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Abstract. Uncertainty is widely spread in real-world data. Uncertain
data -in computer science- is typically found in the area of sensor net-
works where the sensors sense the environment with certain error. Mining
and visualizing uncertain data is one of the new challenges that face un-
certain databases. This paper presents a new intelligent hybrid algorithm
that applies fuzzy set theory into the context of the Self-Organizing Map
to mine and visualize uncertain objects. The algorithm is tested in some
benchmark problems and the uncertain tra�cs in Named Data Network-
ing (NDN). Experimental results indicate that the proposed algorithm
is precise and e↵ective in terms of the applied performance criteria.

1 Introduction

Uncertainty is a frequent issue in data analysis. The various factors that lead to
data uncertainty include: approximate measurement, data sampling fault, trans-
mission error or latency, data integration with noise, data acquisition by device
error, and so on [1] [2]. These factors produce vague and imprecise data. Visual-
izing uncertain data is one of the new challenges in the uncertain databases [3].
Among the many visualization techniques, the Self-Organizing Map (SOM) [4]
is widely and successfully applied due to its good result. SOM is a very popular
unsupervised learning algorithm based on the classical set theory. An important
application of SOM is discovering the topological relationship among multidi-
mensional input vectors and mapping them to a low dimensional output which
is easy for further analysis by experts [5] [6]. The process of SOM training re-
quires a certain and an unambiguous input data either belongs or not belong to a
weight vector (cluster), where the membership evaluation is boolean. In contrast,
uncertain and vague input vectors are not either entirely belong or not belong
to a weight vector. A data may be considered vague and imprecise where some
things are not either entirely true nor entirely false and where the some things
are somehow ambiguous. For instance, fuzzy location in the right side of Fig. 1 is
a way to represent the item of vague information: the object is approximately at
position (4, 3), in which the grey levels indicate membership values with white
representing 0 and black representing 1. In contrast, the left side of Fig. 1 shows
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the exact position of a certain data where the membership evaluation of cen-
ters (weights) is boolean. There has been a lot of research in the application
of Fuzzy sets theory to model vague and uncertain information [7]. The Fuzzy
set (FS) theory introduced by Zadeh [8] is a more flexible approach than clas-
sical set theory, where objects belong to sets (clusters) with certain degree of
membership ranging [0..1]. This makes FS theory suitable for representing and
visualizing uncertain data [9]. Therefore, a combination of SOM and FS is able
to illustrate dependencies in the uncertain data sets in a very intuitive manner.
SOM is indeed originally intended as a classification method, not a visualization
method so there are a few additions to apply SOM for visualization. Li et al. [3]
proposed a mining and visualizing algorithm for uncertain data, called USOM
which combines fuzzy distance function and SOM. In this paper, we employ the
FS theory in the context of SOM algorithm to mine and visualize the uncer-
tain objects in the uncertain databases. Experimental results over four classic
benchmark problems and a new network architecture as Named Data Network-
ing (NDN) show that the proposed method outperforms standalone SOM and
USOM [3] in terms of the applied performance metrics. The remainder of the
paper is organized as follows: Section 2 presents self-organizing map. Section 3
presents our contribution. Section 4 evaluates the new approach experimentally.
Section 5 is the conclusion and future work.

2 Self-Organizing Map (SOM)

SOM (also known as Kohonen SOM) is a very popular algorithm based on com-
petitive and unsupervised learning [4]. The SOM projects and represents higher
dimensional data in a lower dimension, typically 2-D, while preserving the re-
lationships among the input data. The main process of SOM is generally intro-
duced in three main phases: competition, cooperation and adaptation which are
described in detail in [4].

Fig. 1: An example of exact (non-fuzzy) and approximate (fuzzy) distances in a 2-D
space for a certain and vague data.
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3 The Proposed Method

The procedure of the proposed method, application of fuzzy set theory in the
context of SOM for mining and visualizing uncertainties is as follows. A diagram
of the proposed method is shown in Fig. 2.

1. Fuzzy competition: in hard competition, the input vector is divided into dis-
tinct weights (clusters), where each input element belongs to exactly one
weight. In fuzzy competition, input vector can belong to more than one
weight, and associated with each element by a set of membership levels.
Fuzzy c-means (FCM) [10] method allows one piece of input data to belong
to two or more clusters (weights). The standard function is:
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Where, U
x

is the membership value of each input vector x to all weights,
j = 1, 2, ..., w, and m is the level of cluster fuzziness which is commonly set
to 2. By the fuzzy competition all the neurons are wining neurons with the
membership degree ranging [0..1].

2. Fuzzy cooperation: in fuzzy cooperation, all wining neurons cooperate with
their neighboring neurons in terms of the membership degree by Eq. 2. For
the size of the neighborhood, we employed the Gaussian function that shrinks
on each iteration until eventually the neighborhood is just the BMU itself.
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Where, i is the number of the wining neurons including all the neurons with
di↵erent membership degrees, j is the number of the cooperating neighbor
neurons. U

xi

is the membership value of input vector x from i

th wining
neuron. h(j, i) is the topological area centered around the wining neuron
i and the cooperating neuron j. The size � of the neighborhood needs to
decrease with time. A popular time dependence is an exponential decay by:
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Where, �(t) is the width of the lattice at time t, �0 is the width of the lattice
at time t0, and � is the time constant.

3. Fuzzy adaption: the adaption phase is the weight update by:
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Where, U
j

is the membership value of input x from neuron j.

These three phases are repeated, until the maximum number of iterations is
reached or the changes become smaller than a predefined threshold.
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Fig. 2: The proposed method for mining and visualizing uncertainties.

4 Experimental Results

The proposed method, USOM and SOM were implemented by the MATLAB on
an Intel Pentium 2.13 GHz CPU, 4 GB RAM running Windows 7 Ultimate.

4.1 Uncertain data modeling

To assess the accuracy and performance of the proposed method, four classic
benchmark problems from the UCI machine learning repository [11] are applied.
The selected data sets are Iris (4-D), Glass (9-D), Wine (13-D), and Zoo (17-D).
In practice, uncertainties are usually modeled in the form of Gaussian distribu-
tions [2]. For some attributes in data sets, we add a Gaussian noise with a zero
mean and the standard deviation with the normal distribution [0, f ], where, f is
an integer parameter from the set of {1, 2, 3} to define di↵erent uncertain levels.

4.2 Assessing the quality of visualizations

To assess the quality of the proposed method, several measures have been ap-
plied, including Quantization Error (QE), Topographic Error (TE), Trustwor-
thiness of a Visualization, and Continuity of the Neighborhoods [12].

4.3 Visualization results

The experiments on each method were repeated 10 times independently. We
evaluate the several SOM network structures on applied uncertain data sets
which the optimal ones are Iris with 16x16 nodes, Glass with 16x16 nodes, Wine
with 17x17 nodes, and Zoo with 15x15 nodes.

Table 1 shows that our proposed method outperforms SOM and USOMmeth-
ods in terms of the Quantization Error (QE) and Topographic Error (TE). The
proposed method seems to be more time consuming (with Exec.) than the other
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Table 1: Performance improvements achieved by the proposed scheme

Data SOM USOM Proposed Method

Time Time Time
QE TE Exe. Inc. QE TE Exe. Inc. QE TE Exe. Inc.

Iris (16x16) 0.024 0.0404 9.6 5.45 0.023 0.034 11.34 4.16 0.02 0.0267 16.43 2.17
Glass (16x16) 0.066 0.0312 21.17 15.45 0.042 0.02 23.11 14.23 0.028 0.0174 26.82 10.1
Wine (17x17) 0.072 0.0381 18.87 12.05 0.06 0.022 19.12 10.16 0.049 0.0102 22.07 7.74
Zoo (15x15) 0.067 0.0215 15.54 11.23 0.046 0.016 18.51 10.36 0.039 0.0103 21.34 8.52

Table 2: The quality measurement by Trustworthiness

Data SOM USOM Proposed Method

K=1 K=10 K=20 K=1 K=10 K=20 K=1 K=10 K=20
Iris (16x16) 0.937 0.94 0.93 0.95 0.962 0.968 0.962 0.968 0.974
Glass (16x16) 0.913 0.903 0.898 0.914 0.921 0.933 0.915 0.93 0.939
Wine (17x17) 0.917 0.921 0.904 0.924 0.941 0.953 0.925 0.951 0.962
Zoo (15x15) 0.957 0.96 0.96 0.962 0.963 0.968 0.963 0.97 0.978

Table 3: The quality measurement by Continuity

Data SOM USOM Proposed Method

K=1 K=10 K=20 K=1 K=10 K=20 K=1 K=10 K=20
Iris (16x16) 0.945 0.901 0.892 0.961 0.964 0.966 0.97 0.974 0.982
Glass (16x16) 0.911 0.898 0.873 0.914 0.916 0.92 0.92 0.931 0.937
Wine (17x17) 0.921 0.892 0.883 0.93 0.931 0.935 0.935 0.939 0.941
Zoo (15x15) 0.86 0.841 0.812 0.89 0.898 0.902 0.91 0.918 0.927

methods due to the application of fuzzy set theories in the context of the SOM,
in which all the neurons are winner with di↵erent membership grading. However,
the proposed method can find a better solution with less times of increment on
computational time (with Inc.) than the other methods due to its fast conver-
gence speed. The trustworthiness and continuity values for K={1, 10, 20} are
shown in Tables 2 and 3, respectively. The trustworthiness and continuity mea-
sures show that the proposed method obtains the better results as compared to
SOM and USOM. The results show that the proposed method with the appli-
cation of fuzzy set theory in the context of the SOM yields high accuracy as
compared to other methods without very much computational cost. Since our
proposed method performs well as compared to SOM and USOM, we visualize
uncertainties in the applied uncertain data sets. To facilitate the interpretation
of results, we use the U-Matrix (unified distance matrix) where visualize the
high-dimensional uncertain data into a 2-D space in Fig. 3. In this figure, the
blue hexagons represent the neurons (weights). The darker colors in the regions
between neurons represent larger distance, while the lighter colors represent
smaller distances. Fig. 3(a) shows that the constructed 4-D uncertain Iris SOM
network has been clearly clustered into three distinct groups. The Glass SOM
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(a) (b) (c) (d)

Fig. 3: U-Matrix of the applied benchmark problems: 3(a) Iris 16x16 SOM, 3(b) Glass
16x16 SOM, 3(c) Wine 17x17 SOM, and 3(d) Zoo 15x15 SOM.

Table 4: NDN tra�c generation

Type of tra�c Frequency Pattern
Normal
(526 records)

[100..500] Exponential

Attack
(211 records)

Cache pollution [200..800] Locality-disruption attacks uniformly

DoS attacks [400..1500]
Interest flooding attacks for non-existent and
existent content uniformly and exponentially

network (Fig. 3(b)) has been apparently classified 9-D uncertain data objects
into six distinct types of glass. Figs. 3(c) and 3(d) show the three and the seven
distinct groups of 13-D and 17-D uncertain data from Wine and Zoo data sets,
respectively. The results confirm that the proposed method performs well in
mining and visualizing uncertain data into somewhat expected distinct groups.

Fig. 4: U-Matrix of the NDN tra�c. 1: normal, 2: DoS attack, 3: cache pollution attack.

4.4 Visualizing uncertain tra�cs in Named Data Networking

After evaluating the robustness and the accuracy of our proposed method with
some benchmark problems, we apply the proposed method for visualizing uncer-

Page 161 of 171



tain tra�cs in Named Data Networking (NDN). NDN [13] is a promising network
architecture being considered as a possible replacement to overcome the funda-
mental limitations of the current IP-based Internet. Tra�c uncertainty refers
to tra�c volumes belong to more than one pattern, and associated with each
pattern by a set of membership levels. Fuzzy approach can reduce the false pos-
itive rate with higher reliability in identifying the pattern of tra�c volumes, due
to any uncertain attack data may be similar to some normal patterns [14]. We
conduct the same testbed configuration from papers [14] [15]. The employed fea-
tures for tra�c generation come from paper [14] as well as the ratio of (1) cache
hit, (2) dropped Interest packet, (3) dropped data packets, (4) satisfied Inter-
est packet, and (5) timed-out Interest packets in each 1 sec time interval. The
structure of the tra�c generated is shown in Table 4. We modeled uncertainties

Table 5: Comparing results of visualizing NDN tra�c samples

Criteria Methods
SOM USOM Proposed Method

Quantization Error 0.042 0.029 0.0125
Topographic Error 0.074 0.053 0.031

Trustworthiness
K=1 0.91 0.95 0.968
K=15 0.905 0.943 0.954
K=30 0.877 0.925 0.942

Continuity
K=1 0.914 0.922 0.954
K=15 0.893 0.931 0.941
K=30 0.867 0.917 0.936

for some attributes in NDN tra�c samples in the form of Gaussian distributions
similar to Section 4.1. Fig. 4 maps the 11-D uncertain tra�c samples to the 2-D
space through our proposed method. This figure shows that the our proposed
method performs somewhat well in mining and visualizing uncertainties into
predefined distinct groups. Fig. 4 illustrates that there are some small groups of
clustered data points with the lighter regions. These small clusters may contain
some normal or attack data that try to be incorrectly placed in the neighboring
regions, due to their uncertain nature. The results in Table 5 show that our
proposed method o↵ers the best performance and outperforms su�ciently other
preexisting methods.

5 Conclusion

In this paper, we propose a new hybrid algorithm for mining and visualizing
uncertain data. We investigate the implementation of fuzzy set theory in the
design of SOM neural network in order to improve the accuracy of visualizing
uncertain data bases. The experimental results over the uncertain benchmarking
data sets and the uncertain tra�cs in Named Data Networking show that the
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proposed method is e↵ective and precise in terms of the applied performance
criteria. We plan to improve the proposed method for various uncertain models
and big uncertain network tra�c data in the future.
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