(t) · wi(t)

||x(t)||||wi|| (4)

During the learning phase the weights wij are adapted by

wij(t + 1) = wij(t) + βxj(t)[yi − di] (5)

where β is the adaptation strength and di is the desired activity for the
neuron ni.

3 Experiment

We have tested our architecture (Fig. 3) in an experiment to verify that it is
capable of recognising and properly classifying observed actions, overcoming
problems related with the action recognition task.

To this aim we created training and test sets for the architecture by choosing
two movies from the INRIA 4D repository. In the movies, two different actors
(Andreas and Hedlena) perform the same set of 13 actions. Each actor interprets
and performs actions as individuals and thus they tend to differ slightly in how
they perform the same actions. We chose to use one of the movies (performed by
Andreas) to create a training set for the architecture and the other movie (per-
formed by Hedlena) to create a test set. In this way, we wanted to demonstrate
that our architecture is able not only to properly recognize action instances it
has observed during training, but that it is also able to recognise the actions
when they are performed by someone else, i.e. to recognise action instances it
never encountered before. To create the training and test sets from the original
movies, we split each of the original movie into 13 new movies, one for each
action (see Fig. 1).

Before entering the architecture, the input goes through a preprocessing
phase. This is done to reduce the computational load and improve architec-
ture performances. In the preprocessing phase the number of images for each
movie is reduced to 10 without affecting the quality of the action reproduction
and guaranteeing seamless and fluid actions, see Fig. 4 a).

Consecutive images are then subtracted to catch only the dynamics of the
action, focusing in this way the attention on the movement exclusively. This
operation further reduced the number of frames for each movie to 9. As an
example, we can see in Fig. 4 that in the check watch action only the arm is
involved in the movement.

In the next step of the preprocessing phase, a fixed boundary box is used
to cut the images and produce binary images of a fixed and small size while



Fig. 4. a) The check watch action with a reduced number of images; b) The sequence
of images obtained by subtracting consecutive images of the check watch action.

eliminating anything not significantly involved in the movement. In this way an
attentive process, similar to how the human eye observes and follows only the
salient parts of an action, is simulated. The binary images are then shrunk to
50× 50 matrices and vectorized before entering the first layer SOM.

The architecture was trained in two phases. First the first layer SOM was
trained for 20000 iterations by randomly selecting actions performed by the ac-
tor Andreas. Then the fully trained SOM of the first layer received each action
performed by Andreas again and the corresponding sequence of activity matri-
ces elicited by each action was superimposed and vectorized. Each such new
superimposed activity vector represents the activity trajectory in the first layer
SOM elicited by a particular action. More in detail, to superimpose the activity
matrices, before the vectorization, can be seen as the creation of matrices, one
for each action, with dimensions equal to the neuron grid of the first layer SOM.
The value of the elements of these matrices are either zero or one. All elements
corresponding to a neuron in the first layer SOM, which was most activated
for at least one of the inputs during the action is set to one and all the other
elements are set to zero.

In the second training phase the second layer SOM and the third layer neural
network were trained. In this process the second layer SOM received randomly
selected input from the set of superimposed activity vectors for 20000 iterations,
and the third layer neural network received the corresponding target output
(action labels). The target output consists of 13-dimensional vectors, with one
element set to one and the other elements set to zero.

To show how the activity trajectories in the first layer SOM in the fully
trained architecture differ we have depicted these for the actions carried out by
the actor Andreas in Fig. 5. This was, for each action, done by recording the
neuron in the first layer SOM most activated by each input in the sequence
composing the action. The most activated neurons for each of the actions were
then depicted and connected with arrows to show how the trajectories evolves
over time. Each picture in Fig. 5 shows the grid of neurons forming the first
layer SOM and illustrates the sequence of most activated neurons, represented
by black dots, during the corresponding action. The black dots were connected
with arrows to show how the trajectories evolve over time. The locations of
the neurons activated most by the first and the last inputs of an action are
represented by empty dots.



Fig. 5. Activity trajectories in the first layer SOM for the 13 actions carried out by
Andreas: a) Check Watch; b) Cross Arms; c) Scratch Head; d) Sit Down; e) Get Up;
f) Turn Around; g) Walk; h) Wave Hand; i) Punch; j) Kick; k) Point; l) Pick Up;
m) Throw. The dots in each diagram represent the most activated neurons (centres
of activity) during the action and the arrows indicate the action’s evolution over
time. Actions composed of similar postures present fewer centres of activity, whereas
actions composed of postures with more different characteristics present more centres
of activity. The diagrams indicate the ability of the SOM to create topology preserving
maps in which similar postures are represented close to each other.



We tested the fully trained architecture with all 13 actions performed both
by the actor Andreas (the action instances the architecture was trained on)
and by the actor Hedlena (the action instances the architecture was not trained
on). During testing, the input went through the preprocessing described above
before entering the first layer SOM, which activity in turn were superimposed
and vectorized as described above before entering the second layer SOM.

During the testing we recorded the most activated neuron in the third layer
neural network to see if the actions were labelled correctly. This was done for
both the actions carried out by Andreas as reported in Table 1 and by Hedlena as
reported in Table 2. The architecture was able to recognise 100% of the actions
performed by Andreas and 53% of the actions performed by the actor Hedlena,
which the architecture was not trained on.

Andreas

Actions Most activated Expected Correctenss
neuron neuron

Check Watch 0 0 correct

Cross Arm 1 1 correct

Scracth Head 2 2 correct

Sit Down 3 3 correct

Get Up 4 4 correct

Turn Around 5 5 correct

Walk 6 6 correct

Wave Hand 7 7 correct

Punch 8 8 correct

Kick 9 9 correct

Point 10 10 correct

Pick Up 11 11 correct

Throw 12 12 correct

%Correctness 100

Table 1. Recognition rate for the actions carried out by Andreas. Our architecture
recognises 100% of the actions performed by Andreas, which the architecture was
trained on.

4 Conclusion

We have proposed a novel hierarchical SOM based architecture that recognises
actions. Our architecture is composed of three layers of neural networks. The
first layer consists of a SOM that learns to represent the dynamics of sequences
of postures composing actions. The second layer consists of another SOM, which
learns to represent the activity trajectories in the first layer SOM, which also
means that it learns to represent action prototypes. The third layer consists
of a custom made supervised neural network that learns to label the action
prototypes represented in the second layer SOM.

In an experiment we verified the architecture’s ability to recognise observed
actions as well as to recognise the same actions interpreted and performed by
someone else.

As reported in Table 1 the actions used to train the architecture and per-
formed by the actor Andreas were recognised to 100%. In Table 2 we can see



Hedlena

Actions Most activated Expected Place in order of activation Correctenss
neuron neuron of the expected neuron

Check Watch 12 0 4

Cross Arm 1 1 1 correct

Scracth Head 2 2 1 correct

Sit Down 3 3 1 correct

Get Up 5 4 2

Turn Around 5 5 1 correct

Walk 6 6 1 correct

Wave Hand 2 7 5

Punch 8 8 1 correct

Kick 3 9 5

Point 10 10 1 correct

Pick Up 2 11 11

Throw 4 12 2

%Correctness 53

Table 2. Recognition rate for the actions carried out by Hedlena. Our architecture
recognises 53% of the actions performed by Hedlena, which the architecture was not
trained on. In the cases of failed recognition the place in the order of activation of the
expected neuron could be seen as the order of choice, i.e. if the place in the order of
activation of the expected neuron is k, then the correct action would be the k :th most
likely action according to the architecture.

that the actions interpreted and performed by another actor Hedlena, that the
architecture was not trained on, were recognised to 53%. The values reported in
the fourth column of Table 2 show that in some of the cases where recognition
failed, the expected neuron, i.e. the neuron which if most activated would indi-
cate the correct action, is still one of the most activated. For example, in the
case of the action Get Up, which was incorrectly recognised as the action Turn
Around, the architecture’s second choice would have been the correct action Get
Up.

An important observation is that some failed recognitions are plausible. Ac-
tions like check watch, throw, wave hand and scratch head can easily be confused
even by a human observer. Consider, for example, the two actions wave hand
and scratch head. The only part involved in the movement is the arm and the
movement for both actions is the same, i.e. to raise the arm to the head. This
could easily confuse the architecture to label both actions equally. The same rea-
soning can be applied to other actions that involve the movement of the same
part of the body. Other considerations can be done for actions that involve move-
ment of different parts of the body such as kick and sit down. In this case, the
preprocessing operation such as subtraction of consecutive frames, gives rise to
new sequences that sometimes can contain very similar frames, or frames that
can be confused with each other, leading to a failed recognition of the observed
action.

The promising experimental results show the potential of this hierarchical
SOM based action recognition architecture. Potential future extensions include
a more elaborate preprocessing procedure to enable a more potent view and size
independence as well a explicit action segmentation.
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Abstract. Interacting with unknown objects, and learning and produc-
ing effective grasping procedures in particular, are challenging problems
for robots. This paper proposes an intrinsically motivated reinforcement
learning mechanism for learning to grasp uknown objects. The mech-
anism uses frustration to determine when grasping of an object is not
possible. The critical threshold of frustration is dynamically regulated
by impulsiveness of the robot. Here, the artificial emotions regulate the
learning rate according to the current task and performance of the robot.
The proposed mechanism is tested in a real world scenario where the
robot, using the grasp pairs generated in simulation, has to learn which
objects are graspable. The results shows that the robot equipped with
frustration and impulsiveness learns faster than the robot with standard
action selection strategies providing some evidence that the use of arti-
ficial emotions can improve the learning time.

Keywords: Reinforcement Learning, Intrinsic motivation, Grasping un-
known objects, Frustration, Impulsiveness, Visual scene representation,
Vision-based grasping

1 Introduction

Robots need effective grasp procedures to interact with and manipulate unknown
objects. In unstructured environments, challenges arise mainly due to uncertain-
ties in sensing and control, and lack of prior knowledge and model of objects.
Effective learning methods are essential to deal with these challenges. One clas-
sic approach here is to use reinforcement learning (RL) where an agent actively
interacts with an environment and learns from the consequences of its actions,
rather than from being explicitly taught. An agent selects its actions on basis
of its past experiences (exploitation) and also by new choices (exploration). The
goal of an agent is to maximize the global reward, therefore the agent needs to
rely on actions that led to high rewards in the past. However, if the agent is



too greedy and neglects exploration, it might never find the optimal strategy for
the task. Hence, to find the best ways to perform an action they need to find a
balance between exploitation of current knowledge and exploration to discover
new knowledge that might lead to better performance in the future.

We propose a competence-based approach to reinforcement learning where
exploration and exploitation is balanced while learning to grasp novel objects. In
our approach, the dynamics of balancing between exploration and exploitation
is tightly related to the level of frustration. The failures in obtaining a new
goal may significantly increase the robot’s level of frustration, and push it into
searching new solutions in order to achieve its goal. However, a prolonged state
of frustration, when no solution can been found, will lead to a state of learned
helplessness, and the goal will be marked as unachievable at the current state
(i.e., object not graspable). Simply speaking, an optimal level of frustration
favours more explorative behaviour, whereas low or high level of frustration
favours more exploitative behaviour. Additionally, we dynamically change the
robot’s impulsiveness that influences how fast the robot gets frustrated, and
indirectly how much time it devotes to learning a particular task.

To demonstrate the advantages of our approach, we compare it with three
other action selection methods: ε-greedy algorithm, softmax function with con-
stant temperature parameter, softmax function with variable temperature de-
pending on agent’s overall frustration level. The results shows that the robot
equipped with frustration and impulsiveness learns faster than the robot with
standard action selection strategies providing some evidence that the use of ar-
tificial emotions can improve the learning time.

The rest of the paper is organized as follows. We first present related work in
the area. Then, we give the details of the learning system including visual pro-
cessing of objects, the RL framework and the proposed action selection strategies.
In the next section, we present the experimental results and then conclude the
paper.

2 Related Work

Our main focus is on learning graspability of objects. Previously, analytical meth-
ods are proposed for grasping objects [3], [8], [4]. These methods use contact
point locations on objects and the gripper, and then find the friction coefficients
by tactile sensors to compute force [15]. With these data, grasp stability values
or promising grasp positions can be determined. Another approach for grasping
is learning by exploration. In a recent work [6], grasp successes are associated
with 3D object models which can lead algorithms to memorize object grasp co-
ordination. According to their work, grasping unknown objects is a challenging
problem and it varies in accordance with system complexity. This complexity
depends on the chosen sensors, prior knowledge about environment and scene
configuration. In [11], 2D contours are used for approximating the center of mass
of objects for grasping.



In our work, we use reinforcement learning (RL) framework for learning and
incorporate competence-based intrinsic motivation for guidance in search. The
complexity of reinforcement learning is high in terms of the number of state-
action pairs and the computations needed to determine utility values [14]. Ap-
proximate policy iteration methods can be used to alleviate this problem based
on sampling [7]. Imitation learning before reinforcement learning [12] is one of
the methods for decreasing the complexity in RL [5]. Furthermore, it is also used
for robots learn crucial parameters in movement to accomplish the task.

In our work, we use a competence-based approach for intrinsic motivation
for balancing exploration in RL. Frustration level of the robot is taken into
account. We further extend this approach by adopting an adaptive frustration
level depending on a task. Intrinsic motivation is investigated in earlier works.
Lenat [13] propose a system considering ”interestingness” and Schmidhuber in-
troduce curiosity concept for reinforcement learning [19]. Uchibe and Doya [22]
also consider intrinsic motivation as learning objective. Different from curiosity
and reward functions, Wong [24] point out that ideal level of frustration is ben-
eficial for exploration and faster learning. In addition, Baranes and Oudeyer [1]
propose competence-based intrinsic motivation for learning. In our work, main
difference is that impulsiveness [20] is adapted into the frustration rate in order
to change the learning rate dynamically based on a task in real world environ-
ment for robots.

3 Learning to Grasp Unknown Objects

We propose an intrinsically motivated reinforcement learning system for robots
to learn graspability of unknown objects. The system includes two main phases
for determination of grasp points on objects and experimentation of them in the
real world (Fig. 1). The first phase includes the required methods to determine
candidate grasp point pairs in simulation. Note that a robot arm with a two-
fingered end effector is selected as the target platform. For this reason, grasp
points are determined as point pairs. In the second phase of the system, the
grasp points determined in the first phase are experimented in the real world
through reinforcement learning. The following subsections explain the details of
these processes.

3.1 Visual Representation of Objects

In our system, objects are detected in the scene by using an ASUS Xtion Pro
Live RGB-D camera mounted on a linear platform for interpreting the scene for
tabletop manipulation scenarios by a robotic arm. We use a scene interpretation
system that can both recognize known objects and detect unknown objects in
the scene [9]. For unknown object detection, Organized Point Cloud Segmen-
tation with Connected Components algorithm [21] from PCL [16] is used. This
algorithm finds and marks connected pixels coming from the RGB-D camera



Fig. 1. Overview of the intrinsically motivated reinforcement learning system.

and finds the outlier 3D edges by RANdom SAmple Consensus (RANSAC) al-
gorithm [17]. Hence, the object’s center of mass and its edges are detected to
be used by the grasp point detection algorithm that finds candidate grasp point
pairs for a two-fingered robotic hand.

3.2 Detection of Candidate Grasp Points in the Simulator

Objects are represented by their center of masses (μ) and 3D edges (H). Then
candidate grasp point pairs (ρ =[p1, p2]) are determined as in Algorithm 1. In
the algorithm, initially the reference points are determined. The center of mass,
the upside and the bottom side center points are chosen as references. Based on
these points, cross section points coplanar with the reference points and parallel
to the table surface are determined. In the next step, the algorithm detects
the closest point to the reference points on the same planar and draw a line
crossing with reference points and closest to it. The second step is determining
the opposite point to the closest one on the same line. This procedure continues
until all points are tested. The algorithm produces the candidate grasp pairs
(two grasp points with x,y,z values) and orientation of each pair according to
(0,0) point in 2D (x,y) plane. These grasp points are tested in the simulator for
finding out only the feasible ones.

In Fig. 2, the edges and sample grasp points for six different objects along
with the number of grasp points are presented.



Algorithm 1 Grasp Point Detection (μ, H)

Input: Object Center Of Mass μ, Edge Point Cloud H
Output: Grasp Pairs P
Detect maxZ, minZ and C as reference point ref .
for each reference point do

cP oints = findPointsOnTheSamePlane()

mP oint = findClosestPointToReferencePoint(cP oints)
slope =findSlope(mP oint,ref)
for each p ∈ cP oints do

P slope =findSlope(mP oint,p)
if onTheSameLine(P slope,slope) then

P ← { p, mP oint }
end if

end for
end for

Fig. 2. Candidate grasp points on unknown objects are determined through a sequence
of processes. Samples points for six objects are illustrated. The first step is 3D edge de-
tection from 3D point cloud data. The second step is determination of candidate grasp
point pairs for which samples are marked with red points on the 3D edges extracted
from point clouds of objects. The number of feasible grasp points for each object is
presented.

3.3 Learning When to Give Up Grasping

In the system, the output of the simulation environment is fed to the robotic arm
to apply real-world experimentation. Intrinsic motivation with frustration level
and new proposed impulsiveness method are evaluated to increase the learning
process speed for the robot in order to give up quickly for the objects that are
not graspable.



The main task of the robot is to learn which objects are graspable. We use
a Reinforcement Learning (RL) framework with Q-learning [23] algorithm and
softmax action selection [2] strategy. The state space here are all grasp point
pairs generated during the simulation phase. A general state S is defined as:

S = [μ, ρ, φ, ω,Ov] (1)

where, μ is the center of mass of the object, ρ is the selected set of two
grasp points ρ =[p1, p2], φ is the grasp orientation, ω is the approach direction
of the gripper and Ov is the 3D translation vector for object during grasp trial.
A collision between the robotic arm and the object may occur when there is a
trajectory error that results in a non-zero vector.

Actions can be represented as follows,

A = [||Rv||, ω] (2)

where, ||Rv|| is the slide amount on the x axis and ω represents the approach
vector to the object of interest.

In our framework, the robot receives the reward value of 10 (Rmax) when
the grasp is successful and 0.1 (Rmin) when the grasp is unsuccessful [10]. The
Q-values are updated according to Eq. 3.

Q′(s, a) = Q(s, a) + α ∗ [R + (γ ∗ maxQ(s′, a))− Q(s, a)] (3)

where, Q′(s, a) the next Q-value for state action pair (s, a), Q′(s, a) is the
current Q-value, α is the learning rate, R is the immediate reward after perform-
ing an action a in state s, γ is the discount factor, maxQ(s′, a) is the maximum
estimate of optimal future value.

We investigate four action selection strategies. The first (and the simplest)
one is the ε-greedy action selection method (M1). This method most of the
time selects the action with the highest estimated action value, but once in
a while (with a small probability ε), selects an action at random, uniformly,
independently of the action-value estimates.

The second one is the SoftMax Action selection (Eq. 4) method (M2)with
constant temperature value [2]:

P (a)t =
eQt(a)/τ∑n
b=1 eQt(b)/τ

(4)

where, P (a)t is the probability of selecting an action a at the time step t,
Qt(a) is the value function for an action a, and τ is the positive parameter called
the temperature that controls the stochasticity of a decision. A high value of the
temperature will cause the actions to be almost equiprobable and a low value
will cause a greater difference in selection probability for actions that differ in
their value estimates.

The third strategy (M3) also uses the Softmax action selection rule. In this
approach, however, the τ parameter is flexible and changes dynamically in re-
lation to the robot’s level of frustration and sense of control [10]. An optimal



level of frustration favours more explorative behavior, whereas low or high level
of frustration leads to a more exploitative behavior. For the purpose of our sim-
ulations, frustration was represented as a simple leaky integrator:

df

dt
= −L ∗ f + A0 (5)

where, f is the current level of frustration, A0 is the outcome of the action
(success or failure) and L is the fixed rate of the ’Leak’.

In Eq. 5 the ’leak’ rate (L) was fixed and kept at value 1 for all simula-
tions [10]. Higher values of L cause the frustration rate to increase slower com-
pared to smaller values of L. That means that the robot with a high value of L
spends more time on exploration and possibly learns faster. Hence, we propose
the forth method (M4) that builds on this method and changes the value of L
dynamically using an expected utilization motivation formula [20]:

L =
expectancy ∗ value

Z + Γ (T − t)
(6)

where expectancy represents the probability of getting the highest estimated
action value (as in the greedy action selection method), value refers to the ex-
pected action reward (here value = Rmax), Z is a constant derived from when
rewards are immediate, Γ indicates agent’s sensitivity to delay (impulsiveness)
and (T − t) refers to the delay of the reward in terms of “time reward” minus
“time now”.

The impulsiveness is main focus of ours to develop interaction with frus-
tration rate competence based motivation. According to triad ”Frustration -
Impulse - Temper”, a person who has high impulsiveness is considered as ”short
tempered” and it means quickly get frustrated so that changes on frustration
level for learning behavior. Our proposal with that, different values on impul-
siveness directly affect rate of leak, L, on frustration formula so frustration rate
of agent also will be dependent on impulsiveness.

The robot apart from learning how to grasp an object, also needs to learn
whether the target object is graspable or not. The learning of a selected grasp pair
ρ and action a finishes when overall frustration level becomes equal or greater
than a certain threshold value. This value is determined based on a tolerance
formula:

T olerance = e−||Ov||∗ϕ (7)

where, ||Ov|| denotes the translation of the object on the table because of
the collision with the end effector and ϕ the number of trials from the beginning
of learning.

Additionally, the online learning process may also end when the following
criterium has been met:

F rustrationLimit = e1/
√

n (8)

where, n refers to the number of grasp pairs.



3.4 Impulsiveness and Learning Rate

The main focus of the presented work is investigating an effect that impulsive-
ness has on frustration level and on learning. The learning rate and the speed
of decision making is an important issue in human-robot interaction [18]. For
example, when a robot plays a quick game with a human, it has to learn quickly.
However, when the robot is alone, it can spend relatively more time on explor-
ing different states. By changing the impulsiveness, the robot may dynamically
control its level of frustration and therefore the time devoted for learning a par-
ticular task. Hence, the robot could behave differently in different environments
and for different tasks.

4 Experimental Results

As mentioned before, the candidate grasping points are first determined in sim-
ulation, and then transferred to a robotic arm for real-word experimentation.
V-REP simulator is used as the simulator and the Cyton-Veta Robotic 7-DOF
robot arm by Robai (shown in Fig 3) is used as the experimental platform. The
reachability of the arm is about 45 cm. Also in the experiments, we used three
objects of different size and shape (i.e., a small cubic plastic block, a plastic
bowling pin and a spherical plastic ball). We compare the performance of four

(a) Success of
lengthwise grasp
on the block.

(b) Success of
transverse grasp
on the pin.

(c) Failure of
lengthwise grasp
on the ball.

Fig. 3. Illustrative examples for grasping three different objects. (a)A cubic block which
is relatively easy to grasp (b) a plastic bowling pin which can be grasped from top but
not for all prasp points (c) a plastic ball which cannot be grasped as it is solid and too
large.

different action selection methods discussed in the previous section. A high value



of impulsiveness results in a faster increase in a frustration level (in other words,
in a “short-tempered” agent). For comparison reasons, we use here two different
values of impulsiveness: a low value of 0.01 and a high value of 100. The results
of our experiments support our proposed hypothesis. An agent with low impul-
siveness spends more time on exploration, testing more grasp pair possibilities
than an agent with a higher value of impulsiveness. For demonstration purposes,
we chose three different objects that vary in their graspability properties: a cube
that is relatively easy to grasp, a plastic bowling pin that is easily graspable
but it is liable of toppling down, and finally, a ball that is not graspable at all.
We compare the decision and learning rate of the robot that uses our proposed
strategy (M4) with the one based only on frustration (M3). Fig. 4 shows robot’s
level of frustration for each learning epoch while the robot was learning how to
grasp the block. The 84 possible grasp pairs generated in simulation were used in
a real world scenario. Since the robot can easily grasp the cube, the frustration
level is kept low and the learning process terminates before it reaches its limit
value, 1.115 (i.e., according to Eq. 8.). In case of the pin (see Fig. 5), the simu-

Fig. 4. Frustration Rate Changes For Block Grasping with Methods M3 and M4.

lation generated 116 possible grasp pair candidates that were subsequently used
by the robotic arm. Since the pin is quite light, the arm pulls it down for some
grasp pairs. When the pin fells down, the frustration threshold is decreased for
the related grasp pairs according to the Eq. 7. Hence, the robot learns that these
grasp pairs should be eliminated from the set and immediately proceeds to test
another grasp pair. While for some grasp pairs grasping of the pin was possible,
the robot was not able to grasp the ball for any of grasp pairs. The ball was made
of a hard plastic material and quite light, so every robot’s attempt to grasp it
resulted in a ball rolling over on the scene Fig. 3(c). After each trial, the robot’s
tolerance for frustration decreased rapidly resulting in that the robot switches
to another grasp pair. With each failure, the overall frustration level was raising
and quickly exceeded the tolerance threshold (that at the same time was being
decreased). Although 92 grasp pairs were transferred to the real world scenario,
only after a few steps the robot learned that the object is not graspable. Fig.



Fig. 5. Frustration Rate Changes For Pin Grasping with Methods M3 and M4.

Fig. 6. Frustration Rate Changes For Ball Grasping with Methods M3 and M4.

Fig. 7. Trial Count for Three Selected Object and Action Selection Method.

7 shows the comparison of the results for all four strategies of action selection.
The frustration-based action selection methods require a lower number of trials



to learn the graspability of the objects compared to the standard softmax action
selection with fixed temperature parameter and ε-greedy action selection. The
agent with higher value of impulsiveness performs slightly better than the agent
with low value.

5 Conclusion

We have presented our intrinsically motivated reinforcement learning system
for learning graspability of novel objects. Intrinsic motivation is provided by
frustration-based action selection methods during learning, and tolerance values
are determined based on impulsiveness of the robot. Our claim is that impul-
siveness can be adjusted based on the task that the robot is executing. We have
analyzed this mechanism on a robotic arm to learn graspability of different-
shaped objects. Our results reveal that the intrinsic motivation helps the robot
learn faster. Furthermore, the decision on graspability is made earlier by taking
impulsiveness into account. Our future work includes extending the experiment
set and investigating impulsiveness parameters in detail for different domains
with varying time constraints.
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Abstract. In cognitive science, image schemas are identified as the fun-
damental patterns for the cognition of objects, which are perceived, con-
ceptualised and manipulated in space and time. In this paper, we discuss
a role for image schemas in computational concept creation. We propose
to build a library of formalised image schemas, and illustrate how they
can guide the search for a base space in the concept invention workflow.

1 Introduction

The notion that human cognition should guide the advancement of AI is as old as
computer science itself [35, 39]. In this paper we apply this idea to computational
creativity, in particular to computational concept invention.

In cognitive science, image schemas are identified as the fundamental pat-
terns for the cognition of objects, which are perceived, conceptualised and ma-
nipulated in space and time [25]. Further, conceptual blending is considered as
the cognitive engine for generating novel concepts [36]. In this paper we inves-
tigate how these two theories can be utilised in the context of computational
concept invention and creativity [34, 17].

Within the European FP7 project COINVENT [34], a major effort is cur-
rently underway trying to fill the gap between the solid evidence from cognitive
psychology and linguistics for the importance of the ideas of conceptual blend-
ing and image schema, and the lack of a computational and formal theory. The
computational realisation of conceptual blending here is grounded on the basic
formalisation ideas of Joseph Goguen [6]. In this paper, we address a particular
piece of the puzzle to put together the various components of such a concept in-
vention platform, namely to study the cognitive and logical role of image schema
in concept invention.

The paper is structured as follows: first we introduce the notion of image
schema and the basics of conceptual blending theory. This is followed by a
discussion on how conceptual blending can be computationally modelled and
implemented. As we will see, one critical step in the computational model for
blending is the identification of shared structure across different domains. This
is where image schemas can play a critical role to reduce the potential search
space. We finish the paper with an extended example and a discussion of future
work.



2 Image schema

Embodied theories of cognition [1] emphasise bodily experiences as the prime
source for concept formation about of the world. Based on this view, the theory
of image schemas suggests the perceptive spatial relationships between objects
to constitute the foundation of our conceptual world. Typical examples of image
schemas are Support1, Containment, Link, and Source Path Goal.

Both embodied theories and the image schema theory have support from
both neuroscience [32], developmental psychology [23], and linguistic research in
which image schemas can be observed in language development [22] and in the
use of metaphoric information transfer and abstract thought [12].

As research on image schema is performed in several disciplines there is some
incoherence on the terminology surrounding image schema, and the relationship
between socio-cultural aspects and the neurobiology of embodied cognition is
heavily disputed [9]. In order to proceed with our findings we follow the definition
introduced by Mark Johnson [12], one of the founding theorists:

An image schema is a recurring, dynamic pattern of our perceptual in-
teractions and motor programs that gives coherence and structure to our
experience. [p. xiv]

We follow Johnson’s footsteps and the further specialisations made by Kuhn
[15] according to which image schemas are pre-linguistic structures of object
relations in time and space.2

We also take into account the attempt of a hierarchical structuring of these
phenomena as recently presented by Mandler and Pagán Cánovas [25] in which
image schemas are explained as “simple spatial stories” using certain spatial
primitives. We therefore build our approach from the view that image schemas
are the abstract cognitive patterns that are obtained after repeated perceptual
experience.

As an infant experiences similar perceptual events repeatedly – e.g., plates
and other objects being placed on a table – an image schema is learnt based
on this particular stimulation. This image schema represents the relationships
between the objects in the event; in the mentioned example the image schema
of Support is learnt.

Another basic example of an image schema is the notion of Containment.
This involves the understanding that an object can be within a border, or inside
a container, including the events of entering and exiting. The Containment
schema is one of the most investigated image schemas [11] as it is one of the very
first to be developed [23]. Perhaps unsurprisingly, this results in a complex rela-
tionship between spatial situations, learnt spatial concepts, and a corresponding
use of natural language. Bennett and Cialone [2], in this connection, distinguish
eight different spatial relationships and their mappings to natural language con-
structs, illustrated in Figure 1.

1 All image schema concepts are printed in upper case letters.
2 In particular, in [15] image schemas are hypothesised to capture the needed abstrac-

tions to model affordances related to spatio-temporal processes.



Fig. 1. Eight variations of containment as discussed in Bennett and Cialone [2].

When an image schema has formed, it can be generalised upon and can be
transferred through analogical reasoning into other domains with similar char-
acteristics in which the relationship is not yet known [23].

Following the cognitive development of the image schema of Containment,
it would seem that it is the movement in and out of containers that inspires the
learning of this particular structure [24]. One explanation may be that moving
objects hold an increased perceptual value and that the surprise of objects dis-
appearing in a container might trigger the mind to fast build theories in order
to explain the feeling of surprise.

It is thought that image schemas develop systematically from perception and
become more fine-tuned as the child is exposed to more experience of the same,
or similar, relations. Mandler and Pagán Cánovas [25] made a hierarchical divi-
sion of the umbrella term image schema into spatial primitives, image schemas
and conceptual integrations. This follows the psychological research on the de-
velopment of pre-linguistic concept formation. Spatial primitives are defined as
the basic spatial relationships such as Path and Link. Image schemas are the
spatial stories that can be built from these spatial primitives, and conceptual
integrations are combinations of either spatial primitives or image schemas com-
bined with non-spatial elements such as emotion or force. This is particularly
interesting for research attempting to combine image schemas with conceptual
blending, discussed below in more detail. It suggests that the operation of con-
ceptual blending is already part of the most fundamental conceptualisation: the
formation of complex image schemas.

A core idea is that image schemas provide a ‘cognitive benefit’ in information
transfer. That is, an image schema structure may be used as a shortcut utilised
in an analogical transfer from the spatial domain of the image schema to more
abstract concepts, including concepts involving force, time and emotions. Traces
of this can often be viewed in how language is used to explain concepts such as
affection; we say that we are in love using the Containment schema, marriage



can be explained with a Link combined with a temporal Path, and much of our
metaphorical language is based on sensory-motor experiences.

The basic conceptual structures that image schemas provide for language
acquisition and cognitive development are not only an important topic in spa-
tial semantics and developmental psychology. A formalisation of image schemas
could become a valuable asset and powerful tool for computational concept gen-
eration, as has been stressed by [14, 26, 6, 17]. A more systematic formalisation
of image schemas could be used to aid computational creativity by supporting
the generation of novel concepts following the conceptual blending approach, as
outlined in more detail below.

3 Conceptual blending

The theory of Conceptual Blending was introduced during the 1990s as the
cognitive machinery that helps us generate novel concepts, cf. e.g. Fauconnier
and Turner’s [3]. The theory has strong support from the cognitive psychology
and linguistics domains [13, 8, 40] as well as in more computational areas [38]
in which conceptual blending often is used to explain creativity and approach
concept generation.

A central idea in conceptual blending theory is that the generation of novel
concepts may happen via the combination of already existing ideas and knowl-
edge. It is furthermore suggested that such novel concepts are selective and ‘com-
pressed’ combinations, or blends, of previously formed concepts. This cognitive
process is thought to happen as two, or more, input domains (or information
sources) are combined into a new domain, the blended domain, see figure 2. The
blend here inherits some of the attributes and relationships from the source do-
mains and at the same time the unique mix allows the blends to have emergent
properties that are unique to each particular blend.

Veale [38] captures the nature of conceptual blending as follows:

”...conceptual blending combines the smoothness of metaphor with the
structural complexity and organizing power of analogy. We can think of
blending as a cognitive operation in which conceptual ingredients do not
flow in a single direction, but are thoroughly stirred together, to create
a new structure with its own emergent meanings.” (p. 1)

As Veale points out, conceptual blending differs from analogical transfer in
the following way: in analogical transfer information flows from a source domain
to a target domain. In contrast, in conceptual blending knowledge is transferred
from two source domains to a third, newly created blended space. However,
similarly to the search for common structure in the source and target domain in
analogy, conceptual blending looks for structural pattern that can be found in
both of the input domains; these shared structural patterns – the so-called base,
or generic space – are identified and provide the core for the blended conceptual
space.



Fig. 2. The blending process as described by Fauconnier and Turner [3].

4 Formalising conceptual blending

Goguen defines an approach that he terms algebraic semiotics in which certain
structural aspects of semiotic systems are logically formalised in terms of alge-
braic theories, sign systems, and their mappings in [4].

In [6] algebraic semiotics has been applied to user interface design and con-
ceptual blending. Algebraic semiotics does not claim to provide a comprehensive
formal theory of blending – indeed, Goguen and Harrell admit that many as-
pects of blending, in particular concerning the meaning of the involved notions,
as well as the optimality principles for blending, cannot be captured formally.
However, the structural aspects can be formalised and provide insights into the
space of possible blends. The formalisation of these blends can be formulated
using languages from the area of algebraic specification, e.g. OBJ3 [7].

In [10, 18, 20], we have presented an approach to computational conceptual
blending, which is in the tradition of Goguen’s proposal. In these earlier papers,
we suggested to represent the input spaces as ontologies (e.g., in the OWL Web
Ontology Language3). The structure that is shared across the input spaces is also
represented as an ontology, which is linked by mappings to the input spaces. As
proposed by Goguen, the blending process is modelled by a colimit computa-
tion, a construction that abstracts the operation of disjoint unions modulo the
identification of certain parts specified by the base and the interpretations, as
discussed in detail in [5, 19, 18].

We moreover presented how the Distributed Ontology Language (DOL) can
be used to specify conceptual blends with the help of blending diagrams. These
diagrams encode the relationships between the base space and the (two or more)

3 With ‘OWL’ we refer to OWL 2 DL, see http://www.w3.org/TR/owl2-overview/



Fig. 3. The blending process as described by Goguen [6].

input spaces. These blending diagrams can be executed by Hets, a proof man-
agement system. Hets is integrated into Ontohub,4 an ontology repository which
allows users to manage and collaboratively work on ontologies. DOL, Hets, and
Ontohub provide a powerful set of tools, which make it easy to specify and
computationally execute conceptual blends, as seen in [29].

A critical step in the blending process is the identification of the base space
and its mapping to the input spaces. One approach to computationally imple-
ment this step consists of applying techniques of finding generalisations of two
input spaces, which have already been pursuit by analogy-making engines such
as Heuristic Driven Theory Projection, HDTP [33]. HDTP computes a common
generalisation B of two input spaces O1 and O2. This is done by anti-unification
to find common structures in both input spaces O1 and O2. HDTP’s algorithm
for anti-unification is, analogously to unification, a purely syntactical approach
that is based on finding matching substitutions.5

While this is an interesting approach, it has a major disadvantage. Typically,
for any two ontologies there exists a large number of potential generalisations.
Thus, the search space for potential base spaces and, therefore, potential con-
ceptual blends is vast. HDTP implements heuristics to identify interesting anti-
unifiers; e.g., it prefers anti-unifiers that contain rich theories over anti-unifiers
that contain weak theories. However, since anti-unification is a purely syntacti-
cal approach, there is no way to distinguish cognitively relevant from irrelevant
information. As a result, the combinatorial possibilities for anti-unification of
axioms in the two input ontologies explodes.

4 www.ontohub.org
5 There are several other methods for finding generalisations. One example is the

Analogical Thesaurus [37] which uses WordNet to identify common categories for
the source and target spaces.



5 Blending with image schemas

Instead of relying on a purely syntactical approach as was illustrated in the
example above using HDTP, we propose to guide the search for base spaces by
a library of formalised image schemas.

Here, a (formalisation of) an image schema is searched for within two input
theories O1 and O2 by a simultaneous theory-interpretation search. Compu-
tational support for this operation has already been investigated in [30], and a
prototypical system has been developed that was tested as an add-on to the Het-
erogeneous Tool Set Hets [28]. Experiments carried out in [31, 21] showed that
this works particularly well with more complex axiomatisations in first-order
logic, rather than with simple taxonomies expressed in OWL, for the simple
reason that in the latter cases there is simply too little structure to control the
combinatorial explosion of such a search task. From the point of view of embed-
ding image schemas into non-trivial concepts, we may see this as an encouraging
fact, as image schemas are, despite their foundational nature, complex objects
to axiomatise.

We now discuss in more detail an example for concept invention where an
image schema plays an essential role in the construction of the newly blended
concept. Consider the two concepts “space ship” and “mother”. Both are asso-
ciated with a multitude of concepts. Space ships travel through space, they visit
space stations, and they are used to move cargo. Mothers give birth, they provide
guidance for their children and have authority over them. There are many ways
how these concepts can be blended. E.g., one blend would be a space ship that
provides guidance and has authority over other, smaller ships – in other words,
a flag ship. For other potential blends it is less obvious whether they would be
useful; e.g., the concept of a mother that travels trough space.

Our thesis is that shared image schemas provide a useful heuristic to identify
interesting blends.

To capture these ideas formally we first need to represent Containment
in some formal language. For the sake of illustrating the basic ideas, we choose
here a simplified representation in OWL (see Fig. 4). Containers are defined
as material objects that have a cavity as a proper part. A container contains
an object if and only if the object is located in the cavity that is part of the
container.

Class: Container
SubClassOf: MaterialObject
EquivalentTo: has_capability ContainerCapability
EquivalentTo: has_proper_part Cavity

ObjectProperty: contains
SubPropertyChain: has_proper_part o is_location_of
DisjointWith: has_proper_part

Fig. 4. A (partial) representation of Containment in OWL



Mothers realise the Containment schema, since before birth their children
are contained within their wombs. Similarly, ships realise Containment since
they may be used to transport goods and passengers. Of course, in almost any
other aspect mothers and ships are completely different; in Fig. 5 we only rep-
resent that mothers are female humans with children and that space ships are
capable of space travel.

Class: Mother
EquivalentTo: Female and Human and parent_of some (Small and Human)
SubClassOf: has_proper_part UterineCavity

Class: SpaceShip
EquivalentTo: Vessel and has_capability some SpaceTravel
SubClassOf: has_proper_part some CargoSpace

Fig. 5. Mothers and space ships

During the blending of “Mother” and “Ship” the Containment schema
structure of both input spaces is preserved, forming the concept of “Mother ship”
(see Fig. 6). In this case, the uterine cavity and the cargo space are mapped to
the docking space. This concept inherits some features from both input spaces,
while others are dropped. Obviously, a mother ship is a space travelling vessel.
But like a mother, it is a ‘parent’ to some smaller entities of the same type. These
smaller vessels can be contained within the mother ship, they may leave its hull
(a process analogous to a birth) and are supported and under the authority of
the larger vessel.6

Class: MotherShip
EquivalentTo: Vessel and has_capability some SpaceTravel

SubClassOf: has_proper_part DockingStation
SubClassOf: has_proper_part some CargoSpace
SubClassOf: parent_of some (Small and Vessel)

Fig. 6. Mother ship

To summarise, in our example we try to blend the input spaces of “Mother”
and “Space ship”. Instead of trying to utilise a syntactic approach like anti-
unification to search for a base space, we recognise that both input spaces have
cavities and, thus, are containers. Using the base space Containment in the
blending process yields a blended concept of “Mother ship”. Here, the precise
mappings from the base space axiomatisation of Containment to the two input

6 To represent dynamic aspects like birth and vessels leaving a docking bay adequately,
one needs a more expressive language than OWL.



spaces regulate the various properties of the blended concept. Fig. 7 illustrates
this blend by populating the generic blending schema shown in Fig. 3.

Fig. 7. The blending of mother ship

6 Outlook

The work on systematically formalising and ontologically structuring image
schemas is largely unexplored ground. Our idea of using the cognitive structure
of image schemas as the driving force behind the creation of the base space and
the mappings in computational conceptual blending has yet to be fully explored,
but similar work can be seen in analogy engines like HDTP.

Although several scattered formalisation attempts of image schemas may
be found in the literature on conceptual blending and common sense reasoning
[26, 14, 6], these attempts are directed at particular blends or common sense
problems, without much systematicity. The most looked at image schema, by
far, is the notion of Containment. Here, the work of [2], with its distinction of
eight cases of Containment and its systematic mapping to natural language
meanings, provides a fresh new perspective and a valuable starting point for
our enterprise. Exploring the fruitfulness of these distinctions in future blending
experiments will be of great interest.

Our main roadmap for developing the theory of image schemas formally is
as follows: we plan specifically to

– design a formal ontology of image schemas, building on the work of [25];
– specify blending templates in the Distributed Ontology Language DOL [27];



– perform blending experiments with basic image schemas;
– create complex integration templates from basic image schemas via blending.

All this work will be directed towards the goal of building a library of basic,
formalised image schemas, as discussed earlier. The most important, and ar-
guably hardest, problem is to further investigate the interplay between dynamic
and static aspects of image schemas, that is, the relationship between their em-
bodied nature, i.e. ‘simulating’ an image schema in a particular scenario, and
related ‘static’ logical formalisations. The late Joseph Goguen proposed to em-
ploy dynamical systems theory to address this aspect [16]. To evaluate this and
related approaches to the formalisation problem of image schemas will be an
important future task.
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Monoidal logics: How to avoid paradoxes
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Abstract. Monoidal logics are logics that can be seen as specific in-
stances of monoidal categories. They are constructed using specific rules
and axiom schemata that allow to make explicit the monoidal structure
of the logics. Among monoidal logics, we find Cartesian logics, which
are instances of Cartesian categories. As it happens, many paradoxes in
epistemic, deontic and action logics can be related to the Cartesian struc-
ture of the logics that are used. While in epistemic and deontic logics the
source of the paradoxes is often found within the principles that govern
the modal operators, our framework enables us to show that many prob-
lems can be avoided by adopting a proper monoidal structure. Thus, the
usual modal rules and axiom schemata do not necessarily need to be dis-
carded to avoid the paradoxes. In this respect, monoidal logics offer an
alternative way to model knowledge, actions and normative reasoning.
Furthermore, it provides us with new avenues to analyze modalities.

Keywords: Nonmonotonic reasoning, Conditional normative reasoning, Cate-
gory theory, Categorical logic, Logical omniscience

1 Introduction

Monoidal logics were recently introduced by Peterson [28] as a framework to clas-
sify logical systems through their categorical structure.1 Inspired by the work of
Lambek (see for instance [22]), the idea is to use category theory as a founda-
tional framework for logic and make explicit the relations between the categorical
structure of the logics and the rules and axiom schemata that are used.

In the present paper, we show how monoidal logics are relevant to artificial
intelligence given that they enable us to expose and solve some problems that
are related to epistemic, deontic and action logics. While these kinds of logic
are often formalized as different variations of modal logics, we begin in section
2 by summarizing the framework we adopt for modal logics (section 2.1) and
monoidal logics (section 2.2). That being done, we present and discuss some
paradoxes in section 3 and analyze them in light of our framework. We conclude
in section 4 with avenues for future research.
� The author would like to thank Jean-Pierre Marquis for his time and support. This

research was financially supported by the Social Sciences and Humanities Research
Council of Canada.

1 See also [30,29].



2 Framework

2.1 Modal logics

Following Chellas [8], let Δ contain the axiom schemata and rules of proposi-
tional logic. Assume the usual definition for the ♦ operator (i.e., ♦ϕ =df ¬�¬ϕ)
together with the language L = {P rop, (, ),∧,
,⊃,∨,⊥,�}, where P rop is a col-
lection of atomic propositions. The � operator is a modality that can represent
necessity (e.g., alethic logic), knowledge (e.g., epistemic logic), obligation (e.g.,
deontic logic), past/future (e.g., temporal logic) or the execution of an action or
a computer program (e.g., dynamic logic). The connectives of the language are
the usual classical connectives (i.e., conjunction, implication and disjunction).
Negation is defined by ¬ϕ =df ϕ ⊃ ⊥ and well-formed formulas are defined
recursively as follows2:

ϕ := pi | ⊥ | 
 | ϕ ∧ ψ | ϕ ⊃ ψ | ϕ ∨ ψ | �ϕ

The interest of Chellas’s approach is that it clearly relates the rules governing
the modalities to the consequence relation of classical logic. Using the following
inference rules, we can adopt the following definitions3:

– Δ is classical if it is closed under (RE);
– Δ is monotonic if it is closed under (RM);
– Δ is normal if it is closed under (RK).

ϕ ≡ ψ
(RE)

�ϕ ≡ �ψ

ϕ ⊃ ψ
(RM)

�ϕ ⊃ �ψ

(ϕ1 ∧ · · · ∧ ϕn) ⊃ ψ
(RK) with n ≥ 0

(�ϕ1 ∧ · · · ∧ �ϕn) ⊃ �ψ

ϕ
(RN)

�ϕ

While a classical system preserves logical equivalences under �, a monotonic
system insures that � preserves consequences. The relations between these sys-
tems is as follows: if Δ is normal, then it is monotonic, and furthermore if it
is monotonic, then it is classical. A classical system E is usually defined by
LP C + (RE), a monotonic system M by LP C + (RM) and a normal system K
by LP C + (RK). In addition to the usual definition of these systems, one can
also have alternative formulations using the following axiom schemata:

�(ϕ ∧ ψ) ⊃ (�ϕ ∧�ψ) (M) �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ) (K) �
 (N)

Using these axioms, monotonic and normal systems can alternatively be de-
fined:

K = LP C + (K) + (RN) M = E + (M)

= M + (K) + (N)

2 That is, atoms, � and ⊥ are formulas, and if ϕ and ψ are formulas, then so are
ϕ ∧ ψ, ϕ ⊃ ψ, ϕ ∨ ψ and �ϕ.

3 Note that there are other types of modal systems, such as regular systems, but we
leave them aside for the purpose of the present paper.



Many extensions can be constructed from these systems. The usual modal
axioms are D, T, 4 and 5.4

�ϕ ⊃ ♦ϕ (D) �ϕ ⊃ ϕ (T) �ϕ ⊃ ��ϕ (4) ϕ ⊃ �♦ϕ (5)

D is usually considered as a deontic axiom, which means that if ϕ is obligatory,
then it is also permitted. T is usually used as an axiom for necessity, meaning
that if ‘it is necessary that ϕ is true’ is true, then ϕ is true. 4 and 5 are usually
used for epistemic modalities, the former meaning that if an agent knows ϕ, then
he knows that he knows ϕ and the latter meaning that if ϕ is true, then an agent
knows that it is possible for ϕ to be true.

2.2 Monoidal logics

The rationale behind monoidal logics is to use category theory to analyze the
proof theory of logical systems. By doing so, one can expose the categorical struc-
ture of different logics and classify these systems accordingly. Consider the lan-
guage L = {P rop, (, ),⊗, 1,�,⊕, 0}, where P rop is a collection of atomic propo-
sitions. The connective ⊗ is understood as some form of conjunction (although
not necessarily ∧),� is an implication and ⊕ a disjunction (but not necessarily
∨). Negation and well-formed formulas are defined as usual (¬ϕ =df ϕ � 0).

ϕ := pi | 0 | 1 | ϕ ⊗ ψ | ϕ � ψ | ϕ ⊕ ψ

To define monoidal logics, we need to first define the consequence relation
(see the rules and axiom schemata in figure 1).5 To do so, we define a deductive
system and we require that proofs are reflexive and transitive.

Definition 1. A deductive system D is a collection of formulas and (equivalence
classes of) proofs (deductions). It has to satisfy (1) and (cut).

Then, one can introduce a conjunction ⊗ with a unit 1 using a monoidal
deductive system. This conjunction is minimally associative but is not necessarily
commutative. The unit 1 can be absorbed by ⊗ from (r) and (l).

Definition 2. A monoidal deductive system M is a deductive system satisfying
(r), (l), (t) and (a).

When this is done, one can do either one of two things. Either one keeps the
monoidal structure and adds an implication, and then perhaps classical nega-
tions, or one adds some structure to the conjunction by requiring that it be
commutative.6 In the latter case, one can define a symmetric deductive system,

4 Note that there are other axioms, see [8,19,10].
5 A double line means that the rule can be applied both top-down and bottom-up.
6 Given space limitations, we will not expose the whole plethora of monoidal logics

that can be defined. For instance, we will not elaborate on monoidal closed deduc-
tive systems or monoidal closed deductive systems with classical negations. For a
thorough presentation and further explanations, we refer the reader to [30,29].



where the conjunction satisfies a braiding rule (b). That said, at this stage, it
is also possible to keep the symmetric structure and introduce an implication
by defining a closed deductive system, and then adding classical negation by
defining a closed deductive system with classical negation.

Definition 3. A symmetric monoidal deductive system S is a monoidal deduc-
tive system satisfying (b).

3.1 A symmetric closed deductive system SC satisfies (cl).
3.2 A symmetric closed deductive system with classical negation SCC satisfies (¬¬).

From a symmetric deductive system, one can add some more structure to the
conjunction and define a Cartesian deductive system. In such a case, ⊗ is the
usual conjunction ∧ of classical or intuitionistic logics. The rule (Cart) allows
us to introduce and eliminate the conjunction, while (!) means that anything
implies the truth. As it was the case for symmetric deductive system, one can
also add an implication and classical negation.

Definition 4. A Cartesian deductive system C is a deductive system satisfying
(Cart) and (!).

4.1 A Cartesian closed deductive system CC satisfies (cl).
4.2 A Cartesian closed deductive system with classical negation CCC satisfies (¬¬).

The relationship between these deductive systems is as follows: if D is Carte-
sian, then it is symmetric, and furthermore if it is symmetric, then it is monoidal.
As a notational convention, we use the symbols {⊗, 1,�,⊕, 0} for non-Cartesian
deductive systems and {∧,
,⊃,∨,⊥} for Cartesian ones.

(1)
ϕ �� ϕ (¬¬)¬¬ϕ �� ϕ

ϕ −→ ψ ψ −→ ρ
(cut)ϕ −→ ρ

ϕ �� ψ ρ �� τ
(t)

ϕ⊗ ρ �� ψ ⊗ τ

τ �� (ϕ⊗ ψ)⊗ ρ
(a)

τ �� ϕ⊗ (ψ ⊗ ρ)

ϕ �� ψ ⊗ 1
(r)

ϕ �� ψ
ϕ �� 1⊗ ψ

(l)
ϕ �� ψ

ϕ �� ψ ⊗ τ
(b)

ϕ �� τ ⊗ ψ

ϕ⊗ ψ �� ρ
(cl)

ϕ �� ψ � ρ

(!)
ϕ �� 1

ϕ �� ψ ϕ �� ρ
(Cart)

ϕ �� ψ ⊗ ρ

Fig. 1. Rules and axiom schema

The co-tensor ⊕ can be axiomatized through a deductive system defined as
an opposite deductive system Dop where the formulas remain the same but the
deduction arrows are reversed and ⊗/1 are respectively replaced by ⊕/0. Hence,
we obtain the co-versions of the aforementioned rules and we can define co-
monoidal (coM), co-symmetric (coS) and co-Cartesian (coC) deductive systems.

The interest of this approach is that deductive systems can be classified
according to their categorical structure (cf. [29]). For instance, M is an instance
of a monoidal category, SC is an instance of a (monoidal) symmetric closed



category and C is an instance of a Cartesian category (cf. [23] for the definitions).
Using this framework, we can classify existing logical systems and create new
ones. For example, classical logic is an instance of a CCCcoC, intuitionistic logic
is an instance of a CCcoC, the multiplicative fragment of linear logic (cf. [11]) is
an instance of a SCC satisfying ϕ ⊕ ψ =df ¬ϕ � ψ and the additive fragment
of linear logic is an instance of a CcoC.

On the semantical level, monoidal logics can be interpreted within the frame-
work of partially-ordered residuated monoids (see [30,29]).7 While it is well-
known that CCs and CCCs are sound and complete with respect to Heyting and
Boolean algebras, SCCs can be shown to be sound and complete with respect to
partially-ordered commutative residuated involutive monoids.8

3 Some paradoxes

3.1 Logical omniscience

Epistemic logics are usually defined as normal K45-, KD45-, KT4- or KT5-
systems. Notwithstanding these different axiomatizations, the problem of logical
omniscience is linked to the basic structure of a normal system and can be re-
lated to many rules and axioms. While it is usually attributed to the K-axiom
for distribution (e.g., [14]), it can also be attributed to the rule RK (e.g., [16])
or even RN. As we noted earlier, these rules and this axiom are all derivable in
a normal system.

The rule RN expresses a weak form of logical omniscience. It means that an
agent knows each and every theorem of the system. Combined with the K-axiom
for distribution, this implies a stronger form of omniscience. Indeed, K is logically
equivalent to the following formula, which states that knowledge (or belief) is
closed under implications that are known (or believed).

(�ϕ ∧�(ϕ ⊃ ψ)) ⊃ �ψ

Considered together with RN, the K-axiom implies that an agent knows every
logical consequence of his prior knowledge. This is the usual presentation of the
problem of logical omniscience, which amounts to attribute the problem to RK
(which, as we know, is logically equivalent to K+RN). Hence, even though ‘full’
logical omniscience happens when RK is satisfied, it should be emphasized that
some weaker form of logical omniscience can also happen in non-normal modal
logics that satisfy either K or RN (but not both).

In addition to these three forms of logical omniscience, others are also present
in some non-normal modal logics. For instance, the rule RM entails that if an
agent knows something, then he knows all tautologies. That does not imply that
the agent knows per se every tautology, but only that as soon as he knows, say,
ϕ, then he knows every tautology. This is a consequence of the following instance
of RM (with 
 some tautology).

7 This semantical framework is inspired by the work of [9] on residuated lattices.
8 They are also sound and complete with respect to a specific string diagrammatic

language (see [31]).



ϕ ⊃ �
(RM)

�ϕ ⊃ ��

Furthermore, another weaker form of omniscience can be related to RE. Al-
though he specifies that this does not reduce to logical omniscience per se, Stal-
naker [41] points out that RE also poses a problem given that as soon as one
knows (or believes) a trivial tautology, such as ¬(ϕ ∧ ¬ϕ), then one knows (or
believes) all tautologies. As such, given that tautologies are logically equivalent,
it follows that if one knows some tautology, then he knows them all.

Consequently, it appears that even classical systems are not completely im-
mune to the objection of logical omniscience. But still, modal logics are widely
relevant to the analysis of epistemic modalities, and thus an important question
is whether or not it is possible to utterly avoid logical omniscience while keeping
other relevant principles of modal logics. Fortunately, the answer to that ques-
tion is yes, and the solution is to look at this problem from the perspective of
monoidal logics.

Despite all the modal rules and axioms that were used in the presentation
of the problem of logical omniscience, it should be noted that there were also
two propositional principles at play. On the one hand, in the case of RM, it is
the fact that ϕ ⊃ 
 is a theorem that allows us to conclude that if an agent
knows that ϕ, then he knows every tautology. From a categorical perspective,
this amounts to the fact that 
 is a terminal object. On the other hand, in the
case of RE, it is the fact that tautologies are logically equivalent that leads to a
weaker form of logical omniscience. Although this might not be explicit at first
glance, it happens that this is also related to the fact that 
 is terminal.

ϕ 
! ��ϕ

ϕ��




ϕ
��

As it is shown in the diagram above, if a formula ϕ is a theorem, then we
know that there is a proof 
 �� ϕ. This is standard for any monoidal logic.
That being said, it is the arrow ! that entails the logical equivalence between any
tautology and 
 (hence between each and every tautologies).

From a categorical perspective, this arrow is related to the Cartesian struc-
ture of classical modal logics, which follows from the fact that they are extensions
of (classical) propositional logic. It is however possible to define propositional
logics that still have a classical negation but that do not have this Cartesian
structure. Indeed, the closest alternative system would be a symmetric monoidal
closed deductive system with classical negation SCC. In such a system, 
 is
not terminal and tautologies (resp. contradictions) are not logically equivalent.
Therefore, one could easily add the rules RE or RM to a SCC without facing the
weaker forms of logical omniscience related to these rules. Note, however, that
RN would still imply that the agent knows every tautology and, moreover, that
K would still mean that knowledge is closed under known implications.



3.2 Ross’s paradox

Ross’s paradox [37,38] concerns deontic logic and the logic of imperatives. It aims
to show that normative propositions (or imperatives) and descriptive proposi-
tions are not satisfied in the same conditions. In the standard system (i.e., in a
normal KD-system), it amounts to say that the following is derivable: If Peter
ought to mail a letter, then he ought to either mail it or burn it.

Despite the fact that Ross’s paradox is ususally objected to the standard
system (i.e., a normal system), it should be noted that it is actually derivable in
monotonic systems. Indeed, it is a special case of RM:

ϕ ⊃ (ϕ ∨ ψ)
(RM)

�ϕ ⊃ �(ϕ ∨ ψ)

But even though Ross’s paradox appears as a consequence of monotonic
systems, it happens that RM does not necessarily leads to it. As we can see in
the instance of RM above, the formula that allows us to derive the undesired
consequence is ϕ ⊃ (ϕ ∨ ψ). This formula is a specific instance (on the right
below) of the co-version of the rule for Cartesian systems (on the left).9

ϕ �� ρ ψ �� ρ
(co-Cart)

ϕ ∨ ψ �� ρ

(1)
ϕ ∨ ψ �� ϕ ∨ ψ

(co-Cart)
ϕ �� ϕ ∨ ψ

It is noteworthy that the arrow ϕ ��ϕ∨ψ expresses a fundamental property
of the disjunction ∨. Indeed, this arrow is an injection map that allows us to
define ∨ as a categorical co-product. Put differently, it is a fundamental property
of co-Cartesian deductive systems, which is not derivable in non-Cartesian ones.
Hence, in the presence of RM, Ross’s paradox is derivable as soon as the co-tensor
is axiomatized within a coC.

As a result, it is possible to keep some desired principles governing the �
operator and add RM or RK to a SCCcoS while avoiding Ross’s paradox.

3.3 Prior’s paradox

Prior’s paradox [35] of derived obligations aims to show that von Wright’s [45]
notion of commitment was not adequately modeled by his initial approach. While
von Wright interpreted �(ϕ ⊃ ψ) as ‘ϕ commits us to ψ’, Prior showed that this
leads to paradoxical results given that the following formula is derivable within
von Wright’s system.

�¬ϕ ⊃ �(ϕ ⊃ ψ)

In words, this means that if ϕ is forbidden, then carrying out ϕ commits us
to any ψ. This is obviously an undesirable principle. As in the case of Ross’s
paradox, this is actually a consequence of RM.

¬ϕ ⊃ (ϕ ⊃ ψ)
(RM)

�¬ϕ ⊃ �(ϕ ⊃ ψ)

9 Note that ϕ �� ψ if and only if � �� ϕ ⊃ ψ.



Yet, although Prior’s paradox might be seen as an instance of RM, it is
still possible to have a modal system satisfying that rule without enabling the
derivation of the paradox. If we consider the logical equivalence between ϕ ⊃ ψ
and ¬ϕ ∨ ψ, then ¬ϕ ⊃ (ϕ ⊃ ψ) can also be seen as a special instance of (co-
Cart). That being said, it is noteworthy that Prior’s paradox is deeply related
to the (co)-Cartesian structure of the logic. Indeed, the formula ¬ϕ ⊃ (ϕ ⊃ ψ)
actually hides the fact that ⊥ is initial, which is also a fundamental characteristic
of (co)-Cartesian deductive systems.

(1)¬ϕ �� ¬ϕ
(cl)

ϕ ∧ ¬ϕ ��⊥ (⊥)⊥ �� ψ
(cut)

ϕ ∧ ¬ϕ �� ψ
(cl)¬ϕ �� ϕ ⊃ ψ

As it is shown in the proof above, the derivation of Prior’s paradox requires
the axiom schema stating that ⊥ is initial.10 In this respect, the paradox can be
correlated to the (co-)Cartesian structure of the logic. Therefore, it is possible
to avoid Prior’s paradox while keeping RM or RK, for instance if we add RM or
RK to a SCCcoS.

3.4 Idempotent action

In the philosophy literature, the two main action logics that are used are stit
and dynamic logics (cf. [40]). On the one hand, the building blocks of stit logics
can be found within the work of Kanger [21] and Pörn [36], but the explicit stit
frameworks were introduced by Belnap and Perloff [5] and further developed by
Xu [46] (see also Horty [18]).11 Actions within stit frameworks12 are modeled
using a normal K-system and further axioms, depending on the desired structure
of the model.13 In this respect, the structure of stit logics is essentially Cartesian.
On the other hand, dynamic logics where developed by Pratt [33,34] and where
introduced within the context of deontic logic by Meyer [24,25]. Dynamic logics
also use a normal K-system, which expresses that after the execution of some
action (or computer program), a description of the state holds. In dynamic logics,
however, there is a distinction between actions and propositions. As such, the
‘action logics’ inherent to these approaches are not expressed via the structure
of the normal K-system. Instead, actions are modeled using a Kleene algebra in
the standard formulation of dynamic logic (cf. [15]) and with a Boolean algebra
in the case of deontic dynamic logic (cf. [28]). In addition to dynamic and stit
logics, there are also other approaches that explicitly use Boolean algebras to
model actions, for instance [39,42,7].

Apart from dynamic logics based on Kleene algebras, all the aforementioned
approaches share a common structure, namely that of a Cartesian deductive

10 Note that the axiom ⊥ is actually co-!.
11 The acronym stit stands for ‘seeing to it that’.
12 More precisely, consequences of actions (intended or not).
13 See for example [17,26,6].



system. While it is trivial in the case of stit logics since they are normal modal
logics, it is also a direct consequence of using Boolean algebras to model ac-
tions. Indeed, the syntactical equivalence between classical propositional logic
and Boolean algebras is well-known, notwithstanding the fact that Boolean al-
gebras can be seen as instances of Cartesian closed categories (cf. [2,13]).

Now, an interesting property of Cartesian deductive systems is that they
satisfy idempotence of conjunction (i.e., ϕ is logically equivalent to ϕ∧ϕ). This
follows from the derivations below.

(1)
ϕ �� ϕ (1)

ϕ �� ϕ
(Cart)

ϕ �� ϕ ∧ ϕ

(1)
ϕ ∧ ϕ �� ϕ ∧ ϕ

(Cart)
ϕ ∧ ϕ �� ϕ

Although it was not formulated in these terms when he introduced linear
logic, Girard [11] presented the backbone of what we might call the ‘paradox
of idempotent action’. Let ϕ stands for ‘giving one dollar’. Clearly, giving one
dollar is not logically equivalent to giving one dollar and giving one dollar.
Consequently, the paradox of idempotent action can be objected to action logics
that have a Cartesian structure given that they trivially satisfy idempotence of
conjunction.

From the perspective of monoidal logics, we can see that this paradox af-
fects CCCs, and thus the closest alternative to model action while avoiding the
paradox is to use an instance of a SCC.

3.5 Contrary-to-duty reasoning

Contrary-to-duty reasoning is deeply relevant to artificial intelligence. As it
stands, the three main problems one faces when trying to model contrary-to-
duty reasoning are augmentation, factual detachment and deontic explosion.

Augmentation (cf. [20]), also known as the problem of strengthening the
antecedent of a deontic conditional (cf. [1]), arises when a logic satisfies the
following inference pattern.

ϕ ⊃ �ψ
(aug)

(ϕ ∧ ρ) ⊃ �ψ

Modeling a deontic conditional using ϕ ⊃ �ψ, this implies that whenever
there is an obligation �ψ conditional to a context ϕ, then this obligation is also
conditional to the augmented context ϕ ∧ ρ for any ρ. This is undesirable given
that the extra conditions ρ might be such that the obligation does not hold
anymore.14

The problem of factual detachment (cf. [44]) can be analyzed in similar terms.
It arises when a system satisfies the following inference pattern (i.e., weakening):

(ϕ ∧ (ϕ ⊃ �ψ)) ⊃ �ψ
(wk)

(ρ ∧ (ϕ ∧ (ϕ ⊃ �ψ))) ⊃ �ψ

14 The obligation can also be overridden or canceled (cf. [43]).



In a nutshell, the problem of factual detachment can be formulated as follows:
even though one might want to detach the obligation �ψ from the context ϕ
and the deontic conditional ϕ ⊃ �ψ, there might be other conditions ρ that
will thwart the detachment of �ψ. Thus the problem: detachment is desired but
only when we can insure that nothing else will thwart the detached obligation.
However, if a logic satisfies the aforementioned inference pattern, then it allows
for unrestricted detachment.

Finally, the problem of deontic explosion (see for instance [12]) amounts
to the fact that from a conflict of obligations one can deduce that anything
is obligatory within a normal system.15 Indeed, normal systems validate the
formula (�ϕ ∧�¬ϕ) ⊃ �ψ for any ψ.

These issues have been thoroughly analyzed in [32] and we showed that these
three problems are actually related to the Cartesian structure of the logics that
are used to model contrary-to-duty reasoning. While the proof of the weakening
and the augmentation inference patterns depend on (Cart), deontic explosion
actually comes from the fact that ⊥ is initial in a CCC.

(1)
ρ ∧ (ϕ ∧ (ϕ ⊃ �ψ)) �� ρ ∧ (ϕ ∧ (ϕ ⊃ �ψ))

(Cart)
ρ ∧ (ϕ ∧ (ϕ ⊃ �ψ)) �� ϕ ∧ (ϕ ⊃ �ψ)

(1)
ϕ ⊃ �ψ �� ϕ ⊃ �ψ

(cl)
ϕ ∧ (ϕ ⊃ �ψ) �� �ψ

(cut)
ρ ∧ (ϕ ∧ (ϕ ⊃ �ψ)) �� �ψ

(1)
(ϕ ∧ ρ) ∧ (ϕ ⊃ �ψ) �� (ϕ ∧ ρ) ∧ (ϕ ⊃ �ψ)

(Cart)
(ϕ ∧ ρ) ∧ (ϕ ⊃ �ψ) �� ϕ ∧ (ϕ ⊃ �ψ)

(1)
ϕ ⊃ �ψ �� ϕ ⊃ �ψ

(cl)
ϕ ∧ (ϕ ⊃ �ψ) �� �ψ

(cut)
(ϕ ∧ ρ) ∧ (ϕ ⊃ �ψ) �� �ψ

(cl)
ϕ ⊃ �ψ �� (ϕ ∧ ρ) ⊃ �ψ

.

.

.

�ϕ ∧ �¬ϕ �� �⊥

(⊥)⊥ �� ψ
(RM)

�⊥ �� �ψ
(cut)

�ϕ ∧ �¬ϕ �� �ψ

In this respect, it can be argued that the three major problems one faces
when trying to model contrary-to-duty reasoning are related to the Cartesian
structure of the logic that is used. To avoid these problems, one must therefore
use a logic that has a weaker structure to model contrary-to-duty reasoning. As
such, we developed a logic for conditional normative reasoning on the grounds
of a monoidal logic (precisely, an instance of a SCCcoS) in [30].

4 Conclusion

Summing up, we showed using the framework of monoidal logics that many
paradoxes in epistemic, deontic and actions logics are related to the Cartesian
structure of the logic that are used. While the source of some paradoxes in
epistemic and deontic logic is usually attributed to the rules and axiom schemata

15 Or within a regular system.



that govern the modalities, we showed that the source of these problem is actually
the Cartesian structure of the logic. As a result, it is possible to keep some desired
modal rules and axiom schemata while avoiding the paradoxes by using a logic
that has a monoidal structure rather than a Cartesian one.

For future research, it remains to explore the logical properties of the monoidal
modal logics that can be constructed from the rules and axiom schemata of clas-
sical modal logics. We will need to properly study the relations between the dif-
ferent rules and axioms and determine how accessibility relations can be defined
within the framework of partially-ordered residuated monoids. We also intend to
explore how monoidal modal logics can be used to model artificial agents with
the help of monoidal computers (cf. [27]).
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Abstract. Mathematical patterns are an important subclass of the class
of patterns. The main task of this paper is examining a particular pro-
posal concerning the nature of mathematical patterns and some elements
of the cognitive structure an agent should have to recognize them.

1 Introduction

As is well known, the main aim of pattern recognition is to determine whether,
and to what extent, what we call ‘pattern recognition’ can be accounted for in
terms of automatic processes. From this it follows that two of its central prob-
lems are how to: (i) describe and explain the way humans, and other biological
systems, produce/discover and characterize patterns; and how to (ii) develop
automatic systems capable of performing pattern recognition behaviour.

Having stated these important facts, we need to point out that at the foun-
dations of pattern recognition there are two more basic questions which we can
formulate in the following way: (a) what is a pattern? (b) how do we come to
know patterns? And it is clear that, if we intend to develop a science of pattern
recognition able to provide a rigorous way of achieving its main aim, and of
pursuing its central objects of study, it is very important to address questions
(a) and (b).

What we intend to do in this paper is tackling questions (a) and (b) not
in their full generality, but in the privileged context provided by mathematics,
where there exists a consolidated tradition which regards it as a science of pat-
terns,4 connecting the results of our enquiries to the appropriate levels of the
cognitive architecture we propose for a cognitive agent.

4 See on this [Oliveri, 1997], [Shapiro, 2000], [Resnik, 2001], [Oliveri, 2007],
[Oliveri, 2012], [Bombieri, 2013].



2 A case study

If we are presented with the two following objects a and b, it is very difficult to
see what interesting mathematical feature they might have in common, if any,
let alone that they exemplify the same mathematical pattern:

Fig. 1. Different Information Processing for two different Cognitive Agents

Indeed, whereas object a is a 3× 7 matrix whose elements are the first seven
letters of the Italian alphabet, object b is an equilateral triangle in which we have
inscribed a circle, drawn three bisecting segments, and singled out the points of
intersection of three curves.

However, the situation radically changes if we introduce the following formal
system T with the appropriate interpretations.

Let T be a formal system such that the language of T contains a primitive
binary relation ‘x belongs to a set X’ (x ∈ X), and its inverse ‘X contains an
element x’ (X � x).

Furthermore, let us assume that D, the domain, is a set of countably many
undefined elements a1, a2, . . .; call ‘m-set’ a subset X of D; and consider the
following as the axioms of T:

Axiom 1 If x and y are distinct elements of D there is at least one m-set
containing x and y;

Axiom 2 If x and y are distinct elements of D there is not more than one m-set
containing x and y;

Axiom 3 Any two m-sets have at least one element of D in common;
Axiom 4 There exists at least one m-set.
Axiom 5 Every m-set contains at least three elements of D;
Axiom 6 All the elements of D do not belong to the same m-set;
Axiom 7 No m-set contains more than three elements of D.5

5 The case study discussed in this section has been taken from [Oliveri, 2012], §3,
pp. 410-414. These axioms have been taken, with some minor alterations, from
[Tuller, 1967], §2.10, p. 30.



At this point, if we put I1(a1) = A, . . . , I1(a7) = G, we find that, under this
interpretation, what corresponds to the m-sets are the columns of the matrix in
fig. 1, and that object a is a model of T.

On the other hand, if we put I2(a1) = P1, . . . , I2(a7) = P7, we find that, under
this interpretation, what corresponds to the m-sets are the curves in fig. 1, and
that object b is a model of T. But the surprises do not end up here, because we
can now prove that the two models of T mentioned above are isomorphic to one
another (see on this [Oliveri, 2012], §3, p. 413, footnote 12).

Several are the things that interest us in this example. First of all, the expres-
sion ‘the pattern described by T’ appears to refer to the mathematical structure
which is realized/instantiated in objects a and b. What this seems to suggest
is that, in the mathematical case, the concept of pattern coincides with that of
mathematical structure.

Secondly, in the absence of our formal system T, we cannot see the pat-
tern/structure instantiated by a and b because we are in no position for making
the relevant observations concerning the salient features of the pattern/structure
in question as is shown by the fact that, in particular, we are unable to make a
number of fundamental distinctions such as that between part and whole, etc.
etc.

Thirdly, the mathematical structure which becomes salient when we observe
objects a and b through T depends not only on T, but also on a and b. In fact,
given that we can prove in T that there exist exactly seven elements in D and
seven m-sets if, for instance, the number of letters of the Italian alphabet we
considered as elements of our matrix were different from seven, the matrix could
not be a model of T (the same applies mutatis mutandis to the number of points
of intersection of three curves in b).

Taking stock of some of the main points made in this section in our study
of the mathematical case, we need to say that: (i) we must distinguish between
object and structure; (ii) there are strong reasons for identifying mathematical
patterns with structures; (iii) necessary conditions for pattern recognition in
mathematics are the existence of (1) an observer O; (2) a domain of objects D;
and (3) a system of representation Σ, i.e. (O,D, Σ).6

With regard to the problem of how we come to know mathematical patterns,
given that mathematical patterns are neither sensible objects nor properties
of sensible objects, e.g., what in our example we saw as a Euclidean equilat-
eral triangle is not a perfect Euclidean equilateral triangle, because its sides do
not have exactly the same length, do not contain an infinite number of points,
are not breadthless, etc. (see on this [Oliveri, 2012], §§3 and 4, pp. 410-417), it
follows that they are not given to us as a consequence of abstraction or induc-
tion/generalization carried out on pure observations. But, on the other hand, if
mathematical patterns are (also) dependent on objects, as in the case of a and
b, they cannot simply be in the eyes of the beholder either. They are given to

6 Actually, the system of representation Σ is an ordered pair Σ = (T, I), where T
is a set containing (as a subset) a recursive set of axioms A and all the logical
consequences of A, and I is an interpretation of T on to D.



us as a consequence of our activity of representing entities like a and b within a
given system of representation Σ.

3 Patterns and conceptual spaces

Conceptual spaces (CS) were originally introduced by Gärdenfors as a bridge
between symbolic and associationist models of information representation. This
was part of an attempt to describe what he calls the ‘geometry of thought’.

In [Gärdenfors, 2004] and [Gärdenfors, 2004a] we find a description of a cog-
nitive architecture for modelling representations. The cognitive architecture is
composed by three levels of representation: a subconceptual level, in which data
coming from the environment (sensory input) are processed by means of a neu-
ral network based system; a conceptual level, where data are represented and
conceptualized independently of language; and, finally, a symbolic level which
makes it possible to manage the information produced at the conceptual level
at a higher level through symbolic computations.

Gärdenfors’ proposal of a way of representing information via his concep-
tual spaces exploits geometrical structures rather than symbols or connections
between neurons. This geometrical representation is based on the existence/con-
struction of a space endowed with a number of what Gärdenfors calls ‘quality
dimensions’ whose main function is to represent different qualities of objects
such as brightness, temperature, height, width, depth.

Moreover, for Gärdenfors, judgments of similarity play a crucial role in cog-
nitive processes and, according to him, it is possible to associate the concept of
distance to many kinds of quality dimensions. This idea naturally leads to the
conjecture that the smaller is the distance between the representations of two
given objects in a conceptual space the more similar to each other the objects
represented are.

According to Gärdenfors, objects can be represented as points in a conceptual
space, points which we are going to call ‘knoxels’,7 and concepts as regions
within a conceptual space. These regions may have various shapes, although to
some concepts — those which refer to natural kinds or natural properties —
correspond regions which are characterized by convexity.8

Of course, at this point a whole host of important questions come to the
forefront, questions like how could a cognitive agent: (1) learn the appropriate
conceptual spaces? (2) select between different spaces that could fill the data?
(3) determine the possible dimensions for representing objects? etc. etc. And
although all such questions are central to our attempt to use Gärdenfors concep-
tual spaces as part of the cognitive architecture of a conceptual agent — we have
addressed some of them in [Augello et al., 2013a] and [Augello et al., 2013b] —

7 The term ‘knoxel’ originates from [Gaglio, 1988] by the analogy with “pixel”. A
knoxel k is a point in Conceptual Space and it represents the epistemologically
primitive element at the considered level of analysis.

8 A set S is convex if and only if whenever a, b ∈ S and c is between a and b then
c ∈ S.



what we aim to do in this paper is: (α) showing the existence of at least three
different pattern recognition procedures; and (β) individuating which of the 3
corresponding levels of the cognitive architecture of our cognitive agent is in-
volved in the processing of mathematical patterns.

To do this consider the case study discussed in §2 (taken from [Oliveri, 2012],
§3, pp. 410-414), and imagine we have before us a cognitive agent A endowed
with level 1 information processing system. In this case A (its neural network)
can be trained to recognize letters A, B, . . . , G and distinguish them from one
another; and do the same thing for the coloured round objects P1, P2, . . . , P7.

Furthermore, suppose that the letters and the coloured round objects are
presented to A exactly as they are in fig. 1. Once more A, exploiting its level 2
information processing system, i.e. the conceptual spaces of letters and of colours,
is able to give a correct representation of a and b, for example, by representing
a and b in an appropriate finite-dimensional vector space using rigid motions
and some operations which act on the spaces.

However, what A cannot do, if the formal system T (see §2) is absent from
its symbolic level 3 information processing system, is recognizing that a and b
exemplify/realize the same pattern. Therefore, if what we have argued so far is
correct, it follows that in the dawning of a mathematical pattern all the three
levels of information processing systems we mentioned above are involved

4 Conclusion

In this work we have revisited a three levels cognitive architecture as a foun-
dational approach to pattern recognition for an agent. We have illustrated this
possibility by exploiting a mathematical domain. We have also highlighted the
relevance of a linguistic, symbolic, level in order to produce abstractions and see
deeper mathematical patterns.
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Abstract. For a socially intelligent robot, different levels of situation as-
sessment are required, ranging from basic processing of sensor input to
high-level analysis of semantics and intention. However, the attempt to
combine them all prompts new research challenges and the need of a co-
herent framework and architecture.
This paper presents the situation assessment aspect of Romeo2, a unique
project aiming to bring multi-modal and multi-layered perception on a
single system and targeting for a unified theoretical and functional frame-
work for a robot companion for everyday life. It also discusses some of the
innovation potentials, which the combination of these various perception
abilities adds into the robot’s socio-cognitive capabilities.

Keywords: Situation Assessment, Socially Intelligent Robot, Human Robot
Interaction, Robot Companion

1 Introduction
As robots started to co-exist in a human-centered environment, the human aware-
ness capabilities must be considered. With safety being a basic requirement, such
robots should be able to behave in a socially accepted and expected manner. This
requires robots to reason about the situation, not only from the perspective of
physical locations of objects, but also from that of ‘mental’ and ‘physical’ states
of the human partner. Further, such reasoning should build knowledge with the
human understandable attributes, to facilitate natural human-robot interaction.

The Romeo2 project (website 1 ), the focus of this paper, is unique in that it
brings together different perception components in a unified framework for real-
life personal assistant and companion robot in an everyday scenario. This paper
outlines our perception architecture, the categorization of basic requirements, the
key elements to perceive, and the innovation advantages such a system provides.
1 This work is funded by Romeo2 project, (http://www.projetromeo.com/), BPIFrance
in the framework of the Structuring Projects of Competitiveness Clusters (PSPC)



Fig. 1. Romeo robot and sensors.

Fig. 1 shows the Romeo robot and its sensors. It
is a 40kg and 1.4m tall humanoid robot with 41
degrees-of-freedom, vertebral column, exoskele-
ton on legs, partially soft torso and mobile eyes.
1.1 An Example Scenario

Mr. Smith lives alone (with his Romeo robot
companion). He is elderly and visually im-
paired. Romeo understands his speech, emotion
and gestures, assists him in his daily life. It pro-
vides physical support by bringing the ‘desired’
items, and cognitive support by reminding about
medicine, items to add in to-buy list, playing
memory games, etc. It monitors Mr. Smith’s
activities and calls for assistance if abnormalities are detected in his behaviors. As
a social inhabitant, it plays with Mr. Smith’s grandchildren visiting him.

Fig. 2. Romeo2 Project scenario: A Humanoid Robot
Assistant and Companion for Everyday Life.

This outlined partial tar-
get scenario of Romeo2 project
(also illustrated in fig. 2), de-
picts that being aware about
human, his/her activities, the
environment and the situation
are the key aspects towards
practical achievement of the
project’s objective.

1.2 Related Works and the main Contributions
Situation awareness is the ability to perceive and abstract information from
the environment [2]. It is an important aspect of day-to-day interaction, decision-
making, and planning, so as important is the domain-based identification of the
elements and attributes, constituting the state of the environment. In this paper, we
will identify and present such elements from companion robot domain perspective,
sec. 2.2. Further, three levels of it have been identified (Endsley et al. [9]): Level
1 situation awareness: To perceive the state of the elements composing the
surrounding environment. Level 2 situation awareness: To build a goal oriented
understanding of the situation. Experience and comprehension of the meaning are
important. Level 3 situation awareness: To project on the future. Sec. 2.1 will
present our sense-interact perception loop and map these levels.

Further, there have been efforts to develop integrated architecture to utilize
multiple components of situation assessment. However, most of them are spe-
cific for a particular task like navigating [21], intention detection [16], robot’s
self-perception [5], spatial and temporal situation assessment for robot passing
through a narrow passage [1], laser data based human-robot-location situation as-
sessment, e.g. human entering, coming closer, etc. [12]. Therefore, they are either
limited by the variety of perception attributes, sensors or restricted to a particular
perception-action scenario loop. On the other hand, various projects on Human
Robot Interaction try to overcome perception limitations by different means and
focus on high-level semantic and decision-making. Such as, the detection of objects
is simplified by putting tags/markers on the objects, in the detection of people no
audio information is used, [6], [14], etc. In [10], different layers of perception have



Fig. 3. A generalized perception system for sense-interact in Romeo2 project, with five
layers functioning in a closed loop.

been analyzed to build representations of the 3D space, but focused on eye-hand
coordination for active perception and not on high-level semantics and perception
of the human.

In the Romeo2 project, we are making effort to bring a range of multi-sensor
perception components within a unified framework (Naoqi, [18]), at the same time
making the entire multi-modal perception system independent from a very specific
scenario or task, and explicitly incorporating reasoning about human, towards
realizing effective and more natural multi-modal human robot interaction. In this
regard, to the best of our knowledge, Romeo2 project is the first effort of its kind
for a real world companion robot. In this paper, we do not provide the details of
each component. Instead, we give an overview of the entire situation assessment
system in Romeo2 project (sec. 2.1). Interested readers can find the details in
documentation of the system [18] and in dedicated publications for individual
components, such as [4], [11], [19], [15], [3], [24], [17], [23], etc. (see the complete
list of publications 1). Further, the combined effort to bring different components
together helps us to identify some of the innovation potentials and to develop
them, as discussed in section 3.

2 Perceiving Situation in Romeo2 Project
2.1 A Generalized Sense-Interact Perception Architecture for HRI
We have adapted a simple yet meaningful, sensing-interaction oriented perception
architecture, by carefully identifying various requirements and their interdepen-
dencies, as shown in fig. 3. The roles of the five identified layers are:

(i) Sense: To receive signals/data from various sensors. Depending upon the
sensors and their fusion. This layer can build 3D point cloud world; sense stimuli
like touch, sound; know about the robot’s internal states such as joint, heat; record
speech signals; etc. Therefore, it belongs to level 1 of situation assessment.

(ii) Cognize: Corresponds to the ’meaningful’ (human-understandable level)
and relevant information extraction, e.g. learning shapes of objects; learning to
extract the semantics from 3D point cloud, the meaningful words from speech, the
meaningful parameters in demonstration, etc. In most of the perception-action
systems, this cognize part is provided a priori to the system. However, in Romeo2
projects we are taking steps to make cognize layer more visible by bringing together
different learning modules, such as to learn objects, learn faces, learn the meaning
of instructions, learn to categorize emotions, etc. This layer lies across level 1 and
level 2 of situation assessment, as it is building knowledge in terms of attributes
and their values and also extracting some meaning for future use and interaction.

(iii) Recognize: Dedicated to recognizing what has been ’cognized’ earlier by
the system, e.g. a place, face, word, meaning, emotion, etc. This mostly belongs
to level 2 of situation assessment, as it is more on utilizing the knowledge either
learned or provided a priori, hence ’experience’ becomes the dominating factor.



Table 1. Identification and Classification of the key situation assessment components

(iv) Track: This layer corresponds to the requirement to track something
(sound, object, person, etc.) during the course of interaction. From this layer, level
3 of situation assessment begins, as tracking allows to update in time the state of
the beforehand entity (person, object, etc.), hence involves a kind of ’projection’.

(v) Interact: This corresponds to the high-level perception requirements for
interaction with the human and the environment. E.g. activity, action and inten-
tion prediction, perspective taking, social signal and gaze analyses, semantic and
affordance prediction (e.g. pushable objects, sitable objects, etc.). It mainly be-
longs to level 3 of situation assessment, as involves ’predicting’ side of perception.

Sometimes, practically there are some intermediate loops and bridges among
these layers, for example a kind of loop between tracking and recognition. Those
are not shown for the sake of making main idea of the architecture better visible.

Note the closed loop aspect of the architecture from interaction to sense. As
shown in some preliminary examples in section 3, such as Ex1, we are able to practi-
cally achieve this, which is important to facilitate natural human-robot interaction
process, which can be viewed as: Sense → Build knowledge for interaction →
Interact → Decide what to sense → Sense →...
2.2 Basic Requirements, Key Attributes and Developments
In Romeo2 project, we have identified the key attributes and elements of situation
assessment, to be perceived from companion robotics domain perspective, and
categorized along five basic requirements as summarized in table 1. In this section,
we describe some of those modules. See Naoqi [18] for details of all the modules.
I. Perception of Human
People presence: Perceives presence of people, assign unique ID to each detected
person. Face characteristics: To predict age, gender and degree of smile on a
detected face. Posture characterization (human): To find position and ori-
entation of different body parts of the human, shoulder, hand, etc. Perspective
taking: To perceive reachable and visible places and objects from the human’s
perspective, with the level of effort required to see and reach. Emotion recogni-
tion: For basic emotions of anxiety, anger, sadness, joy, etc. based on multi-modal
audio-video signal analysis. Speaker localization: Localizes spatially the speak-
ing person. Speech rhythm analysis: Analyzing the characterization of speech
rhythm by using acoustic or prosodic anchoring, to extract social signals such as



engagement, etc. User profile: To generate emotional and interactional profile
of the interacting user. Used to dynamically interpret the emotional behavior as
well as to build behavioral model of the individual over a longer period of time.
Intention analysis: To interpret the intention and desire of the user through con-
versation in order to provide context, and switch among different topics to talk.
The context also helps other perception components about what to perceive and
where to focus. Thus, facilitates closing the interaction-sense loop of fig. 3.
II. Perception of Robot Itself
Fall detection: To detect if the robot is falling and to take some human user and
self-protection measures with its arms before touching the ground.
Other modules in this category are self-descriptive. However it is worth to mention
that, such modules also provide symbolic level information, such as battery nearly
empty, getting charged, foot touching ground, symbolic posture sitting, standing,
standing in init pose, etc. All these help in achieving one of the aims of Romeo2
project: sensing for natural interaction with human.

III. Perception of Object
Object Tracker: It consists of different aspects of tracking, such as moving to
track, tracking a moving object and tracking while the robot is moving. Semantic
perception (object): Extracts high-level meaningful information, such as object
type (chair, table, etc.), categories and affordances (sitable, pushable, etc.)
IV. Perception of Environment
Darkness detection: Estimates based on the lighting conditions of the envi-
ronment around the robot. Semantic perception (place): Extracts meaningful
information from the environment about places and landmarks (a kitchen, corridor,
etc.), and builds topological maps.
V. Perception of Stimuli
Contact observer: To be aware of desired or non-desired contacts when they
occur, by interpreting information from various embedded sensors, such as ac-
celerometers, gyro, inclinometers, joints, IMU and motor torques’.

3 Results and Discussion on Innovation Potentials
We will not go in detail of the individual modules and the results, as those can be
found online [18]. Instead, we will discuss some of the advantages and innovation
potentials, which such modules functioning on a unified platform could bring.

Fig. 4. Subset of interaction topics (right), and their dynamic
activation levels based on multi-modal perception and events.

Ex1: The capa-
bility of multi-modal
perception, combining
input from the inter-
acting user, the events
triggered by other per-
ception components,
and the centralized
memorization mecha-
nism of robot, help
to achieve the goal of
closing the interact-
sense loop and dynamically shaping the interaction.



(a) (b) (c)
Fig. 5. High-level situation assessment. (a) The semantics map of the environment. (b)
Effort and Perspective taking based situation assessment. (c) Combining (a) and (b), the
robot will be able to make the object accessible to the human.

To demonstrate, we programmed an extensive dialogue with 26 topics that
shows the capabilities of the Romeo robot. During this dialogue the user often
interrupts Romeo to quickly ask a question, this leads to several ’conflicting’ topics
in the dialogue manager. The activation of different topics during an interaction
over a period is shown in fig. 4. The plot shows that around 136th second the user
has to take his medicine, but the situation assessment based memory indicates that
the user has ignored and not yet taken the medicine. Eventually, the system results
the robot urging the user to take his medication (pointed by blue arrow), making
it more important than the activity indicated by the user during the conversation
(to engage in reading a book, pointed by dotted arrow in dark green). Hence, a
close loop between the perception and interaction is getting achieved in a real
time, dynamic and interactive manner.

Ex2: Fig. 5(a) shows situation assessment of the environment and objects at
the level of semantics and affordances, such as there is a ’table’ recognized at
position X, and this belongs to an affordance category on which something can
be put. Fig. 5(b) shows situation assessment by perspective taking, in terms of
abilities and effort of the human. This enables the robot to infer that the sitting
human (as shown in fig. 5(c)) will be required to stand up and lean forward to see
and take the object behind the box. Thanks to the combined reasoning of (a) and
(b), the robot will be able to make the object accessible to the human by placing it
on the table (knowing that something can be put on it), at a place reachable and
visible by the human with least effort (through the perspective taking mechanism),
as shown in fig. 5(c).

In Romeo2 we also aim to use this combined reasoning about abilities and
efforts of agents, and affordances of the environment, for autonomous human-
level understanding of task semantics through interactive demonstration, for the
development of robot’s proactive behaviors, etc. as suggested the feasibility and
advantages in some of our complementary studies in those directions, [19], [20].

Fig. 6. Self-talk detection

Ex3: Analyzing verbal and non-verbal behav-
iors such as head direction (e.g. on-view or off-
view detection) [15], speech rhythm (e.g. on-talk
or self-talk) [22], laugh detection [8], emotion de-
tection [24], attention detection [23], and their dy-
namics (e.g. synchrony [7]), combined with acoustic
analysis (e.g. spectrum) and prosodic analysis alto-
gether greatly allows to improve social engagement
characterization of the human during interaction.



Fig. 7. Face, shoulder and face orienta-
tion detection of two interacting people.

To demonstrate, we collected a database
of human-robot interaction during sessions
of cognitive stimulation. The preliminary
result with 14 users shows that on a 7 level
evaluation scheme, the average scores for
questions, ”Did robot show any empathy?”,
”Was it nice to you?” and ”Was it polite?”
were 6.3, 6.2 and 6.4 respectively. In ad-
dition, the multi-modality combination of
the rhythmic, energy and pitch character-
istics seems to be elevating the detection of
self-talk (known to reflect the cognitive load of the user, especially for elderly) as
shown in table of fig. 6.

Fig. 8. Sound source separation,
only audio based (BF-SS) and
audio-video based (AVBF-SS).

Ex4: Inferring face gaze (as illustrated in fig.
7), combined with sound localization and object
detection, altogether provides enhanced knowl-
edge about who might be speaking in a multi-
people human-robot interaction, and further fa-
cilitates analyzing the attention and intention.
To demonstrate this, we conducted an experi-
ment with two speakers, initially speaking at the
different sides of the robot and then slowly mov-
ing towards each other and eventually separate
away. Fig. 8 shows the preliminary result for the
sound source separation by the system based on
beamforming. The left part (BF-SS) shows when
only the audio signal is used. When the system
uses the visual information combined with the audio signals, the performance is
better (AVBF-SS) in all the three types of analyses: signal-to-interference ratio
(SIR), signal-to-distortion ratio(SDR) and signal-to-artifact (SAR) ratio.

Ex5: The fusion of rich information about visual clues, audio speech rhythm,
lexical content and the user profile is also opening doors for automated context
extraction, helping for better interaction and emotion grounding and making the
interaction interesting, like doing humor [13].

4 Conclusion and Future Work
In this paper, we have provided an overview of the rich multi-modal perception
and situation assessment system within the scope of Romeo2 project. We have
presented our sensing-interaction perception architecture and identified the key
perception components requirements for companion robot. The main novelty lies
in the provision for rich reasoning about the human and practically closing the
sensing-interaction loop. We have pointed towards some of the work in progress
innovation potentials, achievable when different situation assessment components
are working on a unified theoretical and functional framework. It would be inter-
esting to see how it could serve as guideline in different context than companion
robot, such as robot co-worker.
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Abstract. Humans use information in everyday activities, including learning, planning, 
reasoning and decision-making. There is broad agreement that, in some sense, human 
cognition involves the processing of information, and, indeed, many psychological and 
neuroscientific theories explain cognitive phenomena in information-theoretic terms. 
However, it is not always clear which of the many concepts of ‘information’ is the one 
relevant to understanding the nature of human cognition. Here, I suggest that 
information should be understood pragmatically. Whatever the criteria for information 
are, what makes some x informational has to do with how an agent either processes or 
can process x. Information is defined as meaningful structured representations of 
perceptual data. Their meaningfulness is determined by their behavioural effect on the 
agent. 
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1 Introduction 

 
There is broad agreement that, in some sense, human cognition involves the processing of 
information. Humans regularly use information in learning, planning, reasoning and 
decision-making. Many theories in cognitive science explain cognitive phenomena in 
information-theoretic terms. Yet, ‘information’ means many things to many people. So, it is 
not always clear which of the many concepts of ‘information' is the one relevant to 
understanding the nature of human cognition. C. Shannon and W. Weaver defined 
information-content as the probability of a message being selected from a finite set of 
messages with any selection being equally probable [1]. R. V. L. Hartley before them had 
developed measures for the capacities of different types of information systems to transmit 
information [2]. More recently, Kolmogorov Complexity has defined the information-
content in a binary string s as the length of the shortest program that produces s on a 
universal Turing machine [3, 4].  

However, all these offer quantitative analyses of information for measuring the 
information-content in a message, rather than a theory of information as the thing that is to 
be measured. As noted by Hartley, Shannon and Weaver, their theories focused on physical 
features of signal communication, rather than the psychological or semantic features of 
information. Whilst quantitative aspects of information-content are clearly of importance to 
an information-theoretic analysis of cognition, it seems crucial to fix the concept of 
semantic ‘information’ that is used by information theories of cognition in artificial 
intelligence and cognitive science broadly. In the next section, I survey a few of the well-
known theories of semantic information and point out their deficiencies as the basis for 
informational theories of cognition. 

In this paper, I suggest that information should be understood pragmatically first and 
foremost, if we are to understand human cognition information-theoretically. Whatever the 
criteria for information are, what makes data informational (for an agent) has to do with 
how the agent either processes or can process these data. (Here, I adopt L. Floridi’s data-
oriented definition of information [5] with important modifications as is discussed below.) 
Information should be best understood as meaningful structured representations of 
perceptual data as is discussed in Section 3. The meaningfulness of perceived data is 
determined by their behavioural effect on the agent as a triadic, rather than dyadic, relation 



involving a physical object (or event or property or state of affairs), the agent’s neural state 
and the behavioural effect on the agent. The account sketched here resembles other neo-
Peircean analyses of representation [6, 7] as well as more recent accounts of information [8, 
9]. The relationships between the present account and other neo-Peircean analyses are 
discussed in Section 4. Section 5 concludes the paper with some general reflections. 

 
2 A brief survey of accounts of semantic information 
 
An important principle underlying many probabilistic accounts of semantic information had been 
originally formulated by K. Popper. “[T]he amount of empirical information conveyed by a 
[set of sentences...] increases with its degree of falsifiability” [10]. This principle was later 
coined the Inverse Relationship Principle (IRP): the less likely a message is, the more 
informative (or rather informational) it is [11]. The first systematic theory of semantic 
information based on IRP was formulated by Y. Bar-Hillel and R. Carnap [12]. According to this 
theory, the thing that carries information or has informational content is sentences. 
The meaningfulness of information is relative to some logical probability space. 
Information is assigned to messages about events and the selected information measure 
depends on the logical probability of events or some properties of an object the message is 
about. Logical probability is defined in this context as a function of the set of possible 
worlds a sentence rules out. 

Some have argued that this theory (and any other IRP-based theory) leads to a paradoxical 
result [5, 13]. If all the consequences of known sentences are known, any logically true 
sentence (that is, a tautology) does not increase knowledge and, hence, does not contain 
information. A tautology excludes no possible worlds and its logical probability is 1. At the 
same time, a self-contradictory sentence excludes all possible worlds and its logical 
probability is 0. Counter intuitively it contains maximal information. I return to this so-
called paradox below, but for now, it should be noted that the Bar-Hillel/Carnap theory 
cannot serve as a basis for human cognition broadly. For it is defined in terms of sentences, 
and the domain of cognition is broader than language processing alone. 

A more recent theory of information was offered by F. Dretske [14]. His theory is premised 
on the idea that information can be used as part of a reductive analysis of knowledge and 
cognition. On his view, the information carried by a message is relative to the epistemic state of 
the agent receiving that message. He was motivated by the central observation in the 
Shannon/Weaver theory that the receipt of information should reduce the agent’s uncertainty. 
By applying the underlying communication model in the Shannon/Weaver theory to knowledge, 
the source of messages is the physical world and the receiver is a would-be knower. For Dretske, 
perceptual knowledge can (and should) be understood in terms of information. “K knows 
that s is F = K’s belief that s is F is caused (or causally sustained) by the information that s 
is F” [14]. The information that s is F affects K’s belief in such a way that the information 
suffices for the formation of the belief absent other contributing (or conflicting) factors. K 
must discern physical events in the world that carry the particular information, and those 
events have to cause (or causally sustain) K’s belief that s is F. Moreover, the informational 
content of a message is also conditional on what K already knows when receiving the 
message. Importantly, Dretske maintained that information must be truthful. “Information 
is what is capable of yielding knowledge, and since knowledge requires truth, information 
requires it also” [14]. Other supporters of the idea that information must be truthful include 
P. Grice [15], J. Barwise [11] and P. Allo [13]. 

Floridi has adopted some of Dretske’s main ideas (including the idea that information cannot 
be false), whilst rejecting IRP and insisting on a stronger constraint on semantic content. His two 
main motivations for adopting the Veridicality Thesis (i.e., that information must be truthful) 
are (a) to provide a link between information and knowledge, and (b) to avoid the Bar-
Hillel/Carnap paradox concerning the alleged informativeness of contradictions [5]. The first 
motivation is similar in spirit to Dretske’s in establishing a close link between knowledge 
and information. The second motivation – being that tautologies contain no information, 
whereas contradictions contain maximum information (an underlying principle of classical 



logic) – has led him to deny IRP and suggest a stronger constraint that is based on closeness 
to truth. According to Floridi, “the amount of informativeness of each [message] can 
be evaluated absolutely, as a function of (a) […] the alethic value possessed by [the 
message] and (b) the degree of discrepancy […] between [the message] and a given state of 
the world” [5]. (Note the difference from Dretske’s approach where information is 
conditional on the epistemic state of the receiver.) 

Yet, besides the veridicality constraint, he proposes to understand information as 
meaningful and structured data. Unlike the Bar-Hillel/Carnap theory, information carriers 
are understood as data rather than sentences only. What is a datum? In its simplest form, it 
is the lack of uniformity in the real world. Examples of a datum include a black dot on a 
white page, the presence of some noise, a light in the dark or a logical 0 as opposed to a 1. 
A datum is defined as two distinct uninterpreted variables in a domain that is left open to 
further interpretation [5]. Data are structured when they are “rightly put together, according 
to the rules (syntax) that govern the chosen system, code or language being used. Syntax 
here must be understood broadly, not just linguistically” [16]. That they are meaningful 
means that the data “must comply with the meanings (semantics) of the chosen system, 
code or language in question. […] The data constituting information can be meaningful 
independently of an informee [and need not be] necessarily linguistic” [16]. 

There are clearly other important theories of information that are worth exploring, but 
this exceeds the scope of this paper. For example, D. MacKay offered a quantitative theory 
of semantic information based on the receiver’s increase in knowledge. “[W]e have gained 
information when we know something now that we didn't know before; when ‘what we 
know’ has changed” [17]. Another example is B. Skyrms’ analysis of information – 
grounded in signalling games – where senders of signals observe states of the world and 
communicate with receivers that in turn choose an act in response to receiving signals [18]. 
For him, information is correlated with states of the world as well as with actions. 

 

3 Towards a theory of semantic information as meaningful structured 
representations of data 

 
Space only permits a few, brief remarks regarding the adequacy of the theories of 
information outlined in Section 2. (This is discussed elsewhere [19].) The Bar-Hillel/Carnap 
theory of information is defined in terms of sentences, and, thus, is unable to account for 
many non-linguistic informational aspects of cognition. Dretske and Floridi’s accounts of 
information aim specifically at explaining knowledge. Yet, that objective has led them to 
adopt the Veridicality thesis that restricts the applicability of information to other cognitive 
phenomena. Cognitive agents cannot always ascertain the veracity of the information they 
process and one of the most important methods of learning is by trial and error that clearly 
involves making mistakes (or false information). The processing of information in cognitive 
agents is insensitive to the veridicality of the information. Belief change models, for 
example, explain rationality is terms of justified doxastic commitments that are consistent. 
These models are underpinned by the principle that all information, even veridical 
information, is defeasible and subject to revision under the right conditions. Besides, on 
standard frameworks of belief change, false perceptual information can actually lead to 
truth approximation via belief revision and increase the agent’s overall knowledge base. 

To underscore the pragmatic value of information for the receiving agent consider a 
simple example. Suppose that the same message is sent twice by the same information 
source. The two messages clearly carry the same information-content. Nevertheless, only 
the message that is successfully received by the receiver first is informative. Of course, 
receiving the second message – with the very same information content – can still be useful, 
for example, in the presence of noise: the first message could have been distorted during 
transmission. Moreover, in some contexts, each of the messages, arguably, carries 
additional meta-information that is its temporal indexing: message one was sent (or rather 



received) at Tx and the second at Ty. This temporal indexing might also be pragmatically 
significant: it may tell the receiver that some state of the information source has remained 
unchanged. Nevertheless, all this is meta-information in addition to the information-content 
of each of the individual messages (e.g., if each message includes a timestamp as part of its 
content, the information-content of the two messages is different). 

Crucial to the new theory sketched herein is the triadic basis of information. Rather than 
taking information to be a dyadic relation that obtains between signs and objects (or states 
of affairs) in the world, information requires a third element: its receiver. On Floridi’s 
theory, for example, some information (i.e., environmental information) supposedly exists 
in the world independently of any receivers (e.g., concentric rings in the trunk of a tree that 
can be used to calculate the tree’s age qualify as information even in the absence of any 
perceiver) [5]. But as argued by Dretske, the informativeness of a message is relative to the 
epistemic state of the receiving agent. Smoke in the forest (usually reliably) signifies there 
being fire to receivers of information that interpret the signals (smoke particles or 
combustion aerosols) as a potential imminent danger nearby. This triadic relation can 
already be found in the works of C. S. Peirce: something is a sign (also “representamen”) 
only if it signifies an object with respect to an “interpretant” (i.e., a mediating 
representation in the mind of some agent) [20]. Whilst there is a causal correlation between 
smoke and fire based on natural regularities, the receiver of the signals (smoke particles) 
plays a key role in the formation of the information (there being fire in the forest). The 
receiver may know that smoke machines are used in the forest (for some bizarre reason) 
and, consequently, may not interpret the signals received as there being fire in the forest. 

The theory proposed here uses Floridi’s data-oriented definition of information with 
some important modifications. Objects, events or states of affairs in the world are sources of 
physical signals or data with which they are causally correlated. Physical data as 
discontinuities in the world exist “out there” unstructured. Their structuring is an ongoing 
dynamic interaction between the receiving agent and her environment. But data need not 
always originate externally to the receiver. An organism, for example, can receive pain 
signals from one of its limbs. Further, the structure of the data in the wild is determined by 
an agent-environment function. If either of these two contributing factors is missing, there 
is no information just data. In that sense, the physical data “out there” constrain the 
information that can be formed by the receiver on their basis. Unless the agent is 
hallucinating in a void or dreaming, her perceptions are formed on the basis of stimuli 
(understood as data) from the world to which she is sensitive. Our cognitive apparatus only 
allows us to discriminate some, but not all, physical discontinuities and nomic regularities 
in the world. (Whilst elephants, for example, are sensitive to infrasound, humans are not 
readily sensitive to infrasound signals.) Only those data to which we are cognitively 
sensitive can give rise to the formation of information. Any perceived physical data “out 
there” are encoded, or represented, as some form of neural patterns (e.g., as action 
potentials or activation patterns). The precise form of representation is a further empirical 
question. 

The meaningfulness of the perceptually structured data is determined by their 
behavioural effect (either positive or negative) on the receiver. Such behavioural effect is 
broadly construed to encompass more than just observable behaviour. It amounts to, 
roughly, the change produced in the receiver’s action(s), belief(s) or goal(s) resulting from 
the data perceived (e.g., leaving the forest immediately when smelling or seeing smoke on a 
very hot day). In that sense, the state of the world – as signified by the perceived data – and 
the receiver are connected. This change implies, as argued in [21], that there exists a 
requisite flexibility of behaviour in the receiver, such that the perceived data can yield some 
change in the receiver. It makes little or no sense to describe a rigid system S as being 
informed by something if S cannot somehow behave differently upon receiving these data. 
Further, any consequence of the perceived data is the result of how the receiver interprets 
the data and behaves in the world accordingly [22]. However, for the perceived data to 



be meaningful there need not be any necessary dependence on a kind of coordination 
system amongst senders and receivers. Data need not be communicated amongst agents in 
order to be meaningful, and can flow directly from the world to the receiver [21]. Indeed, 
the world does not communicate with agents. It is rather the sensitivity of the receiver to 
particular regularities or physical discontinuities in the world that “flow” to the receiver. 

Moreover, the effect concerned need not be necessarily positive (e.g., the receiver being 
informed about a nearby reservoir of water); it can often be negative (e.g., drawing a false 
conclusion regarding the distance of the reservoir). The distinction between negative and 
positive effects is what determines the relevance of information, as argued by D. Wilson 
and D. Sperber [23], not whether the meaningful structured data qualify as information. On 
their view, information is relevant to the agent when it (1) relates to her background 
information to derive conclusions that matter for her beliefs or actions, and (2) requires less 
processing effort by the agent. Others define the relevance of information relative to goals. 
A piece of information is relevant (for a goal) iff “it is a candidate for a belief that supports 
the processing of that goal” [24]. But either way, the relevance of information can only be 
determined once we have established what qualifies as information. The meaningfulness of 
the perceptual data is a prerequisite for the information being relevant. Understood this way, 
there is clearly room for mistakes (as a negative effect) in the agent forming information. An 
agent may mistake smoke particles for indicators of fire nearby, where, as a matter of fact, 
that smoke may be produced by smoke machines. Her escape from the forest would be 
rationally justified absent other overriding factors, despite there being no fire or imminent 
danger. 

The theory proposed herein postulates that there is an important distinction to be made 
between information-that and information-how on the basis of the role information plays in 
cognitive processing. Information-how (e.g., ‘In case of fire, break the glass and press the 
button’) is prescriptive and informs an agent about which action has to be performed to 
achieve a particular result. As such, for cognitive agents it expresses an expectation for 
some goal-directed action on the part of the receiver in a given context. Information-that 
(e.g., ‘Not all birds can fly’) is descriptive and is about events, objects and states of affairs 
in the world. Cognitive agents use information-that to represent and form beliefs about, 
rather than merely externally react to, their environment. Both types of information play an 
important role in the way cognitive agents negotiate with their environment in terms of 
acting and believing. Neither information-how nor information-that need be restricted to 
sentences. 

Lastly, why is this particular view of information considered apt to capture the kind of 
information processing often invoked in cognitive science? First, understanding information 
as being carried by data allows a broader applicability of the theory beyond linguistic 
aspects of cognition alone. To understand cognitive agency, what we want is a theory that 
focuses on physical information, and in that regard data-centred theories fare better. 
Sentences convey information, but so do sunlight and smoke, for example. Yet, unlike the 
Floridian data-centred theory of information, the present theory does not insist on the 
Veridicality thesis. Cognitive agents all too often make mistakes in interpreting perceptual 
data. Such mistakes should also be accounted for in explaining cognition. Second, 
information in cognitive science provides a naturalistic foundation for the explanation of 
cognition and behaviour. Humans and other organisms survive and reproduce by tuning 
themselves to reliable but imperfect cues that represent correlations between internal 
variables and environmental stimuli as well as between environmental stimuli and 
opportunities and threats [25]. The meaningfulness of perceived data described above is 
determined precisely by such “reliable but imperfect cues” the agent is sensitive to.  

Third, the theory is neither too narrow nor too broad for our purposes. It is not too 
narrow in either imposing strict conditions that only few cognitive processes satisfy (e.g., 
the veridicality of the data for knowledge) or being limited to a subset of cognitive 
phenomena (e.g., language processing). It is compatible with the contemporary cognitive 



scientific view that “the brain reveals itself proactive in its interface with external reality” 
being an interpreter rather than a mirror of that reality [26]. “[R]esearch […] has shown 
how signals coding predictions about […] simple features of relevant events can influence 
several stages of neural processing” [26]. The proposed theory is equally compatible, for 
example, with a recent, and contentious, view of the brain as an hypothesis-testing 
mechanism that attempts to minimise the error of its predictions about perceptual data from 
the world [27]. Both “bottom-up” signals (perceptual input data) and “top-down” signals 
embodying predictions about the probable causes of the perceptual input data can qualify as 
information according to our theory. At the same time, the theory is not too broad so as to 
make information vacuous. Information can come at degrees. Some data do not give rise to 
information, since the receiver is not sensitive to them. Other data are simply not 
meaningful to their receiver. And although both a tautology and a contradiction, for 
example, can be informational, they are less or more useful and/or relevant in a given 
context. 

 
4 A comparison with other neo-Peircean theories 
 
In this section, the relationships between the proposed theory and other neo-Peircean 
analyses of representation and information are discussed. To begin with, consider B. von 
Eckardt’s analysis of non-mental representation. In [6] she adapts Peirce’s triadic relation 
that obtains amongst the represented object, the representing vehicle (representamen) and 
the mental effect in the mind of the interpreter of the sign (interpretant).

 
The represented 

object could be a physical object, a relation, a state of affairs or a property. The representing 
vehicle – what she calls the representation bearer – such as a map, a photo or a spoken 
word, can be individuated in terms of its nonrepresentational (or material) properties. Both 
the represented object and the representation bearer are, at least in principle, objectively 
verifiable. von Eckardt claims that in order for R to be an actual – rather than merely a 
possible – representation there must currently exist an actual interpreter bearing the right 
relation to R. The resemblance to the proposed theory of information should be clear. 
Information is understood pragmatically and in a manner that requires an actual consumer 
of physical data (that can be upgraded to information under the right conditions). On the 
other hand, data need not be communicated by senders. Physical data “out there” can at best 
be classified as potential information in the absence of consumers. 

G. O’Brien and J. Opie build on von Eckardt analysis of non-mental representation and 
add that the vehicles of mental representation should be understood as some kind of neural 
states [7]. Given their commitment to a naturalistic account of cognition, they seek to 
explain the act of interpretation in naturalistic terms in order to avoid a vicious circle. They 
claim that the only viable alternative is treating interpretation in terms of some modification 
of the cognitive agent’s behavioural dispositions towards the represented object. Here, too, 
the similarity is clear. The proposed theory of information suggests that the meaningfulness 
of perceived data (and, therefore, their being informational) is determined by their 
behavioural effect on the agent. It is suggested that on receiving new information some effect 
in the agent triggers an action or a response (e.g., forming/changing a belief-state). 

On E. Jablonka’s functional-evolutionary analysis of semantic information, the 
distinction suggested above between information-that and information-how becomes very 
blurry. That is the case, for example, when ‘functional’ means that signals received by 
either a human- or natural-selection designed system play a causal role that “usually 
contributes to the goal-oriented behavior of this system” [9]. An apple pie recipe and a 
piece of software are instances of functional-evolutionary information for a cook and a 
computer, respectively, in a manner akin to the appearance of black cloudy sky leading to 
the shelter-seeking action of an observing ape. Nevertheless, insofar as we seek to 
understand the role information processing plays in cognitive tasks in the lifetime of an 
agent, rather than over evolutionary time, the information-how/information-that distinction 



seems worth preserving. 
Lastly, on J. Queiroz, et al. neo-Peircean theory, information has the nature of a process 

of communicating a “form” to the interpretant [8]. That process constrains the possible 
patterns of behaviour of the interpreter. Information is taken typically as an interpreter-
dependent “objective” process. Accordingly, it cannot be dissociated from a situated agent. 
On their view, it is only as a result of the interpretation process that information triadically 
connects the sign, object(s), and an effect on the interpreter. A sign (somehow) effectively 
communicates a form from the (represented) object to the interpretant, whilst changing the 
state of the interpreter. This account raises some interesting questions, which are not tackled 
here, about the objectivity of this process when it is dependent on a particular agent and 
about the communication of the form of an object to the interpreter (the world does not talk 
to us…). Nevertheless, it can be seen again that information is not simply “out there” in the 
world independently of a perceiver. Information is a dynamic construct that results from an 
ongoing interaction between the agent and its environment. 
 

5 Concluding remarks 
 
This short paper contributes to a long-standing and much-debated question of what concept 
of ‘information’ is suitable for understanding human cognition in terms of information 
processing. It is often argued, in cognitive science, that cognition is an information 
processing system. The literature contains many diverse theories of information (of which I 
have surveyed but a few here) pulling in different directions, thereby leading to disparate 
definitions of ‘information’. Information, so I have suggested whilst adapting a neo-Peircean 
approach, should be understood pragmatically. Whatever the criteria for information are, 
what makes x a piece of information has to do with the way the agent either processes or can 
process x in actively engaging with her environment. Of course, it does not follow that a 
unified theory of information is either forthcoming or even possible. In different contexts, 
such as game theory or economics, information may be defined differently. The theory 
proposed herein is motivated by doing justice to the cognitive sciences. However, much 
more work is required to fully develop it. 
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Abstract. Uncertainty is widely spread in real-world data. Uncertain
data -in computer science- is typically found in the area of sensor net-
works where the sensors sense the environment with certain error. Mining
and visualizing uncertain data is one of the new challenges that face un-
certain databases. This paper presents a new intelligent hybrid algorithm
that applies fuzzy set theory into the context of the Self-Organizing Map
to mine and visualize uncertain objects. The algorithm is tested in some
benchmark problems and the uncertain traffics in Named Data Network-
ing (NDN). Experimental results indicate that the proposed algorithm
is precise and effective in terms of the applied performance criteria.

1 Introduction

Uncertainty is a frequent issue in data analysis. The various factors that lead to
data uncertainty include: approximate measurement, data sampling fault, trans-
mission error or latency, data integration with noise, data acquisition by device
error, and so on [1] [2]. These factors produce vague and imprecise data. Visual-
izing uncertain data is one of the new challenges in the uncertain databases [3].
Among the many visualization techniques, the Self-Organizing Map (SOM) [4]
is widely and successfully applied due to its good result. SOM is a very popular
unsupervised learning algorithm based on the classical set theory. An important
application of SOM is discovering the topological relationship among multidi-
mensional input vectors and mapping them to a low dimensional output which
is easy for further analysis by experts [5] [6]. The process of SOM training re-
quires a certain and an unambiguous input data either belongs or not belong to a
weight vector (cluster), where the membership evaluation is boolean. In contrast,
uncertain and vague input vectors are not either entirely belong or not belong
to a weight vector. A data may be considered vague and imprecise where some
things are not either entirely true nor entirely false and where the some things
are somehow ambiguous. For instance, fuzzy location in the right side of Fig. 1 is
a way to represent the item of vague information: the object is approximately at
position (4, 3), in which the grey levels indicate membership values with white
representing 0 and black representing 1. In contrast, the left side of Fig. 1 shows



the exact position of a certain data where the membership evaluation of cen-
ters (weights) is boolean. There has been a lot of research in the application
of Fuzzy sets theory to model vague and uncertain information [7]. The Fuzzy
set (FS) theory introduced by Zadeh [8] is a more flexible approach than clas-
sical set theory, where objects belong to sets (clusters) with certain degree of
membership ranging [0..1]. This makes FS theory suitable for representing and
visualizing uncertain data [9]. Therefore, a combination of SOM and FS is able
to illustrate dependencies in the uncertain data sets in a very intuitive manner.
SOM is indeed originally intended as a classification method, not a visualization
method so there are a few additions to apply SOM for visualization. Li et al. [3]
proposed a mining and visualizing algorithm for uncertain data, called USOM
which combines fuzzy distance function and SOM. In this paper, we employ the
FS theory in the context of SOM algorithm to mine and visualize the uncer-
tain objects in the uncertain databases. Experimental results over four classic
benchmark problems and a new network architecture as Named Data Network-
ing (NDN) show that the proposed method outperforms standalone SOM and
USOM [3] in terms of the applied performance metrics. The remainder of the
paper is organized as follows: Section 2 presents self-organizing map. Section 3
presents our contribution. Section 4 evaluates the new approach experimentally.
Section 5 is the conclusion and future work.

2 Self-Organizing Map (SOM)

SOM (also known as Kohonen SOM) is a very popular algorithm based on com-
petitive and unsupervised learning [4]. The SOM projects and represents higher
dimensional data in a lower dimension, typically 2-D, while preserving the re-
lationships among the input data. The main process of SOM is generally intro-
duced in three main phases: competition, cooperation and adaptation which are
described in detail in [4].

Fig. 1: An example of exact (non-fuzzy) and approximate (fuzzy) distances in a 2-D
space for a certain and vague data.



3 The Proposed Method

The procedure of the proposed method, application of fuzzy set theory in the
context of SOM for mining and visualizing uncertainties is as follows. A diagram
of the proposed method is shown in Fig. 2.

1. Fuzzy competition: in hard competition, the input vector is divided into dis-
tinct weights (clusters), where each input element belongs to exactly one
weight. In fuzzy competition, input vector can belong to more than one
weight, and associated with each element by a set of membership levels.
Fuzzy c-means (FCM) [10] method allows one piece of input data to belong
to two or more clusters (weights). The standard function is:

Ux =
1∑

j(
d(weightk,x)
d(weightj ,x) )

2
m−1

(1)

Where, Ux is the membership value of each input vector x to all weights,
j = 1, 2, ..., w, and m is the level of cluster fuzziness which is commonly set
to 2. By the fuzzy competition all the neurons are wining neurons with the
membership degree ranging [0..1].

2. Fuzzy cooperation: in fuzzy cooperation, all wining neurons cooperate with
their neighboring neurons in terms of the membership degree by Eq. 2. For
the size of the neighborhood, we employed the Gaussian function that shrinks
on each iteration until eventually the neighborhood is just the BMU itself.

h(j, i) = Uxi × exp(
−dj,i

2

2σ2
) i, j = 1, 2, .., n; i �= j (2)

Where, i is the number of the wining neurons including all the neurons with
different membership degrees, j is the number of the cooperating neighbor
neurons. Uxi is the membership value of input vector x from ith wining
neuron. h(j, i) is the topological area centered around the wining neuron
i and the cooperating neuron j. The size σ of the neighborhood needs to
decrease with time. A popular time dependence is an exponential decay by:

σ(t) = σ0exp(
−t

λ
) (3)

Where, σ(t) is the width of the lattice at time t, σ0 is the width of the lattice
at time t0, and λ is the time constant.

3. Fuzzy adaption: the adaption phase is the weight update by:

wj = wj + Uj × (ηh(j, i)× (x − wj)) i, j = 1, 2, .., n; i �= j (4)

Where, Uj is the membership value of input x from neuron j.

These three phases are repeated, until the maximum number of iterations is
reached or the changes become smaller than a predefined threshold.



Fig. 2: The proposed method for mining and visualizing uncertainties.

4 Experimental Results

The proposed method, USOM and SOM were implemented by the MATLAB on
an Intel Pentium 2.13 GHz CPU, 4 GB RAM running Windows 7 Ultimate.

4.1 Uncertain data modeling

To assess the accuracy and performance of the proposed method, four classic
benchmark problems from the UCI machine learning repository [11] are applied.
The selected data sets are Iris (4-D), Glass (9-D), Wine (13-D), and Zoo (17-D).
In practice, uncertainties are usually modeled in the form of Gaussian distribu-
tions [2]. For some attributes in data sets, we add a Gaussian noise with a zero
mean and the standard deviation with the normal distribution [0, f ], where, f is
an integer parameter from the set of {1, 2, 3} to define different uncertain levels.

4.2 Assessing the quality of visualizations

To assess the quality of the proposed method, several measures have been ap-
plied, including Quantization Error (QE), Topographic Error (TE), Trustwor-
thiness of a Visualization, and Continuity of the Neighborhoods [12].

4.3 Visualization results

The experiments on each method were repeated 10 times independently. We
evaluate the several SOM network structures on applied uncertain data sets
which the optimal ones are Iris with 16x16 nodes, Glass with 16x16 nodes, Wine
with 17x17 nodes, and Zoo with 15x15 nodes.

Table 1 shows that our proposed method outperforms SOM and USOMmeth-
ods in terms of the Quantization Error (QE) and Topographic Error (TE). The
proposed method seems to be more time consuming (with Exec.) than the other



Table 1: Performance improvements achieved by the proposed scheme

Data SOM USOM Proposed Method

Time Time Time
QE TE Exe. Inc. QE TE Exe. Inc. QE TE Exe. Inc.

Iris (16x16) 0.024 0.0404 9.6 5.45 0.023 0.034 11.34 4.16 0.02 0.0267 16.43 2.17

Glass (16x16) 0.066 0.0312 21.17 15.45 0.042 0.02 23.11 14.23 0.028 0.0174 26.82 10.1

Wine (17x17) 0.072 0.0381 18.87 12.05 0.06 0.022 19.12 10.16 0.049 0.0102 22.07 7.74

Zoo (15x15) 0.067 0.0215 15.54 11.23 0.046 0.016 18.51 10.36 0.039 0.0103 21.34 8.52

Table 2: The quality measurement by Trustworthiness

Data SOM USOM Proposed Method

K=1 K=10 K=20 K=1 K=10 K=20 K=1 K=10 K=20

Iris (16x16) 0.937 0.94 0.93 0.95 0.962 0.968 0.962 0.968 0.974

Glass (16x16) 0.913 0.903 0.898 0.914 0.921 0.933 0.915 0.93 0.939

Wine (17x17) 0.917 0.921 0.904 0.924 0.941 0.953 0.925 0.951 0.962

Zoo (15x15) 0.957 0.96 0.96 0.962 0.963 0.968 0.963 0.97 0.978

Table 3: The quality measurement by Continuity

Data SOM USOM Proposed Method

K=1 K=10 K=20 K=1 K=10 K=20 K=1 K=10 K=20

Iris (16x16) 0.945 0.901 0.892 0.961 0.964 0.966 0.97 0.974 0.982

Glass (16x16) 0.911 0.898 0.873 0.914 0.916 0.92 0.92 0.931 0.937

Wine (17x17) 0.921 0.892 0.883 0.93 0.931 0.935 0.935 0.939 0.941

Zoo (15x15) 0.86 0.841 0.812 0.89 0.898 0.902 0.91 0.918 0.927

methods due to the application of fuzzy set theories in the context of the SOM,
in which all the neurons are winner with different membership grading. However,
the proposed method can find a better solution with less times of increment on
computational time (with Inc.) than the other methods due to its fast conver-
gence speed. The trustworthiness and continuity values for K={1, 10, 20} are
shown in Tables 2 and 3, respectively. The trustworthiness and continuity mea-
sures show that the proposed method obtains the better results as compared to
SOM and USOM. The results show that the proposed method with the appli-
cation of fuzzy set theory in the context of the SOM yields high accuracy as
compared to other methods without very much computational cost. Since our
proposed method performs well as compared to SOM and USOM, we visualize
uncertainties in the applied uncertain data sets. To facilitate the interpretation
of results, we use the U-Matrix (unified distance matrix) where visualize the
high-dimensional uncertain data into a 2-D space in Fig. 3. In this figure, the
blue hexagons represent the neurons (weights). The darker colors in the regions
between neurons represent larger distance, while the lighter colors represent
smaller distances. Fig. 3(a) shows that the constructed 4-D uncertain Iris SOM
network has been clearly clustered into three distinct groups. The Glass SOM



(a) (b) (c) (d)

Fig. 3: U-Matrix of the applied benchmark problems: 3(a) Iris 16x16 SOM, 3(b) Glass
16x16 SOM, 3(c) Wine 17x17 SOM, and 3(d) Zoo 15x15 SOM.

Table 4: NDN traffic generation

Type of traffic Frequency Pattern
Normal
(526 records)

[100..500] Exponential

Attack
(211 records)

Cache pollution [200..800] Locality-disruption attacks uniformly

DoS attacks [400..1500]
Interest flooding attacks for non-existent and
existent content uniformly and exponentially

network (Fig. 3(b)) has been apparently classified 9-D uncertain data objects
into six distinct types of glass. Figs. 3(c) and 3(d) show the three and the seven
distinct groups of 13-D and 17-D uncertain data from Wine and Zoo data sets,
respectively. The results confirm that the proposed method performs well in
mining and visualizing uncertain data into somewhat expected distinct groups.

Fig. 4: U-Matrix of the NDN traffic. 1: normal, 2: DoS attack, 3: cache pollution attack.

4.4 Visualizing uncertain traffics in Named Data Networking

After evaluating the robustness and the accuracy of our proposed method with
some benchmark problems, we apply the proposed method for visualizing uncer-



tain traffics in Named Data Networking (NDN). NDN [13] is a promising network
architecture being considered as a possible replacement to overcome the funda-
mental limitations of the current IP-based Internet. Traffic uncertainty refers
to traffic volumes belong to more than one pattern, and associated with each
pattern by a set of membership levels. Fuzzy approach can reduce the false pos-
itive rate with higher reliability in identifying the pattern of traffic volumes, due
to any uncertain attack data may be similar to some normal patterns [14]. We
conduct the same testbed configuration from papers [14] [15]. The employed fea-
tures for traffic generation come from paper [14] as well as the ratio of (1) cache
hit, (2) dropped Interest packet, (3) dropped data packets, (4) satisfied Inter-
est packet, and (5) timed-out Interest packets in each 1 sec time interval. The
structure of the traffic generated is shown in Table 4. We modeled uncertainties

Table 5: Comparing results of visualizing NDN traffic samples

Criteria Methods
SOM USOM Proposed Method

Quantization Error 0.042 0.029 0.0125

Topographic Error 0.074 0.053 0.031

Trustworthiness
K=1 0.91 0.95 0.968
K=15 0.905 0.943 0.954
K=30 0.877 0.925 0.942

Continuity
K=1 0.914 0.922 0.954
K=15 0.893 0.931 0.941
K=30 0.867 0.917 0.936

for some attributes in NDN traffic samples in the form of Gaussian distributions
similar to Section 4.1. Fig. 4 maps the 11-D uncertain traffic samples to the 2-D
space through our proposed method. This figure shows that the our proposed
method performs somewhat well in mining and visualizing uncertainties into
predefined distinct groups. Fig. 4 illustrates that there are some small groups of
clustered data points with the lighter regions. These small clusters may contain
some normal or attack data that try to be incorrectly placed in the neighboring
regions, due to their uncertain nature. The results in Table 5 show that our
proposed method offers the best performance and outperforms sufficiently other
preexisting methods.

5 Conclusion

In this paper, we propose a new hybrid algorithm for mining and visualizing
uncertain data. We investigate the implementation of fuzzy set theory in the
design of SOM neural network in order to improve the accuracy of visualizing
uncertain data bases. The experimental results over the uncertain benchmarking
data sets and the uncertain traffics in Named Data Networking show that the



proposed method is effective and precise in terms of the applied performance
criteria. We plan to improve the proposed method for various uncertain models
and big uncertain network traffic data in the future.
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Implementation of Evolutionary Algorithms for
Deep Architectures

Sreenivas Sremath Tirumala

Abstract. Deep learning is becoming an increasingly interesting and
powerful machine learning method with successful applications in many
domains, such as natural language processing, image recognition, and
hand-written character recognition. Despite of its eminent success, lim-
itations of traditional learning approach may still prevent deep learning
from achieving a wide range of realistic learning tasks. Due to the flexi-
bility and proven effectiveness of evolutionary learning techniques, they
may therefore play a crucial role towards unleashing the full potential of
deep learning in practice. Unfortunately, many researchers with a strong
background on evolutionary computation are not fully aware of the state-
of-the-art research on deep learning. To close this knowledge gap and to
promote the research on evolutionary inspired deep learning techniques,
this paper presents a comprehensive review of the latest deep architec-
tures and surveys important evolutionary algorithms that can potentially
be explored for training these deep architectures.

Index terms — Deep Architectures, Deep Learning, Evolutionary Algorithms

1 Introduction

Deep Learning is a topic of high interest with its extensive application in nat-
ural language processing, image recognition [1] [2] and computer vision. Cor-
porate giants like Google, Microsoft, Apple, Facebook, Yahoo etc. established
their deep learning research groups for implementing this concept in their prod-
ucts. Applications based on deep learning have won numerous machine learning
competitions in ICML and NIPS with considerable margins which were earlier
dominated by other machine learning approaches like Support Vector Machines.
In 2013 it has topped in Chinese Handwriting Recognition Competition, Galaxy
Zoo Competition, MICCAI 2013 Challenge, Merck Drug Discovery Competition,
Dogs versus Cats Competition etc. Deep Learning is rated as the most interesting
topic of research interests by Massachusetts Institute of Technology (MIT).

The importance of studying deep architectures is motivated from the deep
architecture found in human brain. It is a common practice to reduce a high
level problem into a set of low level problems in a hierarchical manner with
easiest problem at the bottom. Interestingly, deep architectures based systems
can achieve the learning that a shallow architecture can, but the vice versa is
not feasible [3]. A Deep Neural Network (DNN) is an Artificial Neural Network



(ANN) with multiple hidden layers. One of major problems of DNNs is overfit-
ting which was unaddressed till 2014 [4]. Further, due to the extensive use of
gradient descent based learning techniques, DNNs may easily be trapped into
local optima, resulting in undesirable learning performance. Moreover, the initial
topology of DNN is often determined through a seemingly arbitrary trial and
error process. However, the fixed topology thus created may seriously affect the
learning flexibility and practical applicability of DNNs. Deep learning has been
applied on other machine learning paradigms like Support Vector Machines and
Reinforcement Learning.

In this paper, we argue that Evolutionary Computation (EC) techniques can,
to a large extent, present satisfactory and effective solutions to above mentioned
problems. In fact, several Neuroevolutoinary systems have been successfully de-
veloped to solve various challenging learning tasks with remarkably better per-
formance than traditional learning techniques. Unfortunately, many researchers
with a strong background in evolutionary computation are still not fully aware
of the state-of-the-art research on deep learning. To meet this knowledge gap
and to promote the research on evolutionary inspired deep learning techniques,
this paper presents a review of latest deep architectures and surveys important
evolutionary algorithms that can potentially be explored for training these deep
architectures. This paper is divided into 5 sections. Section 1 details the his-
tory of deep architectures. Section 2 provides a detailed study on various deep
architectures. Recent implementations of evolutionary algorithms on deep archi-
tectures are explored in section 3. Section 4 summarizes the paper with outcomes
and conclusion.

2 Deep Architectures

Deep architecture is a hierarchical structure of multiple layers with each layer
being self-trained to learn from the output of its preceding layer. This learning
process i.e., ’deep learning’ is based on distributed representation learning with
multiple levels of representation for various layers. In simple terms, each layer
learns a new feature from its preceding layer which makes the learning process
concrete. Thus, the learning process is hierarchical with low level feature at the
bottom and very high level feature at the top with intermediate features in the
middle that can also be utilized. From these features, greedy-layer-wise training
mechanism enables to extract only those features that are useful for learning.
Along with this, a pre-unsupervised training with unlabelled data makes deep
learning more effective.

Shallow architectures have only two levels of computation and learning el-
ements which makes them inefficient to handle training data [5]. Deep archi-
tectures require fewer computational units that allow non-local generalization
which result in increased comprehensibility and efficiency that has been proved
with its success in Natural Language Processing (NLP) and image processing.
According to complexity theory of circuits, deep architectures can be exponen-
tially more efficient than traditional narrow architectures in terms of functional



representation for problem solving [5]. Traditional Artificial Neural Networks
(ANNs) are considered to be most suitable for implementing deep architectures.

In 1980 Fukushima proposed Neocognition using Convolutional Neural Net-
works (ConvNets) [6] which served as a successful model for later works on deep
architectures which later been improved by Lecun [7]. The theoretical concepts
of deep architecture were proposed in 1998 by Lecun [8]. The Breakthrough in
the research of training deep architectures was achieved in 2006 when Lecun,
G.E. Hinton and Yoshua Bengio proposed 3 different types of deep architectures
with efficient training mechanism. Lecun implemented efficient training mecha-
nism for ConvNets [9] in which he was not successful earlier. Hinton implemented
Deep Belief Networks (DBNs) [10] and Yoshua Bengio proposed Stacked Auto-
encoders [11].

A simple form of deep architecture implementation is DNNs, feed-forward
ANNs with more than one hidden layer units that make them more efficient than
a normal ANNs [12]. DNNs are trained with BP by discriminative probabilistic
models that calculate the difference between target outputs and actual outputs.
The weights in the DNNs are updated using stochastic gradient descent defined
as Δwij(t + 1) = Δwij(t) + η ∂C

∂wij
, where η represents the learning rate, C

is the associated cost function and wij represents weight. For larger training
sets, DNNs may be trained in multiple batches of small sizes without losing the
efficiency [13]. However it is very complex to train DNNs with many layers and
many hidden units since the number of parameters to be optimized are very
high.

2.1 Convolutional Neural Networks (ConvNets)

Fig. 1. ConvNets Structure proposed by
Lecun [9]

ConvNets are a special type of feed-
forward ANNs that performs feature
extraction by applying convolution
and sub sampling. The principle ap-
plication of ConvNets is feature iden-
tification. ConvNets are biologically
inspired MLPs based on virtual cortex
principle [14] and the earliest imple-
mentation is by Fukushima in 1980 [6]
for pattern recognition followed by Le-
cun in 1998 [8]. ConvNets diversify by
applying local connections, sub sampling and sharing the weights which is sim-
ilar to the principle approach of ANNs in early 60s. In ConvNets each unit in
the layer receives input from set of units in small groups from its neighbouring
layer which is similar to earlier MLP model. Using local connections for feature
extraction has been proven successful, especially for extracting edges, end points
and corners. These features extracted at the initial layer will be combined subse-
quently at the later layers to achieve higher or better features. The features that
are detected at the initial stages may also be used at the subsequent stages. The
training procedure of the ConvNets is shown in Fig. 1. The first layer takes a raw



pixel with 32 x 32 from the input image. The second layer consists of 6 kernels
with 5 x 5 local window. From this, a sub sampling is done in the 3rd layer
(sub sampling) layer. For the 4th layer, another ConvNets with 16 kernels was
exploited with the same 5 x 5 windows. Then the 5th layer is also constructed
using sub sampling. This procedure continues till the last layer and the entire
structure is developed as Gaussian connections.

2.2 Deep Belief Networks

Deep Belief Network (DBN) is a type of DNN proposed by Hinton in 2006 [15].
DBN is based on MLP model with greedy layer-wise training. DBN consists of
multiple interconnected hidden layers with each layer acting as an input to the
next layer and is visible only to the next layer. Each layer in a DBN has no
lateral connection between its nodes present in that layer. The nodes of DBN
are probabilistic logic nodes thus allowing the possibility of using activation
function. Restricted Boltzmann machine (RBM) is stochastic ANN with input
and hidden units with each and every connection connecting a hidden and visible
unit. RBMs act as the building blocks of DBNs because of their capability of
learning probabilistic distributions on their inputs. Initially the first layer of the
DBNs is trained as RBM that transforms input into output. The output thus
received is used as data for the second layer which is treated as a RBM for
the next level of training and the process continues. Similarly the output of the
second layer will be the input for the third layer and the process continues as
shown in Fig. 2 .The transformation of data is done using activation function
or sampling. In this way the subsequent hidden layer becomes a visible layer for
current hidden layer so as to train it as a RBM. An RBM with two layers, a
visible layer as layer 1 and a hidden layer as layer 2 is the simplest form of DBN.
The units of the visible layer are used to represent data and the units (hidden
with no connection between them) will learn to represent features. If a hidden
layer 3 is added to this, then layer 2 will be visible to only layer 3 (still hidden
to layer 1) and now the RBM will transform the data from layer 2 to layer 3.
This process is illustrated in Fig. 2.

Fig. 2. Structure of Deep Belief Networks [15]

In 2006, Hinton proposed a
greedy layer-wise unsupervised
pre-learning algorithm for train-
ing that addresses the problem
of training multilayer ANNs [10].
In DBNs, the lower level fea-
tures of the input are extracted as
lower layers and an abstract rep-
resentation (high level features)
of the input is performed at the
higher layers. The training pro-
cedure of DBNs is carried out in

three phrases. Each layer of the DBN is pre-trained with greedy layer wise train-
ing followed by unsupervised learning for each layer and finally training the



entire network with supervised training. The significance of this training proce-
dure is determined by the generative weights. After learning, the values of the
latent variables in every layer can be inferred by a single, bottom-up pass that
starts with observed data vector in the bottom layer using generative weights
in the reverse direction. DBNs proved to be the most efficient in image recog-
nition [10], Face Recognition [16], Character Recognition [11] and various other
applications.

2.3 Stacked Auto-encoders

The idea of auto-encoders is evolved from the process of reducing dimensionality
of data by identifying efficient method to transform complex high dimensional
data into lower dimensional code using an encoding multilayer ANN. A decoder
network will be used to recover the data from the code. Initially both encoder
and decoder networks are assigned with random weights and trained by observ-
ing the discrepancy between original data and output obtained from encoding
and decoding. After this the error is back propagated first through the decoder
network followed by encoder network and this entire system is named as auto-
encoders [15].

An auto-encoder with input x ∈ Rd is ”encoded” as h ∈ Rd1 using deter-
ministic function defined as fθ = σ(Wx + b), θ = W, b. To ”decode”, a reverse
mapping of f : y = fθ1(h) = σW 1h + b1 with θ = (W 1, b1) and W 1 = W T

with encoding and decoding with the same inputs. This process continues for
every training patten. For i training xi is mapped to hi with a reconstruction
yi. Parameter optimization is achieved by minimizing the cost function over the
training set. However, optimizing an auto-encoder network with multiple hidden
layers is difficult. Being similar to DBN greedy layer wise training procedure,
this approach replaces RBMs by auto-encoders that perform learning by repro-
ducing every data vector from its own feature activation [5]. The considerable
change that has been applied in this model by Yoshua Bengio is changing the un
supervised training procedure to supervised in order to identify the significance
of training paradigm.

The process of greedy layer wise training is as follows. In the entire ANN,
three layers are considered at one instance with the middle layer being the hidden
layer. In the next instance, the middle layer becomes input layer and the output
layer of the previous instance become hidden layer (the parameters from the
output becomes the training parameters) and the layer next to it will be the
new output layer. This process continues for the entire network. However, the
results were not efficient since the network becomes too greedy [5]. It can be
concluded that, the performance of stacked auto-encoders with unsupervised
training was almost similar to that of RBNs with similar type of training whereas
stacked auto-encoders with supervised pre-training is less efficient. Stacked auto-
encoders were not successful in ignoring random noise in its training data due to
which its performance is slightly less (almost equal performance but not same)
than RBM based deep architectures. However, this gap is narrowed by stacked
de-noising auto-encoder algorithm proposed in 2010 [17].



3 Applying Evolutionary Algorithms on Deep
Architectures

3.1 Generative Neuroevolution for Deep Learning

In 2013 Phillip Verbancsics and Josh Harguess proposed Generative Neuroevo-
lution for Deep Learning by implementing HyperNEAT as a feature learner
on a ANN similar to ConvNets [18]. Compositional pattern producing network
(CPPN) is an indirect encoding procedure of HyperNEAT that encodes weight
patterns of ANN using composite functions. The topology and weights required
for CPNN is evolved by HyperNEAT. In HyperNEAT process, CPPN defines an
ANN as a solution for required problem. CPNNs fitness score is determined by
evaluating the ANNs performance for the task for which it is evolved. Diverg-
ing from traditional methods, this approach trains ANN to learn features by
transforming input into features. Then these features are evaluated by Machine
Learning (ML) approach thus defining the fitness of CPNN. Therefore, this pro-
cess will maximize the performance of the learned solution since HyperNEAT
determines the best features out of other ML approach. ConvNets can be rep-
resented in a graph like structure with coordinates of the nodes associated with
each other which are similar to HyperNEAT structure. This similarity enables
to apply HyperNEAT on ConvNets based architectures.

For the experiment, an eight dimensional Hypercube representation of CPNN
is used with f-axis as feature axis, x-axis as neuron constellation of each feature
and y-axis being pixel locations. HyperNEAT topology is a multilayer neural
network with layers traveling along z-axis with CPPN representing the points in
an eight-dimensional Hyper-cube that corresponds to connections in the four di-
mensional substrate. The location of each neuron can be identified using (x,y,f,z)
coordinate and each layer can be represented with a trait constituting number of
features(F) with X and Y dimensions. HyperNEAT is applied to the LeNet-5 [8].
The experiment is conducted on MNIST database with a population size of 250
with 30 runs for 2500 generations. With this comparative results its been con-
cluded that HyperNEAT with ANN architectures is overthrown by HyperNEAT
with CNN architecture.

3.2 Deep Learning using Genetic Algorithm

In 2012, Joshua proposed a learning method for deep architectures using genetic
algorithm [19]. A DNN for image classification is implemented using a genetic
algorithm and training each layer using generic algorithm. Further this study
tries to justify the possibility of using genetic algorithms to train non trivial
DNNs for feature extraction. Initially a matrix representing the DNN is gener-
ated with Sparse Network Design with most of the values being close to zero,
whereas the ideal solution in this case is an identity matrix. The genetic sequence
of individuals with non-zero elements (which is considered as a gene) is kept and
computed instead of re-generating the complete matrix which will reduce the
amount of data required to store in the matrix and the process complexity. The



position of the gene in the matrix can be determined by row and column and
every gene has a magnitude.

The proposed algorithms are tested on image data normalized in the range
of 0.0 and 1.0. Apart from applying to image data, the algorithm has been ap-
plied to handwriting, face image (small and large) and cat image identification.
The experimental results section shows the reconstruction (of input) error rate
for each experiment. Another experiment for reconstruction of faces with noisy
data claim to prove that this algorithm is not just copying blocks of data, but
generating the connections in the data and reconstructing the initial image. The
theoretical limitations of the algorithm is not addressed. The cost of reconstruc-
tion becomes 0 for a single training image as it will be efficient only with a large
set of data.

4 Conclusion

This paper provides a theoretical review of standard deep architectures and
study the possibilities of implementing evolutionary computation principles on
deep architectures. Apart from introducing various types of deep architecture,
this paper provides a detailed explanation of their training procedure and imple-
mentations. Further, this paper analyses the implications of applying evolution-
ary algorithms on deep architectures with details of two such implementations
and a critical review on their achievement. The Neuroevolution approach for
deep architectures that is discussed in previous section is with respect to the
application of HyperNEAT on deep architectures. The success of this proposed
method cannot be determined since CNN holds the best classification for MNIST
database. But, this drives a way of implementing Neuroevolution algorithms on
deep architectures. Similarly, the second work of using genetic algorithms for
training DNNs, justifies the possibility of using genetic algorithms for training
deep architectures but does not show any signs of comparative studies of its
efficiency with respect to speed or quality.

It is noteworthy that evolutionary algorithms may not be a complete re-
placement for deep learning algorithms at least not at this stage. However, the
successful application of evolutionary techniques on deep architectures will lead
to an improved learning mechanism for deep architectures. This might result in
reducing the training time which is the main drawback for deep architectures.
Future direction in this research could be evolving an optimized deep architecture
based neural networks using Neuroevolutonary principles. This could provide a
warm start to the deep learning process and could improve the performance of
the deep learning algorithms.
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