
How to Publish Privately

Nuno Bettencourt1, Nuno Silva1, and João Barroso2

1 GECAD, Instituto Superior de Engenharia do Porto, IPP, Portugal
{nmb,nps}@isep.ipp.pt

2 INESC TEC and Universidade de Trás-os-Montes e Alto Douro, Portugal
jbarroso@utad.pt

Abstract In a world overwhelmed by constant data creation and ma-
nipulation, where privacy is becoming a real concern, topics like data
usage control, accountability, provenance, protected sharing of resources
and trustworthiness of knowledge sources are becoming main topics of
discussion among communities of interest. In this paper enhancements
are proposed for an existing framework that tackles some of the afore
mentioned issues namely data provenance, usage control and accountab-
ility. Such proposals consist of providing means for publishing resources
in a private manner hereby making websites behave like meshes of hyper-
linked resources from different domains, not only for resources publicly
published but also for the ones protected by access policies.

Keywords: Privacy · Resource Sharing · Publishing · Authorisation ·
Access Control

1 Introduction

Usage control and data privacy is a main issue and we intend to simplify and
ease the process of creating data on the web while giving users the chance to
choose where newly created or published resources should be physically located,
independently of where they are being used and by who.

While the term “publish” is intrinsically related “to disseminate to the pub-
lic”3, sharing is related to publishing privately. When a user uploads a resource
to a domain on the Internet, the user is in fact publishing and establishing access
policy rules upon that resource. Consequently, sharing a private resource is in
fact the result of a more controlled resource “publishing” action.

Having in mind that one of the first principles of the World Wide Web
(WWW) was to be a collection of hyperlinked resources, this is not always the
case for private or access protected resources. This makes the latter second-class
citizens of the WWW when it comes to being hyperlinked or embedded in differ-
ent domains than the one where those resources are hosted on. Right now, most
privately owned or shared resources are only accessible within the domain being
hosted and by users enrolled on those domains that have been given access to
the resource.
3 http://www.merriam-webster.com/dictionary/publish



In order to refresh the concept of an Internet of hyperlinked resources, lets
briefly examine the WWW evolution. While in the Web 1.0 era users mostly
consumed data made available by companies, contribution of each user to the
growing web of data was almost none or mostly limited to hosting their own
personal web page. If another user wished to refer to any resource provided
by others, s/he would create a link in their own homepage to refer to another
resource that could be hosted on another domain, consequently creating a hy-
perlink in that web page and enriching the whole concept of a hyperlinked web.

At that time, proper authorisation controls were difficult to maintain and
published data was mostly of public domain whereas servers did not provide
appropriate authorisation access to resources and there were no fancy tools to
organise uploaded resources like documents, photos or videos. Yet, users knew
exactly where their resources resided and resources where mostly used in a hy-
perlinked fashion.

As the years went by and the WWW evolved to stage 2.0, users started to
engage more on web applications and many stopped worrying about their own
personally developed home pages. In this constant change and evolution, users
were given a chance to start sharing resources among them and having better
control over what and how they shared their resources.

The concept of their own home page was rapidly fading and switched for
the one provided by one or more web applications of the most famous online
companies (i.e. Facebook, Google +, tumblr., Microsoft Live, to name a few).
These web applications are hosted inside a domain that is typically identified by
a name4 and each domain defines a realm of administrative autonomy, authority
or control on the WWW. Such properties are barely transposed from one domain
to another thus making each web application more distant and apart from each
other.

The process of creating data and sharing resources became easier and much
more simple than before but with a major trade-off as most of that sharing
actions are only perceived inside a closed domain that acts as a data silo.

This is more or less innocuous when most of the users’ social network remains
on the same domain but quite the opposite when users register on multiple
different domains across the network.

While users became more dependent on those big platforms, they also lost
some of the control over their resources’ hosting place and became limited to the
rules imposed by each of those domains. That being said, most of the concept
of an Internet made of inter-domain hyperlinks is becoming more and more
disused as bigger companies thrive to keep all the resources within their domain
premises (e.g. Facebook, Google, Apple). Of course hyperlinks are still used a
lot, but most of them only relate to publicly published content (inside or outside
the domain) and when data access policies need to be defined, it is only possible
for the resources/users hosted/registered in the same domain.

For example, if examining Facebook’s website, it is possible to perceive that
it uses two different methods for users to show and share their photos. Users can

4 http://en.wikipedia.org/wiki/Domain_name



opt for: (i) having their photos uploaded and hosted inside Facebook’s website
and sharing them on their profile page or (ii) simply by sharing external domain
photos via a hyperlink on their profile page. When those photos are hosted on
another web domain, Facebook automatically generates a preview/snapshot that
is embedded on the profile page.

While both approaches have their downsides, in the former the user: may
be lacking richer photo-editing features that can be found on more specialised
photo-editing domains; is constrained to Facebook’s access control policies for
sharing that resource, thus restraining it from being shared to users not registered
in the same web domain. On the latter approach, users can only perform sharing
actions over photos that are publicly published on other web domains.

Each photo hosted on a different domain, which is managed by other access
policies imposed by that domain, cannot be shared on the users’ Facebook profile
page. Thus being, a photo that is private or protected by any data access policy
outside Facebook domain cannot be shared to others inside Facebook, because
different domains apply different policy rules. While this approach is the one
more alike the web of links that was sought with the WWW birth, different kinds
of authentication and access policies prevent this kind of resource sharing from
occurring. Also, if the hyperlinked resource is changed or becomes unavailable,
the snapshot is not automatically updated; not reflecting the resource actual
state and demonstrating that hyperlinking is not taking place in the real sense
of the word.

By analysing how information resources are typically shared among users
on the Internet, is was observed that privacy over shared resources typically
only exists on closed domains, meaning that whenever a user shares a resource
with any another user belonging to another domain, the security of that sharing
is weak, most of the time only achieved if the owner sends the other user a
very long Uniform Resource Identifier (URI), that is automatically generated by
the domain where the resource resides. In terms of security and given enough
time, any sequential code generator would be able to imitate the automatically
generated URI for the sharing action thus allowing any user to access it. Despite
this, anyone who ends up with that resource URI can actually gain access to it,
therefore no authorisation access policies are defined over the resource.

The more data/resources a user uploads to the web, the more vulnerable the
user becomes. If the user also needs to duplicate that data in several domains,
not only the vulnerability risk increases as the coherence between copied data
decreases if a mistake is made while copying that data/resources. Users should
be able to upload a certain piece of data once and refer to it on other places in
multiple occasions.

This work proposes an approach that consists in giving users the means for
selecting in which domain the user’s resources should remain (independently of
where being used or linked) whilst managing their access control policies in a
single place. It also enables a hyper-linkable web of inter-domain resources that
can be restricted to Authentication, Authorisation and Accountability (AAA)
as described on Fig. 1.



Traditional Web

Envisaged Inter-Domain Hyperlinked Web

Web server 1 Web server 2

WebPage.html

publicPhoto

protectedPhoto

publicPhoto.png

protectedPhoto.png
A
u
th
en
ticatio

n
A
u
th
o
risatio

n
A
cco
u
n
tin
g

A
u
th
en
ti
ca
ti
o
n

A
u
th
o
ri
sa
ti
o
n

A
cc
o
u
n
ti
n
g

Web server 1 Web server 2

WebPage.html

publicPhoto

protectedPhoto

publicPhoto.png

protectedPhoto.png
HTTP 404

Figure 1. Traditional to envisaged hyperlinked web

After having demonstrated in previous work [4] how access control over each
information resource [8] could be achieved in an inter-domain perspective, we
intend to propose further enhancements to the existing framework to deal with
some information resource sharing whilst keeping resources physically localised
in user’s preferred domains independent of where each resource is referenced.

For that, this proposal is achieved by reusing previous work [3] (described in
section 3) and modifying one of its components, the Policy Enforcement Point
(presented in section 4), nonetheless retaining important aspects of that sys-
tem/framework like data provenance, trustworthiness of resources and making
resources as private as possible (introduced in section 2). In the fifth section
it is demonstrated how the prototype implementation was achieved and some
unanswered/open questions are presented. Finally, the last section gives an over-
view of the proposed solution and suggests further research.

2 State Of The Art

In order to globally identify information resources, the URI [2] concept is widely
used, allowing the establishment of relations between resources and users. The
Resource Description Framework (RDF) [12] exploits this concept to form facts
in triples (i.e. subject-predicate-object), where subject and predicate are URI,
and object can be either a URI or a value (attribute).



Any information resource can be classified into three groups:
(i) private, when the resource is only accessible to the owner;
(ii) protected, when the resource can be accessed by the author and by

another user. For a resource to be protected it needs to have been shared to
another user by setting specific access control policies;

(iii) public, when the resource is publicly available to any user.
A private resource is automatically changed to protected when any other

user besides the author has been granted access to it. Any private or protected
resource can be taken to public state. Each state is not reversible, meaning that
a protected resource cannot become a private resource and a public resource
cannot become either private or protected.

Friend-Of-A-Friend (FOAF) [5] is a vocabulary devoted to describing people
and their relations using a machine-readable format. Each FOAF file provides
information about each user and can be used by websites to ensure users re-
tain control over their profile information and relationships in a non-proprietary
format. FOAF profiles can be used across different web applications to ensure
users identify in a domain independently way. Nevertheless, FOAF does not
provide a single user identity across different web domains. In order to reduce
multiple user accounting across different web domains, FOAF+SSL [13] authen-
tication protocol was created, providing a cross-domain protocol that intended
to create a global decentralised authentication mechanism built upon the usage
of FOAF profiles and easily adopted by web applications that support HTTPS
protocol.

Lately, FOAF+SSL evolved to a W3C editor’s draft5 by the name of Web
Identity and Discovery (WebID). This specification outlines a distributed and
openly extensible universal identification mechanism, by combining asymmetric
cryptography and Linked Data, that can make use of the FOAF vocabulary in
the WebID universal identification mechanism, making it possible to link people
and their profiles in either a public or protected way. In the work proposed by
[14], by allowing delegation of access authorisation from a WebID to a third
party it is shown how a web server or agent can act on behalf of its users.

Our previous work took this a step further by developing an Automatic
Provenance Acquisition Framework [3] that also handles data provenance over
user actions on the Internet, either privately owned or shared protected resources.

The PROV Ontology [9] uses the OWL2 web ontology language to express the
PROV Data Model [11]. It can be used to represent and interchange provenance
information generated in different systems and under different contexts.

[1] proposes a scalable and yet efficient storage model by exploiting structures
of provenance logs and separating metadata from the generating process.

[7] not only addresses the creation of data but also proposes a capturing
provenance model for information Web-based data access as well as informa-
tion about the creation of data. Prizms Linked Data is a platform that creates
datasets about the structural provenance of a host system to create provenance

5 http://www.w3.org/2005/Incubator/webid/spec/identity/



leveraging [10] since it is still too difficult to publish and discover provenance in
the Linking Open Data (LOD).

It is our belief that generating provenance data about a resource should be
done as soon as possible, meaning that is should be recorded whenever a user
performs an action over an information resource that could change its state and
therefore we focus our work on generating data provenance for resources that
are added or modified on the WWW, independently of being private, protected
or public. Since provenance data is highly tied up with the resource, it can be
private, protected or public according to the resource data access policies.

3 Background

In previous work [4], the authors proposed a decentralised architecture capable
of providing authentication, authorisation and access control management based
on provenance information. This framework proposes the use of action sensors
(responsible for intersecting user actions on resources) and metadata generators
for resource provenance information.

Access
or Publish 
Resources

PDP

Web Server

PAP

rules

PIP

resources

PIP

resources
Get 

Rules

Rules 
Management

HTTP Server

Get Resources (WebId)
Get User’s Social Network (WebId)

Get Extra Info

Manage Access 
Control Policies

PEP

Ask for Access

Get User Info Get User Info
via Delegation

Get Resource 

Owner

HTTP
Client

Figure 2. Framework architecture

The framework is mainly composed of four components. Fig. 2 depicts an
overview of the entities and their interactions:

– Policy Enforcement Point (PEP), enforces authentication and guaran-
tees authorisation controlled/authorised access to resources;

– Policy Information Point (PIP), is used to retrieve information related
to users, resources and provenance information;



– Policy Decision Point (PDP), evaluates rules and policies that are used
by the PEP;

– Policy Administration Point (PAP), enables users to build and manage
access rules and policies over existing resources.

The PEP component provides means of validating FOAF+SSL authentication
for every user, even if the user is not registered on the domain proprietary ap-
plication. This component is responsible for tasks such as authentication, au-
thorisation and gathering provenance information. It intercepts each request a
server receives. When a request is intercepted, it uses the FOAF+SSL authen-
tication in order to authenticate the user. If the requester is not able to provide
credentials for FOAF+SSL, it bypasses the request directly to the web server
application without interfering in the request process.

The PDP component is responsible for producing the decision of granting
or not access to a resource, thus being responsible for checking if a given user
should or not have access to it. The PDP receives user credentials from the PEP
and according to the access policies, the PDP evaluates whether the requester
should have access to the resource. If more information is needed to evaluate
access, the PDP may contact any PIP to obtain related extra information.

Each PIP is responsible for obtaining information that is not available inside
other components of the framework. This component acts as a broker interface
to existing repositories that have information about resources, authors, web serv-
ers, and provides querying abilities to existing information repositories, therefore
being able to answer queries like “return a list of all resources for a given user
WebID” or “return a resource author”. It also takes the role of a data provider
and is capable of creating new provenance information (in the form of semantic
annotations) about user actions and making it available on registered repositor-
ies.

Users configure access policies over resources and manage their relationships
on the PAP. This component manages the user FOAF profile to maintain rela-
tionships up to date and provides the visual interface component where a user
is allowed to manage access to resources. This component behaves like an access
control management console, where it enables the user to control all his/her re-
sources. At the time, access policies are defined as simple SWRL rules, but the
framework allows any other kind of access policy models. This component uses
existing PIPs to retrieve data about users, resources and relationships, so that
access policies can be set upon them.

In order to address the issue of publishing privately, the team will use this
framework as a starting point. The previously developed framework already en-
ables authentication, authorisation and data provenance over resources in dif-
ferent web domains. All the work proposed required this existing framework for
managing the users’ authentication (via WebID), delegate policy decisions to
domains where resources are hosted (taking policy rules to a fine-grained level)
and to generate automatic data provenance information.



4 Proposal

In an Internet browsing scenario there are two possible ways for preventing or
restricting users from accessing resources for which they have not been granted
access. There is the client or server side approach.

As described in the previous framework, the Policy Enforcement Point com-
ponent is responsible for acting as a broker between the user’s request and the
server response. Such component can be located either at the client side (by
means of a browser extension) or at the server side (by means of a web applic-
ation server module). Having adopted a server side approach in previous work,
the same approach was preferred for the proposal of new features.

In order for this proposal to be effective, let’s take into consideration that
every information resource created or uploaded by a user is therefore physically
hosted on a web domain but its URI can be referred in any other domain,
independently of where the resource is hosted.

Web server

PEP

…

Sensor

Upload 

Sensor

Authentication

Module

Distributed 

Resource Broker

Web

Application 2

Web 

Application 1

Web

Application n
<uses>

<uses>

<uses>

Figure 3. PEP: Distributed Resource Broker

By creating a Distributed Resource Broker inside the Policy Enforcement
Point (on Fig. 3 represented as the dashed-line component), that is able to
intercept a web resource request/response, it is possible to change and even
override the information that is being sent on that request/response. While this
is characteristically used by malicious groups in order to eavesdrop on requests,
allowing network intrusion or man in the middle attacks, we intend to add new
behaviour to this broker in order for it to provide a better and more decentralised
control over the user’s preferred hosting services.

Symptomatically, each existing web domain/application is responsible for
hosting and keeping track of the resources it holds (i.e. independently of being



comments, documents, text, photos, movies, etc.) and the rules for displaying
those resources are intrinsic to each of those domains not usually being possible
to be reused or applied to users registered on other domains.

While the issue of handling the distributed authentication and authorisation
over each of those resources has been dealt and solved in previous work [4]
our intention is to enhance the decentralised resource management in order for
resources to not have to reside on proprietary or isolated domain servers and
still be capable of being accessed inside and outside those domains, by updating
some of the components inside the web server without having to change all the
web applications residing on top of the web server.

Applicational Web Server

PEP

Web 
Application

PIP

Photo Hosting Server

Photo Web Application

ownerOf

photo.png

PEP

photo.png

3. Upload
Server URI

4. Resource
Upload

2. Retrieve Resource
Upload Domain 

5. Resource
URI

Distributed Resource Broker

FOAF 
Profiles

1. Resource 
Upload

Resource 

6. Link to Resource URI User

Figure 4. Resource upload

These new module’s features primarily consist of firstly obtaining the ap-
propriate service for hosting the resource, according to the resource type, thus
allowing a resource to be hosted on different domains than the one where the
resource is referred. Secondly, it filters the response by automatically loading
any external resource, even from different web domains. This proposal addresses
many of the afore mentioned issues in a way that would allow users to upload
resources into one domain but instead of the resource being hosted in that do-
main it could be relocated to any other domain that could better support that
kind of resource, thus increasing user’s privacy over resources and the removal of
duplicate resources and duplicate access policies. Such duplication of resources
as well as access policies also increases the risk of jeopardising security, which is
the opposite of what is being proposed.

Using this approach, any web page that makes use of resources that are
available on domains using the framework, can be presented to final users with
different views according to each user’s access policies. That said, each individual
user could eventually have a very different perception of the same webpage.



With these features, each individual user is given the chance to manage the
list of preferred hosting services according to each distinctive type of resource.
Such a list is based on the resource type being uploaded and based on that,
the broker is responsible for accessing the user’s preference list, retrieve the
appropriate hosting service for that resource type, upload the resource to that
hosting service, obtain the returned URI and use it in the actual domain doing
the resource presentation as illustrated in Fig. 4.

When a user requests a web page that contains a link for the uploaded re-
source, the broker is responsible for providing the hosting service with any user
credentials to prove that it is acting on behalf of the user’s request, delegating
any authorisation enforcement to the hosting service. If the user requesting the
web page has any kind of access to that resource, the broker is responsible for
retrieving it and rendering it on the webpage as depicted in Fig. 5.

When a user requests a web page with resources for which s/he has not
been granted access, those resources (independently of where they are originally
hosted) are automatically filtered out by the framework and will not be rendered
on the web page.

Applicational Web Server

PEP

Web 
Application

PIP

Photo Hosting Server

Photo Web Application

photo.png

PEP

photo.png

3. Upload
Server URI

4. Retrieve
Resource

2. Retrieve Resource
Upload Domain 

5. Resource
Distributed Resource Broker

FOAF 
Profiles

1. Request

Resource URI 

6. Embed Resource User

7. Response

Figure 5. Resource request

As an example, lets depict a scenario where a user (U_a) uploads some
resources (R_1 and R_2) to a web application and defines some access con-
trol policies over those resources, as depicted in Fig.6. When U_a requests the
webpage via a browser, s/he is presented with a view similar to the one presented
in the left in Fig. 7. If the resources’ author (U_a) sets an access policy that
grants view access to another user (U_b) to only one of those resources (R_1)
the other user’s (U_b) webpage rendering would be like the one in the centre of
Fig. 7. Again, if the resources’ author (U_a) gave viewing access to user (U_c)
to the other resource (R_2), U_c’s webpage rendering would be like the one in
the right in Fig. 7.



R_2

isFriendOf

viewPermission

grants

R_1

overResource

toUser

viewPermission

grants

overResource

toUser

U_b U_a U_cisFriendOf

Figure 6. Resource access policy

Each web page is rendered solely and uniquely according to the credentials
provided by the user requesting the webpage, which in the end, it can assume
as many renderings as the number of permutations between the resources shown
and the number of users whose been granted access to those. To increase security,
access policy control is always enforced as close as possible to the resource being
retrieved.

For a brief moment lets refer back to the envisaged hyperlinked web depicted
on Fig. 1 and transpose that to the Facebook realm. Let’s again consider a user
(U_a) that sets some data access policies over some resources (R_1 and R_2)
s/he owns on a certain domain appropriate to handling such type of resources
(Flickr). Let’s also consider the same user granted an access viewing policy to
other users (U_b to R_1; U_c to R_2) as depicted in Fig. 6.

If U_a wished to display those resources on another domain (Facebook’s
profile page) but still enforce the original access policies and restrict unwanted
access from others, we would only need to share a hyperlink to those resources
(R_1 and R_2) on that domain (Facebook’s profile page). If so, only users (U_b
and U_c) would have viewing permission over each correspondent resource, and
each one them would end up with different renderings of the same web page
because data access permissions would still be enforced on the resource’s original
domain (Flickr).

As described, the same page may have multiple renderings depending on the
users’ data access permissions to each and every single resource. With minor
effort and taking advantage of data provenance, it is possible for the resource’s
owner to have a log of its actions on the web as well as to provide means of
trustworthiness to other users for all the published resources. This log also en-
ables the user to check at any moment what data/resources s/he made available,



Webpage.html

U_a 
Rendered View

U_c 
Rendered View

U_b 

Rendered View

R_1

R_2

R_1 R_2

Figure 7. Web page rendering according to access policies

where these are hosted and who can access them, which is a proactive way of
enhancing user’s privacy on the WWW.

5 Discussion and Related Work

Testing a web server component on a big and fully operational website like
Facebook, Google+ or any other of the kind was an unrealistic option. As a con-
sequence, the previously proposed Distributed Resource Broker was developed
as a module of the PEP component used in combination with the WordPress
web framework [3] that had been previously engineering to accept WebID au-
thentication. The introduction of the newly developed module was conducted on
a web application server and several different WordPress domains were created
to simulate several different hosting services for each of the different resource
types.

For testing purposes, several different FOAF profiles were created to simulate
different user identities. For each profile, several social relationships were added
in order to recreate a social network. Each user maintained a blog in one of
the several WordPress application servers where resources could be uploaded
and shared. Each resource, according to its type (i.e. music, photo or video)
was automatically uploaded by the framework to a specific WordPress instance
only responsible for hosting those types of resources. After setting data access
policies over the resources and relationships, users would only view other users
blog’s rendering according to the access policies that had been defined.

All the tests proved successful hence complying with all the goals proposed.
Multiple web page renderings for the same web page were achieved due to the
usage of different access policies for each user and uploaded resources were only
physically located on the specific WordPress web server that had been set up for
that purpose. Each WordPress blog website only hold blog entries and did not
have any copy of the uploaded resources. While no major performance impact



was detected, one might suspect that in a true WWW experiment such impact
might occur depending on the network performance provided by each of the
individual hosting services being used.

Several open questions came up while studying and evaluating the issue of
privately publishing resources on the Internet. We would like to share some of
these questions, as it is our belief that they are fundamental for a better under-
standing of all the concerns that need to be overcome when using an approach
such as the one proposed.

In this proposal we address only a range of available resources, those that
are contained inside a file (e.g. photo, video, document, etc.). Sharing structured
text (i.e. RDF, JSON, HTML) as a whole single indivisible resource is mainly the
same as for documents and this approach is capable of handling those resources.
To do that, only the resource URI is hyperlinked and the whole document is
either embedded or downloaded on request. Nevertheless, privately sharing just
part of a structured resource is a lot more difficult. While some resources are
considered indivisible like (i.e. photos, proprietary formats), others can be di-
vided into subparts thus allowing fine-grained access (i.e. HTML, RDF, etc.).
This poses several difficulties namely:

– Do all structured resources have associated query languages or navigation
utilities? While there are some query/navigation language like SPARQL for
RDF resources, XPath for XML, JSONNiq for JSON, some structured doc-
uments (e.g. CSV, PDF) do not offer similar navigation thus making the
document traversing more difficult, practically blocking the hyperlinking to
just part of the document;

– How to specify the querying in the resource link and how to embed the
query result in the web page referring that resource? How to handle semantic
ambiguities resulting from hyperlinked resources?

Which component should perform the web page rendering, the web server or the
client is also a relevant question. While either component is capable of handling
that task, only development on the web server was conducted. Such component,
when encountering a reference to an external resource that is protected by ac-
cess policies, it delegates the request to the hosting domain which checks if the
user making the request has access to the resource, thus rendering the result
or completely removing it from the webpage before the request is sent to the
requesting client.

When the result is not rendered, the requesting user is not even aware that
s/he did not have access to a certain resource. Nevertheless, in a client-side
implementation, if the client browser performed this external resource rendering,
the user would have knowledge that a certain resource exists but that s/he does
not have access to it. While the requesting user does not have access to the
external resource, s/he actually knows about its existence, thus reducing the
resource owner’s privacy on the web.

Should it be possible to hyperlink a hyperlink (creating transitive links) or
all hyperlinks should point to the original resource URI? Transitive links create



a daisy chain of references for the original resource. Therefore, when a request
is daisy chained between multiple web domains, the users and each chain’s web
domain credentials must be delegated to the next element in the chain until the
resource is encountered. Only then, the PEP is responsible for taking the decision
of granting access or not. While delegating authentication and authorisation is
not addressed in our proposal, we foresee the usage of the protocol proposed in
[14], in order to handle authentication and authorisation in those daisy chained
systems. This protocol proposes an extension to the WebID protocol, for allowing
delegation of access authorisation thus allowing servers to act on behalf of users.

Priv.ly6 is a product that emphasises on enforcing user’s content privacy on
the web in a way quite similar to our proposal. Its implementation is based
on a client-side approach but only accessible for users that install a browser
extension (available for Chrome, Firefox and Opera browsers). Our approach
provides user’s content privacy; inter-domain protected resource access control
and sharing; and is a server-side implementation, more transparent to the final
user, hence favouring a wider, quicker and rapid adoption by users.

Let’s assume a typical use case registration in a web domain, where name,
email and password are some of the commonly requested attributes to be filled
in. Why should the user need to write his/her name when s/he should be given
the chance to reuse the <foaf:name> property that resides in the identifying
FOAF profile by simply hyperlinking to it? The domain where the registration
is happening could eventually keep a cached record of the hyperlinked name,
but should be able to display it correctly if the user ever changed it in his/her
FOAF profile. This change would also automatically propagate to the dozens
of other web domains where the user had performed the registration and the
act of changing the name on the FOAF profile would be automatically reflected
everywhere. The user name is only a possible example of such data re-usage and
hyperlinking. Some approaches similar to this have been done for other types
of documents, like XML resources. Enhancing the XLink specification [6] could
make it suitable for usage inside the WWW.

6 Conclusions and Future Work

After conducting several tests on the system, with different types of resources,
users, relationships and access policies, it was possible to identify that resources
similar to closed and indivisible documents like music, photos or videos are best
suited to be hosted outside a domain, because those resources can be easily
rendered as a hyperlink. Images are an exception, as client browsers not only
acknowledge the existence of a hyperlink, as well as they also display the image
in the document itself. Hyperlinking to structured text or comments on forums
or any other information introduced via a web form is more difficult to handle, as
these are intrinsic to the domain where the text is introduced or the form is filled.
Nevertheless, once the data/text is identified (by an URI) and localised (by an

6 https://priv.ly



Uniform Resource Locator (URL), a form of URI), the resource’s authorisation
and controlled access can be managed, thus behaving like any other resource
(e.g. photo).

Following previous research, users continue to be able to manage access
policies over each resource in a single place. While hosting domains are respons-
ible for enforcing any policy rules related to a single resource, presentation do-
mains, where the resource URI is referred, are responsible for asking for access to
those resources thus delegating the hosting domain with proper user credentials
for it to enforce the authorisation process. This is a major advance because users
are no longer forced to manage authorisation over their resources the way each
domain wants and how it wants it. Furthermore, a user can share a resource with
other users either on the same or other domains without having to duplicate the
item and access policies. Before this proposal, what once was intended to be a
single resource accessible by other users outside the domain, would end up being
a duplicate resource on two or more different domains where access control would
have needed to be duplicated and separately defined on each different domain.

Developed prototype and testing proved successful and it was possible to
demonstrate that for a one time uploaded resource, it was possible to reference
it on different web domains while still preserving access control policies over
it. One overall advantage is that users can even keep a log of their every data
creation and publishing on the web.

Trustworthiness also plays a very important role when creating a hyperlinked
web like the one proposed. Just because a user has access to a resource, does not
mean that s/he wished to have it rendered. If a malicious script or document
exists on a referred external resource, and the user credentials allow access to that
resource, this could pose several security threats. What has been proposed could
be enhanced with a user/resource blacklist, in order to filter which resources
could be loaded based on the referring resource or even resource author. If the
user does not trust another user or a specific resource, either the user or specific
resource could be blacklisted.

Unfortunately, most of these advantages come with a price and may not be
achievable at the moment. There are certain technological problems that still
constitute an obstacle to a full adoption of such a hyperlinked web of resources.
The number of requests between web servers would certainly increase and so the
available bandwidth would decrease, reducing Internet browsing speeds.

Setting aside technological difficulties, we believe that in the future, every
information resource can be hosted in a different web domain than the one where
the resource is being referenced. Yet, for HTML web page rendering, new tags or
enhancements to existing ones will need to be introduced in current vocabularies
for referring to external resources and that itself is a new research field.

In conclusion, it was proven that (i) by extending an existing framework it is
possible to publish resources privately by only developing a Distributed Resource
Broker service that resides on the application web server; (ii) privacy over user
resources is enhanced, because resources can be hosted exactly where the user
feels most comfortable with and relies on; (iii) trustworthiness of a resource is



given by the user’s association to the resource, backed up by provenance data
provided by the framework.

Acknowledgements. This work is supported by “Fundo Europeu de Desenvol-
vimento Regional (FEDER)” funds through the “COMPETE - Programa Op-
eracional Factores de Competitividade (POFC)” program, under the project
Ambient Assisted Living for All (AAL4ALL - QREN 13852).

References

1. Jemal H. Abawajy, Syed I. Jami, Zubair A. Shaikh, and Syed A. Hammad. A
framework for scalable distributed provenance storage system. Computer Standards
and Interfaces, 35:179–186, 2013.

2. Tim Berners-Lee, Roy T Fielding, and Larry Masinter. Uniform Resource Identifier
(URI): Generic Syntax. http://www.ietf.org/rfc/rfc3986.txt, 2005.

3. Nuno Bettencourt, Rafael Peixoto, and Nuno Silva. Automatic Traceability Ac-
quisition Framework. In Proceedings of the 2nd International Conference on Web
Intelligence, Mining and Semantics (WIMS’2012), New York, USA, June 2012.
ACM Press.

4. Nuno Bettencourt and Nuno Silva. Recommending Access to Web Resources based
on User’s Profile and Traceability. In 2010 10th IEEE International Conference
on Computer and Information Technology, number Cit, pages 1108–1113. IEEE,
2010.

5. Dan Brickley and Libby Miller. FOAF Vocabulary Specification, 2010.
6. Steven J DeRose, Eve Maler, David Orchad, and Norman Walsh. XML Linking

Language (XLink). http://www.w3.org/TR/xlink11/, 2010.
7. Olaf Hartig. Provenance Information in the Web of Data. Proceedings of the Linked

Data on the Web LDOW Workshop at WWW, 39(27):1–9, 2009.
8. Ian Jacobs and Norman Walsh. Architecture of the World Wide Web, Volume

One, 2004.
9. Timothy Lebo, Satya Sahoo, and D McGuinness. PROV-O: The PROV Ontology.

http://www.w3.org/TR/2013/REC-prov-o-20130430/, 2013.
10. Timothy Lebo, Patrick West, and Deborah L. McGuinness. Walking into the

Future with PROV Pingback: An Application to OPeNDAP using Prizms. In Proc.
of the 5th International Provenance Annotation Workshop (IPAW’2014), 2014.

11. Luc Moreau and Paolo Missier. PROV-DM: The PROV Data Model.
http://www.w3.org/TR/prov-dm/, 2013.

12. Mark H. Needleman. RDF: The resource description framework. Serials Review,
27(1):58–61, 2001.

13. Henry Story, Bruno Harbulot, Ian Jacobi, and Mike Jones. FOAF+SSL: RESTful
Authentication for the Social Web. Current, pages 1–12, 2009.

14. Sebastian Tramp, Henry Story, Andrei Sambra, Philipp Frischmuth, Michael Mar-
tin, and Sören Auer. Extending the WebID Protocol with Access Delegation. In
Third International Workshop on Consuming Linked Data (COLD2012), 2012.


	How to Publish Privately

