
Action Recognition based on Hierarchical
Self-Organizing Maps

Miriam Buonamente1, Haris Dindo1, and Magnus Johnsson2

1 RoboticsLab, DICGIM, University of Palermo,
Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
{miriam.buonamente,haris.dindo}@unipa.it

http://www.unipa.it

2 Lund University Cognitive Science,
Helgonavägen 3, 221 00 Lund, Sweden

magnus@magnusjohnsson.se

http://www.magnusjohnsson.se

Abstract. We propose a hierarchical neural architecture able to recog-
nise observed human actions. Each layer in the architecture represents
increasingly complex human activity features. The first layer consists
of a SOM which performs dimensionality reduction and clustering of the
feature space. It represents the dynamics of the stream of posture frames
in action sequences as activity trajectories over time. The second layer
in the hierarchy consists of another SOM which clusters the activity tra-
jectories of the first-layer SOM and thus it learns to represent action
prototypes independent of how long the activity trajectories last. The
third layer of the hierarchy consists of a neural network that learns to
label action prototypes of the second-layer SOM and is independent - to
certain extent - of the camera’s angle and relative distance to the actor.
The experiments were carried out with encouraging results with action
movies taken from the INRIA 4D repository. The architecture correctly
recognised 100% of the actions it was trained on, while it exhibited 53%
recognition rate when presented with similar actions interpreted and per-
formed by a di↵erent actor.

Keywords: Self-Organizing Map, Neural Network, Action Recognition,
Hierarchical models, Intention Understanding

1 Introduction

Recognition of human intentions is becoming increasingly demanded due to its
potential application in a variety of domains such as assisted living and ambient
intelligence, video and visual surveillance, human-computer interfaces, gaming
and gesture-based control. Typically, an intention recognition system is focused
on a sequence of observed actions performed by the agent whose intention is
being recognised. To provide the system with this component, it is necessary
to use activity recognition together with the intention recognition. The purpose

Page 86 of 171

of action recognition is an analysis of ongoing events from data captured by a
camera in order to track movements of humans and to identify actions.

Many challenges make the action recognition task extremely di�cult to imi-
tate artificially, each person di↵ers in terms of height, weight, shape of the human
body and gender. Another important aspect to be considered is the impact of the
camera viewing angle variations on the action recognition performance. Multi-
camera setups have been employed to implement view independent methods [1],
[2], [3]. These methods are based on the observation of the human body from
di↵erent angles, obtaining in this way a view-invariant representation.

Dealing with action recognition, it is important to give a brief definition of
what we mean by action. We adopt the following action hierarchy: actions and
activities. The term action is used for simple motion patterns typically executed
by a single human. An example of an action is crossing arms. A sequence of
actions represents an activity, such as the activity dancing. Activities usually
involve coordination among persons, objects and environments. In this paper,
we focus only on the recognition of actions, where actions can be viewed as
sequences of body postures.

An important question is how to implement the action recognition ability in
an artificial agent. We tried to find a suitable neural network architecture having
this ability. In our previous work, we have focused on the representational part
of the problem. We endowed an artificial agent with the ability to internally
represent action patterns [4]. Our system was based on the Associative Self-
Organizing Map [5], a variant of the Self-Organizing Map (SOM) [6], which
learns to associate its activity with additional inputs. The solution was able to
parsimoniously represent human actions.

In this paper, we present a novel architecture able to represent and clas-
sify others’ behaviour. In order to get a more complete classification system we
adopt a hierarchical neural approach. The first level in the system is a SOM that
learns to represent postures - or posture changes - depending on the input to the
system. The second level is another SOM that to represent the superimposed
activity trace in the first level SOM during the action, i.e. it learns to repre-
sent actions. Thus, the second layer SOM provides a kind of time independent
representation of the action prototypes. The third level is a supervised artificial
neural network that learns to label the action.
In our previous paper [7] we showed that we could get discriminable activity
traces using an A-SOM, which corresponds to the first level SOM in the current
system.The system was able to simulate the likely continuation of the recog-
nised action. Due to this ability, the A-SOM could receive an incomplete input
pattern (e.g. an initial part of the input sequence only) and continue to elicit
the most likely evolution of the action, i.e. to carry out sequence completion of
perceptual activity over time. In the present system, instead, we focus on the
probem of robust action representation and recogniton, given the whole (noisy)
input sequence. We are currently working towards an integration of the two
approaches.

Page 87 of 171

We have tested the ability of our architecture to recognise observed actions on
movies taken from the “INRIA 4D repository 3”, a publicly available dataset of
movies representing 13 common actions: check watch, cross arms, scratch head,
sit down, get up, turn around, walk, wave, punch, kick, point, pick up, and throw
(see Fig. 1).

The implementation of all code for the experiments presented in this paper
was done in C++ using the neural modelling framework “Ikaros” [8].

This paper is organized as follows: A short presentation of the proposed ar-
chitecture is given in section II; section III presents the experiment for evaluating
the model; and finally conclusions are outlined in section IV.

2 Proposed Architecture

The architecture presented in this paper is composed of three layers of neural
networks, see Fig. 3. The first and the second layers consist of SOM networks
whereas the third layer consists of a custom made supervised neural network.
The first layer SOM receives sequences of vectors representing preprocessed se-
quences of posture images. The activity trajectories, Fig. 2, elicited during the
time actions last are superimposed and vectorized into a new representations be-
fore entering the layer two SOM as input. This superimposition process can be
imagined as the projection of the matrices representing the activity in the grid of
neurons in the SOM for all the iterations an action lasts onto a new matrix of the
same dimensionality, followed by a vectorization process. The second layer SOM
thus clusters the activity trajectories and learns to represent action prototypes
independent of how long the activity trajectories in the first layer SOM last.
Thus the second layer SOM provides a kind of time independent representation
of the action prototypes. The activity of the second layer SOM is conveyed to
a third level neural network that learns to label the action prototypes of the
second layer SOM independent of the camera’s capturing angle and distance to
the actor.

2.1 First and Second Layers

The first and the second layers of the architecture consist of SOMs. The SOM
is one of the most popular neural networks and has been successfully applied in
pattern recognition and image analysis. The SOM is trained using unsupervised
learning to produce a smaller discretized representation of its input space. In a
sense it resembles the functioning of the brain in pattern recognition tasks. When
presented with input, it excites neurons in a specific area. The goal of learning
in the SOM is to cause nearby parts of the network to respond to similar input
patterns while clustering a high-dimensional input space to a lower-dimensional

3 The repository is available at http://4drepository.inrialpes.fr. It o↵ers several movies
representing sequences of actions. Each video is captured from 5 di↵erent cameras.
For the experiments in this paper we chose the movie “Andreas2” for training and
“Hedlena2” for testing, both with frontal camera view “cam0”.

Page 88 of 171

Fig. 1. Prototypical postures of 13 di↵erent actions in our dataset: check watch, cross
arms, get up, kick, pick up, point, punch, scratch head, sit down, throw, turn around,
walk, wave hand.

Page 89 of 171

Fig. 2. The trajectory resulting from the neurons activated by the input sequence.

Fig. 3. The proposed architecture is composed of three layers of neural networks. The
first and the second layers consist of SOM networks whereas the third layer consists
of a custom made supervised neural network.

Page 90 of 171

output space. SOMs are di↵erent from many other artificial neural networks
because they use a neighbourhood function to preserve the topological properties
of the input space. The SOM algorithms adapt a grid of neurons, so that neurons
located close to each other respond to similar features.

The SOM structure is made of one input layer and one output layer, the
latter also known as the Kohonen layer. The input layer is fully connected to
the neurons in the Kohonen layer. The weight vectors of the neurons in the
Kohonen layer are modified iteratively in the training phase. When a new input
arrives, every neuron competes to represent it. The Best Matching Unit (BMU)
is the neuron that wins the competition. The BMU together with its neighbours
in the grid are allowed to adapt to the input. The neighbouring neurons less
so than the BMU. Neighbouring neurons will gradually specialise to represent
similar inputs, and the representations will become ordered in the map. Another
important characteristic of the SOM is its ability to generalise, i.e. the network
can recognise or characterise input it has never encountered before.

The SOM consists of a grid of neurons with a fixed number of neurons and
a fixed topology. Each neuron ni is associated with a weight vector wi. All
the elements of all the weight vectors are initialized by real numbers randomly
selected from a uniform distribution between 0 and 1, after which all the weight
vectors are normalized, i.e. turned into unit vectors.

At time t each neuron ni receives an input vector x(t).
The BMU nb at time t is the neuron with the weight vector wb that is most

similar to the input x(t) and is obtained by:

b = argmaxi
x(t) · wi(t)

||x(t)||||wi(t)||
, (1)

The neurons of the Kohonen layer adapt to increase their representation of
the current input by modifying their weight vectors to become more similar to
it with an amount that depends on a Gaussian function of the neuron’s distance
to the BMU:

�wi = �(t)Gib(t)(x(t)� wi(t)) (2)

where the learning rate �(t) is a monotonically decreasing function of time.
Gib(t) is a Gaussian function, with a radius �(t) monotonically decreasing with
time, of the distance in the map between the neuron ni and the BMU:

Gib(t) = exp
�d(i, b)2

�(t)2
(3)

2.2 Third Layer

The third layer, which is the output layer of the architecture, consists of an array
of a fixed number of neurons. Each neuron ni is associated with a weight vector
wi 2 R

n, where n is equal to the number of neurons in the second layer SOM.
All the elements of the weight vector are initialized by real numbers randomly

Page 91 of 171

selected from a uniform distribution between 0 and 1, after which the weight
vector is normalized.

At time t each neuron ni receives an input vector x(t) 2 R

n, which is the
vectorized activity of the second layer SOM.

The activity yi in the neuron ni is calculated using the standard cosine metric:

yi =
x(t) · wi(t)

||x(t)||||wi||
(4)

During the learning phase the weights wij are adapted by

wij(t+ 1) = wij(t) + �xj(t)[yi � di] (5)

where � is the adaptation strength and di is the desired activity for the
neuron ni.

3 Experiment

We have tested our architecture (Fig. 3) in an experiment to verify that it is
capable of recognising and properly classifying observed actions, overcoming
problems related with the action recognition task.

To this aim we created training and test sets for the architecture by choosing
two movies from the INRIA 4D repository. In the movies, two di↵erent actors
(Andreas and Hedlena) perform the same set of 13 actions. Each actor interprets
and performs actions as individuals and thus they tend to di↵er slightly in how
they perform the same actions. We chose to use one of the movies (performed by
Andreas) to create a training set for the architecture and the other movie (per-
formed by Hedlena) to create a test set. In this way, we wanted to demonstrate
that our architecture is able not only to properly recognize action instances it
has observed during training, but that it is also able to recognise the actions
when they are performed by someone else, i.e. to recognise action instances it
never encountered before. To create the training and test sets from the original
movies, we split each of the original movie into 13 new movies, one for each
action (see Fig. 1).

Before entering the architecture, the input goes through a preprocessing
phase. This is done to reduce the computational load and improve architec-
ture performances. In the preprocessing phase the number of images for each
movie is reduced to 10 without a↵ecting the quality of the action reproduction
and guaranteeing seamless and fluid actions, see Fig. 4 a).

Consecutive images are then subtracted to catch only the dynamics of the
action, focusing in this way the attention on the movement exclusively. This
operation further reduced the number of frames for each movie to 9. As an
example, we can see in Fig. 4 that in the check watch action only the arm is
involved in the movement.

In the next step of the preprocessing phase, a fixed boundary box is used
to cut the images and produce binary images of a fixed and small size while

Page 92 of 171

Fig. 4. a) The check watch action with a reduced number of images; b) The sequence
of images obtained by subtracting consecutive images of the check watch action.

eliminating anything not significantly involved in the movement. In this way an
attentive process, similar to how the human eye observes and follows only the
salient parts of an action, is simulated. The binary images are then shrunk to
50⇥ 50 matrices and vectorized before entering the first layer SOM.

The architecture was trained in two phases. First the first layer SOM was
trained for 20000 iterations by randomly selecting actions performed by the ac-
tor Andreas. Then the fully trained SOM of the first layer received each action
performed by Andreas again and the corresponding sequence of activity matri-
ces elicited by each action was superimposed and vectorized. Each such new
superimposed activity vector represents the activity trajectory in the first layer
SOM elicited by a particular action. More in detail, to superimpose the activity
matrices, before the vectorization, can be seen as the creation of matrices, one
for each action, with dimensions equal to the neuron grid of the first layer SOM.
The value of the elements of these matrices are either zero or one. All elements
corresponding to a neuron in the first layer SOM, which was most activated
for at least one of the inputs during the action is set to one and all the other
elements are set to zero.

In the second training phase the second layer SOM and the third layer neural
network were trained. In this process the second layer SOM received randomly
selected input from the set of superimposed activity vectors for 20000 iterations,
and the third layer neural network received the corresponding target output
(action labels). The target output consists of 13-dimensional vectors, with one
element set to one and the other elements set to zero.

To show how the activity trajectories in the first layer SOM in the fully
trained architecture di↵er we have depicted these for the actions carried out by
the actor Andreas in Fig. 5. This was, for each action, done by recording the
neuron in the first layer SOM most activated by each input in the sequence
composing the action. The most activated neurons for each of the actions were
then depicted and connected with arrows to show how the trajectories evolves
over time. Each picture in Fig. 5 shows the grid of neurons forming the first
layer SOM and illustrates the sequence of most activated neurons, represented
by black dots, during the corresponding action. The black dots were connected
with arrows to show how the trajectories evolve over time. The locations of
the neurons activated most by the first and the last inputs of an action are
represented by empty dots.

Page 93 of 171

Fig. 5. Activity trajectories in the first layer SOM for the 13 actions carried out by
Andreas: a) Check Watch; b) Cross Arms; c) Scratch Head; d) Sit Down; e) Get Up;
f) Turn Around; g) Walk; h) Wave Hand; i) Punch; j) Kick; k) Point; l) Pick Up;
m) Throw. The dots in each diagram represent the most activated neurons (centres
of activity) during the action and the arrows indicate the action’s evolution over
time. Actions composed of similar postures present fewer centres of activity, whereas
actions composed of postures with more di↵erent characteristics present more centres
of activity. The diagrams indicate the ability of the SOM to create topology preserving
maps in which similar postures are represented close to each other.

Page 94 of 171

We tested the fully trained architecture with all 13 actions performed both
by the actor Andreas (the action instances the architecture was trained on)
and by the actor Hedlena (the action instances the architecture was not trained
on). During testing, the input went through the preprocessing described above
before entering the first layer SOM, which activity in turn were superimposed
and vectorized as described above before entering the second layer SOM.

During the testing we recorded the most activated neuron in the third layer
neural network to see if the actions were labelled correctly. This was done for
both the actions carried out by Andreas as reported in Table 1 and by Hedlena as
reported in Table 2. The architecture was able to recognise 100% of the actions
performed by Andreas and 53% of the actions performed by the actor Hedlena,
which the architecture was not trained on.

Andreas

Actions Most activated Expected Correctenss
neuron neuron

Check Watch 0 0 correct

Cross Arm 1 1 correct

Scracth Head 2 2 correct

Sit Down 3 3 correct

Get Up 4 4 correct

Turn Around 5 5 correct

Walk 6 6 correct

Wave Hand 7 7 correct

Punch 8 8 correct

Kick 9 9 correct

Point 10 10 correct

Pick Up 11 11 correct

Throw 12 12 correct

%Correctness 100

Table 1. Recognition rate for the actions carried out by Andreas. Our architecture
recognises 100% of the actions performed by Andreas, which the architecture was
trained on.

4 Conclusion

We have proposed a novel hierarchical SOM based architecture that recognises
actions. Our architecture is composed of three layers of neural networks. The
first layer consists of a SOM that learns to represent the dynamics of sequences
of postures composing actions. The second layer consists of another SOM, which
learns to represent the activity trajectories in the first layer SOM, which also
means that it learns to represent action prototypes. The third layer consists
of a custom made supervised neural network that learns to label the action
prototypes represented in the second layer SOM.

In an experiment we verified the architecture’s ability to recognise observed
actions as well as to recognise the same actions interpreted and performed by
someone else.

As reported in Table 1 the actions used to train the architecture and per-
formed by the actor Andreas were recognised to 100%. In Table 2 we can see

Page 95 of 171

Hedlena

Actions Most activated Expected Place in order of activation Correctenss
neuron neuron of the expected neuron

Check Watch 12 0 4

Cross Arm 1 1 1 correct

Scracth Head 2 2 1 correct

Sit Down 3 3 1 correct

Get Up 5 4 2

Turn Around 5 5 1 correct

Walk 6 6 1 correct

Wave Hand 2 7 5

Punch 8 8 1 correct

Kick 3 9 5

Point 10 10 1 correct

Pick Up 2 11 11

Throw 4 12 2

%Correctness 53

Table 2. Recognition rate for the actions carried out by Hedlena. Our architecture
recognises 53% of the actions performed by Hedlena, which the architecture was not
trained on. In the cases of failed recognition the place in the order of activation of the
expected neuron could be seen as the order of choice, i.e. if the place in the order of
activation of the expected neuron is k, then the correct action would be the k :th most
likely action according to the architecture.

that the actions interpreted and performed by another actor Hedlena, that the
architecture was not trained on, were recognised to 53%. The values reported in
the fourth column of Table 2 show that in some of the cases where recognition
failed, the expected neuron, i.e. the neuron which if most activated would indi-
cate the correct action, is still one of the most activated. For example, in the
case of the action Get Up, which was incorrectly recognised as the action Turn

Around, the architecture’s second choice would have been the correct action Get

Up.

An important observation is that some failed recognitions are plausible. Ac-
tions like check watch, throw, wave hand and scratch head can easily be confused
even by a human observer. Consider, for example, the two actions wave hand

and scratch head. The only part involved in the movement is the arm and the
movement for both actions is the same, i.e. to raise the arm to the head. This
could easily confuse the architecture to label both actions equally. The same rea-
soning can be applied to other actions that involve the movement of the same
part of the body. Other considerations can be done for actions that involve move-
ment of di↵erent parts of the body such as kick and sit down. In this case, the
preprocessing operation such as subtraction of consecutive frames, gives rise to
new sequences that sometimes can contain very similar frames, or frames that
can be confused with each other, leading to a failed recognition of the observed
action.

The promising experimental results show the potential of this hierarchical
SOM based action recognition architecture. Potential future extensions include
a more elaborate preprocessing procedure to enable a more potent view and size
independence as well a explicit action segmentation.

Page 96 of 171

Acknowledgements The authors gratefully acknowledge the support from the
European Community’s Seventh Framework Programme under grant agreement
no: 612139.

References

1. Ahmad, M., Lee, S.W.: Human action recognition using shape and clg-motion flow
from multi-view image sequences. Pattern Recognition 41(7) (2008) 2237 – 2252

2. Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using mo-
tion history volumes. Computer Vision and Image Understanding 104(23) (2006)
249 – 257 Special Issue on Modeling People: Vision-based understanding of a persons
shape, appearance, movement and behaviour.

3. Ahmad, M., Lee, S.W.: Hmm-based human action recognition using multiview
image sequences. In: Pattern Recognition, 2006. ICPR 2006. 18th International
Conference on. Volume 1. (2006) 263–266

4. Buonamente, M., Dindo, H., Johnsson, M.: Recognizing actions with the associa-
tive self-organizing map. In: 2013 XXIV International Symposium on Information,
Communication and Automation Technologies (ICAT), IEEE (2013) 1–5

5. Johnsson, M., Balkenius, C., Hesslow, G.: Associative self-organizing map. In:
Proceedings of IJCCI. (2009) 363–370

6. Kohonen, T.: Self-Organization and Associative Memory. Springer Verlag (1988)
7. Buonamente, M., Dindo, H., Johnsson, M.: Simulating actions with the associative

self-organizing map. In Lieto, A., Cruciani, M., eds.: AIC@AI*IA. Volume 1100 of
CEUR Workshop Proceedings., CEUR-WS.org (2013) 13–24

8. Balkenius, C., Morén, J., Johansson, B., Johnsson, M.: Ikaros: Building cognitive
models for robots. Advanced Engineering Informatics 24(1) (2010) 40–48

Page 97 of 171

